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Abstract: The unique prolyl isomerase Pin1 binds to and catalyzes cis–trans conformational changes
of specific Ser/Thr-Pro motifs after phosphorylation, thereby playing a pivotal role in regulating
the structure and function of its protein substrates. In particular, Pin1 activity regulates the affinity
of a substrate for E3 ubiquitin ligases, thereby modulating the turnover of a subset of proteins and
coordinating their activities after phosphorylation in both physiological and disease states. In this
review, we highlight recent advancements in Pin1-regulated ubiquitination in the context of cancer
and neurodegenerative disease. Specifically, Pin1 promotes cancer progression by increasing the
stabilities of numerous oncoproteins and decreasing the stabilities of many tumor suppressors. Mean-
while, Pin1 plays a critical role in different neurodegenerative disorders via the regulation of protein
turnover. Finally, we propose a novel therapeutic approach wherein the ubiquitin–proteasome system
can be leveraged for therapy by targeting pathogenic intracellular targets for TRIM21-dependent
degradation using stereospecific antibodies.

Keywords: Pin1; phosphorylation signaling; cis–trans conformational changes; protein ubiquitination;
proteosome pathway; cancer; neurodegeneration; TRIM21; E3 ligase

1. Introduction

Protein phosphorylation is one of the most important and universal regulatory post-
translational modifications (PTMs) in the cell, occurring as a response to intracellular and
extracellular stimuli to initiate signaling cascades or alter protein–protein interactions. In
eukaryotes, this reversible mechanism consists of the covalent addition of a phosphate
group at the serine, threonine, or tyrosine side chain of a protein and is mediated by kinase
and phosphatase enzymes. Phosphorylation plays a crucial role in regulating a diverse
range of cellular activities, one of which is ubiquitination. Specifically, phosphorylation
serves to modulate a substrate’s receptivity to ubiquitination and influence the activity
of substrate-ubiquitinating enzymes, particularly in relation to the ubiquitin–proteasome
system (UPS) [1].

The UPS is the major enzymatic pathway in eukaryotes for intracellular protein
degradation, consisting of the covalent tagging of proteins with ubiquitin (Ub) and the sub-
sequent degradation by the 26S proteasome. Ubiquitination is orchestrated by at least three
enzymes: E1: a Ub-activating enzyme; E2: a Ub-conjugating enzyme; and E3: a Ub ligase.
Initially, E1 will use adenosine triphosphate (ATP) to activate Ub, creating a reactive Ub
thioester at the protein C-terminus that is conjugated to E1. This activated Ub will undergo
trans thiolation onto E2 before it is finally transferred onto the target substrate by E2 and
E3 enzymatic activity [2]. Much of the specificity of this post-translational modification
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pathway is owed to this final step, wherein the E3 Ub ligase acts as a matchmaker to specif-
ically recognize and bind the substrate to be ubiquitinated, as evidenced by the hundreds
of E3 analogs required to fulfill conjugation specificity, compared to the single mammalian
E1 and dozens of E2s [3,4]. E3 regulation of the UPS is particularly significant because the
26S proteasome cleaves proteins exclusively based on the Ub marker and not based on any
specific amino acid sequence, like other proteases. This allows it to degrade a wide range of
substrates with a high degree of specificity. Typically, substrates undergo post-translational
modification with the addition of a Ub monomer (monoubiquitination); however, Ub itself
can be a target for further ubiquitination, allowing the processive formation of a short Ub
chain (oligoubiquitination) or a longer Ub chain (polyubiquitination) [5]. Alternatively,
another class of ubiquitination factors, E4 enzymes, may also catalyze the elongation of the
Ub chain [6].

One pivotal regulator of phosphorylation-mediated ubiquitination is Pin1 (protein
interacting with NIMA (never in mitosis A)-1), a ubiquitously expressed and highly con-
served eukaryotic peptidyl-prolyl isomerase (PPIase). Pin1 uniquely binds and catalyzes
cis–trans conformational changes at specific phosphorylated Ser/Thr-Pro motifs [7–9],
thereby modulating the activities, functions, and stabilities of a broad range of substrates
after phosphorylation. Notable Pin1 substrates include several master regulators, such
as p65/RelA nuclear factor-kappaB (NF-κB) [10], cyclin-dependent kinases (CDKs) [11],
and the tumor suppressor protein p53 [12]. Accordingly, as Pin1 is a critical and dynamic
signaling regulator for many substrates in essential functions, such as the cell cycle, im-
munity, and metabolism [13–15], it is widely distributed at both the cellular and tissue
levels, depending on its substrates [16]. Thus, Pin1 can be found in both the nucleus and
cytoplasm of many cell types depending on the presence of its substates, including stromal,
parenchymal, and stem cells [17–20].

Pin1 is especially relevant in our discussion of phosphorylation-mediated ubiquiti-
nation given that a significant portion of the overall phosphorylation activity occurs on
Ser/Thr-Pro residues, accounting for one-quarter of the sites identified in global phospho-
rylation studies, with pSer-Pro sites outnumbering those of pThr-Pro at a ratio of five to
one [21]. Hence, Pin1 is a critical mediator in the crosstalk between ubiquitination and
phosphorylation, acting as a unique and pivotal post-phosphorylation mechanism for
a broad range of substrates by which the protein stability and UPS interactions can be
sterically modulated (Table 1).

Table 1. List of Pin1 substrates in which stability is altered upon Pin1 isomerization.

Substrate Disease References

Increased Stability

β-catenin Cancer [22]

c-Myc Cancer [23–26]

Cyclin D1 Cancer [27]

p53 Cancer [28–30]

Bcl-2 Cancer [31]

NF-kB Inflammation [10]

p73 Cancer [32]

BIMEL Huntington’s [33]

Emi1 Cancer [34]

HBx HepB/Cancer [35]

Her2 Cancer [36,37]

Mcl-1 Cancer [38]
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Table 1. Cont.

Substrate Disease References

Notch1 Cancer [17,39]

AKT Cancer [40]

Cep55 Cancer [41]

p27 Cancer [42,43]

v-Rel Cancer [44]

NCID1 Cancer [45]

Tax HTLV/Cancer [46,47]

COX-2 Inflammation [48,49]

PPARγ Cancer/Metabolism [50]

Nanog Cancer [51]

Integrase Particle HIV [52]

4-Oct Cancer [53]

Mutant p53 Cancer [54]

ADAR2 ALS [55,56]

ERα Cancer [57,58]

HIPK2 Cancer [59]

p63 Cancer [60]

RBBP8 DNA Repair [61]

Sp1 Cancer [62]

HIF-1α Cancer [63–65]

ERα Cancer [66]

Separase Cancer [67]

PML-RARa Cancer [68]

CRMP2A Alzheimer’s [69]

PERIOD Circadian Rhythm [70]

BRD4 Cancer [71]

p27 Cancer [42]

Tissue Factor Cancer [72,73]

TRIM59 Cancer [74]

YAP/TAZ Cancer [75,76]

ACC1 Cancer [77]

BRCA1-BARD1 Cancer [78]

FAAP20 DNA repair [79]

BRCA1 Cancer [80]

HBc HepB/Cancer [81]

HP1α Cancer [82]

Nrf2 Cancer [83]

HIF-2α Cancer [84]

TRIM32 Cancer [85]

HBV CP HepB/Cancer [81]
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Table 1. Cont.

Substrate Disease References

Decreased Stability

Tau Alzheimer’s [86–88]

CF2 Cancer [89]

RARa Cancer [90]

BTK Cancer [91]

IRF3 Cancer [92]

Cyclin E Cancer [93–96]

Daxx Cancer [97]

SMRT Cancer [98]

FOXO4 Cancer [99]

PML Cancer [100,101]

A3G HIV [102]

Smad2/3 Cancer [103]

GRK2 Cancer [104]

CDK10 Cancer [105]

Fbw7 Cancer [23,106]

PKC Parkinson’s [107]

Bora Cancer [108]

SUV39H1 Cancer [109]

RUNX3 Cancer [110]

KLF10 Cancer [111]

Che-1 Cancer [112]

REST Neurodegeneration [113]

Mutant HTT Huntington’s [114,115]

c-Jun Cancer [116]

IRF7 Inflammation [117]

PRDM16 Metabolism [20]

PSD-95 Epilepsy [118]

STK3 Cancer [75]

ATGL Metabolism [119]

SIK1 Cancer [120]

pVHL Cancer [11]

Pin1 functionality is critically dependent on the nature of its substrates and cellular
pathways. Pin1 can interconvert from cis to trans conformation or vice versa depending on
the identity of the substrate and relevant structural differences, as Ser/Thr-Pro motifs may
have different preferences for being in a cis or trans configuration after phosphorylation,
depending on the substrate [121]. The trans conformation of peptide bonds tends to be more
energetically favorable and common due to the reduced steric hinderance from adjacent
amino acids [122,123]. Consequently, Pin1 typically catalyzes cis–trans isomerizations in its
substrates, although trans–cis substrates also exist [124–126]. For example, the cadherin
CDH1 is one notable substrate wherein Pin1 trans–cis isomerization contributes to changes
in stability [126].
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2. Pin1 and the Ubiquitin–Proteasome System

Pin1 interactions with the UPS are multi-faceted and complex, as Pin1 may regulate
multiple components in a pathway using any combination of several mechanisms (Figure 1).
Specifically, Pin1-catalyzed isomerization may increase or decrease the stability of a protein
through a variety of mechanisms, such as by (1) modulating a substrate’s compatibility with
the E3 ligase through steric alterations, (2) negatively regulating substrate E3 ligases, and
(3) modifying the length of a protein’s Ub chain. An interesting note is that the involvement
of Pin1 in the UPS suggests that cis or trans conformation is a major factor in the regulation
of Ub-mediated proteolysis.
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Figure 1. Overview of Pin1 involvement in ubiquitin-mediated degradation. After Pin1 binds and
catalyzes a conformational change to a phosphorylated substrate, the resulting protein may have
either decreased or increased susceptibility to ubiquitin-mediated degradation, depending on the
molecular characteristics of the new conformation. Specifically, the resulting configuration may have
an altered susceptibility to other post-translational mechanisms and polyubiquitination, as well as an
affinity with ubiquitin factors. Furthermore, because Pin1 negatively regulates many E3 ligases, it
may indirectly play a role in the stability of the substrate of these ubiquitin factors as well.

Firstly, Pin1 increases the rate of cis–trans isomerization so that the resulting substrate
has an altered affinity for E3 ligase ubiquitination. Isomerization may expose specific
structural motifs that can be recognized by the E3 ligase, leading to the ubiquitination and
subsequent degradation of the target substrate. Alternatively, the new conformation may
bind poorly with the E3 ligase and consequently increase the substrate’s half-life [121]. For
example, Pin1 recognizes and binds phosphorylated RARα, consequently promoting its
protein degradation and turnover by the UPS [90]. In contrast, the opposite is also possible,
where Pin1 conformational changes can enhance the protein stability. For instance, Pin1
binds and stabilizes the many members of the p53 family of transcription factors, including
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Tap63α and ∆Np63α [60]. Pin1 isomerization is thought to alter the cyclization of the
region surrounding the PpxY motif of p63, preventing the binding of the WWP1 E3 ligase
and ubiquitination [60]. As a result, Pin1 protects the levels of Tap63α and ∆Np63α and
enables them to perform apoptotic and proliferative activities, respectively [60].

Secondly, Pin1 can negatively regulate many E3 ligases. One such example is the
Fbw7 Skp1-Cullin-F-box (SCF)-type complex, a well-known tumor suppressor E3 ligase
that targets various oncoproteins for degradation, such as c-Myc, cyclin E, XBP1, and
Notch1/4 [17,127]. Pin1 promotes the self-ubiquitination and degradation of phosphory-
lated Fbw7 by disrupting its dimerization, likely through Fbw7 isomerization [23]. Thus,
Pin1 indirectly promotes cancer development by eliminating the Fbw7 inhibition of onco-
genic activities, such as the self-renewal of cancer stem cells through Notch signaling [17].
Similarly, Pin1 depletion sensitized in vitro cancer cells to Taxol by upregulating Fwb7 and
subsequently decreasing the levels of the oncogene Mcl-1 [23]. Pin1 also interacts with
phosphorylated c-Jun, an oncogenic transcription factor, to promote its Fbw7-mediated
ubiquitination and consequent degradation [116].

Thirdly, Pin1 can regulate the protein fate and stability by controlling the length of
the Ub chain. This can determine a substrate’s ability to be recognized by Ub-binding
proteins [128], as well as dictate whether the Ub-conjugated substrate will proceed towards
degradation pathways or associated non-proteolytic activities, such as DNA repair or signal
transduction [129]. While short mono-/oligo-Ub chains commonly lead to non-proteolytic
signaling activities and long poly-Ub chains lead to degradation, these functions of Ub can
occur sequentially through the elongation of the Ub chain [129]. Specifically, substrates
may initially undergo mono-/oligoubiquitination for cell signaling before being polyu-
biquitinated and degraded. While the Ub elongation factor E4 ligase often facilitates the
lengthening of these chains [129–131], Pin1 also participates in polyubiquitination. For
example, CtlP is a DNA damage factor that is recruited to the sites of double-stranded
breaks to promote homologous recombination (HR) over other lower-fidelity repair mech-
anisms, like non-homologous end joining (NHEJ). However, the Pin1 isomerization of
phosphorylated CtlP promotes its polyubiquitination and degradation [61]. By modulating
the CtlP stability, Pin1 contributes to the phosphorylation-dependent regulation of DNA
double-stranded repair mechanisms, indicating that abnormal Pin1 levels, like in cancer,
can compromise the efficacy of the HR and NHEJ repair mechanisms and, consequently,
the genomic integrity [61]. Another well-known example involves the Pin1 substrate p53,
a master regulator of tumor suppressor genes, and the E3 ligase Mdm2. High Pin1 is
associated with p53 monoubiquitination and nuclear export, while Pin1 inhibition results
in the polyubiquitination of p53 by Mdm2 and subsequent degradation [132]. Thus, Pin1
and Mdm2 act in concert to regulate the p53 levels.

Of note, Pin1 may also regulate phosphorylation-dependent ubiquitination by regu-
lating other PTMs, like phosphorylation, sumoylation, and acetylation, that can crosstalk
with ubiquitination to coordinate cellular processes. For example, Pin1 promotes the degra-
dation of SUV39H1, a histone methyltransferase, inhibiting its ability to induce histone
3 trimethylation and resulting in breast cancer tumor progression [109]. Similarly, post-
translational modifications to Pin1 itself can regulate its activity, with the dysregulation of
Pin1 PTMs contributing to the pathogenesis of cancer and Alzheimer’s Disease, as reviewed
in detail by Chen and his colleagues [133].

Ultimately, by controlling the fate of phosphoproteins, Pin1 is a unique and crucial
regulator of many human diseases and cellular events. In this review, we will highlight
recent advancements in the understanding of Pin1-regulated ubiquitination and its role in
cancer and neurodegenerative diseases. Then, we will propose how the UPS can be lever-
aged in the treatment of these Pin1-associated diseases by targeting pathogenic proteins for
TRIM21-mediated degradation via stereospecific antibodies.
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3. Pin1-Regulated Protein Ubiquitination in Cancer

Pin1 is tightly regulated in physiological settings and typically acts to coordinate
cellular processes, like cell cycle progression and DNA repair. Typically, Pin1 is expressed
at low levels in most normal cells, such as fibroblasts and epithelial cells, although it may
be highly expressed in some cell subsets and certain tissues [134]. However, in most solid
malignancies, like breast, prostate, and lung cancer [134–136], Pin1 has been found to be
commonly overexpressed when compared to their physiological counterparts [134]. One
study found that in 38 out of 60 human cancer types tested, Pin1 was overexpressed in
10% of these cases, suggesting that Pin1 overexpression is a critical event for tumorigen-
esis and may serve as an amplifier of oncogenic signaling [134]. While the mechanisms
behind Pin overexpression are not fully understood, it has been posited that this trend is a
result of the breakdown of the transcriptional and post-transcriptional mechanisms that
usually keep Pin1 tightly regulated [137,138]. For instance, the deregulation of E2F during
breast cancer promotes Pin1 expression [137], while the downregulation of the inhibitory
phosphorylation of Pin1 leads to the accumulation of active Pin1 [138].

Indeed, with few exceptions, Pin1 promotes cancer progression and cancer stem
cell expansion by increasing the stabilities of over 70 oncoproteins while decreasing the
stabilities of over 35 tumor suppressors (Table 1) [139]. Consequently, the Pin1 levels
in cancer are often correlated with poor clinical outcomes and act as a key prognostic
marker in many cancer types [40,54,135,140,141]. Thus, targeting Pin1 has emerged as a
viable clinical strategy, with one recent study finding that Pin1 inhibition in a pancreatic
cancer model disrupted multiple cancer pathways and the immunosuppressive microen-
vironment, rendering it eradicable by immunochemotherapies [142]. In this section, we
will explore recent discoveries in the Pin1 enhancement of oncogene stability and tumor
suppressor degradation.

3.1. Pin1 Enhances Oncogenic Protein Stability

Excess Pin1 activity can divert substrates from degradation, enabling the enhanced
stabilities of oncoproteins and the promotion of tumorigenesis by acting on cancer stem
cells as well as stromal cells. One key hallmark of cancer cells is their ability to adapt
the metabolic processes of both their internal environment and the tumor microenviron-
ment to accommodate their increased proliferation and transformation [143]. One way
in which Pin1-regulated ubiquitination contributes to the metabolic reprogramming of
cancer cells is by stabilizing critical transcription factors, such as hypoxia inducible factor
(HIF), as reviewed recently by Nakatsu and colleagues [144]. Under oxygen-deficient
conditions, HIF, a master regulator of oxygen homeostasis, upregulates the stress response
to promote tumor survival. HIF is composed of two subunits: one alpha subunit of which
there are three subtypes (HIF-1α, HIF-2α, HIF-3α) and one beta subunit (HIF-1β) [145].
The most prominently studied subunits are the oxygen-dependent alpha subunits HIF-1α
and HIF-2α, which are both necessary for cancer cell viability in the hypoxic tumor mi-
croenvironment [84]. In normoxic conditions, HIF-1α is regulated by prolyl hydroxylase
domain-containing proteins (PHD) and the Von Hippel–Lindau tumor suppressor protein
(pVHL), which each coordinate to promote the rapid ubiquitination and degradation of
HIF-1α [146]. Consequently, HIF-1α has a short half-life of under 5 min in normoxia [147].
During hypoxia, however, HIF-1α is phosphorylated at Ser451E, allowing Pin1 to cat-
alyze its conformational change [63–65]. The phosphorylation of HIF-1α is essential for its
transcriptional activity and disrupts interaction with PHD- and pVHL-mediated protein
degradation, significantly enhancing the stability of this oncoprotein [148]. Pin1 also inter-
acts with CDK1-phophorylated pVHL, recruiting the E3 ligase WSB1 and facilitating pVHL
ubiquitination and degradation [11]. Interrupting the Pin1/CDK1/pVHL axis results in
decreased cancer cell proliferation, migration, invasion, and chemoresistance, and therefore
it could be therapeutically valuable in treating cancers with wild-type VHL [11].

Furthermore, Pin1 interacts with the CDK1/2 kinase and Cul3-KLHL20 Ub ligase
to degrade promyelocytic leukemia (PML), which is a tumor suppressor that typically
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prevents HIF-1α translation by suppressing mTOR after HIF-1α activation [100,148]. When
PML is dephosphorylated at Ser518 by the phosphatase SCP1, Pin1 and KLHL20 are unable
to mediate the ubiquitination and degradation of PML, thereby inhibiting the progression
and growth of both in vitro and in vivo clear-cell renal carcinoma models [100]. Restored
PML levels suppress the mTOR-HIF pathway, enhancing the effects of the mTOR inhibitor
Temsirolimus and indicating the potential for combination treatments that target PML
degradation and the mTOR pathway [149]. Additionally, Pin1 facilitates the sumoylation
of PML by SUMO1 in glioma stem cells, which enables PML to interact with and stabilize
c-Myc, thereby permitting the survival and carcinogenic potential of glioma stem cells [150].
Similarly, in HIF-2α, Pin1 directly binds to the subunit’s phosphorylated Ser790 site located
in the nuclear export signal domain [84]. Phosphorylation at this site is essential for the
stability and transactivation of HIF-2α and enables its activity even in normoxic conditions,
enabling the progression of breast cancer cells [84].

Recently, Pin1 was found to promote tumor cell survival by stabilizing nuclear factor
erythroid 2–related factor 2 (Nrf2). The transcription factor Nrf2 controls the expressions of
genes that provide defense against both internal and external stressors, including xenobi-
otics and reactive oxygen species (ROS) [151]. While the transient activation of Nrf2 protects
the cell from oncogenic insults, its accumulation in cancer cells allows for the constitutive
induction of antioxidant and detoxifying pathways, promoting cancer proliferation in
hypoxic environments and resistance to drug therapies [152]. Accordingly, Nrf2 is tightly
regulated by a complex network of pathways, with the Keap1-Cul3-Rbx1 axis being the
most prominent. Keap1 is an adapter subunit of the Cul3/Rbx1 E3 ligase and sequesters
Nrf2 in the cytosol, leading to its continuous ubiquitination and degradation [153]. Upon
encountering stressors like oxidative or electrophilic agents, Nrf2 dissociates from Keap1, al-
lowing Pin1 to directly interact with its Ser215, Ser408, and Ser577 sites [154]. Consequently,
Nrf2 is stabilized and localized to the nucleus, allowing it to transactivate cognate oncogenic
pathways [83,154]. Interestingly, Pin1 also binds to the phosphorylated Ser104 and Thr277
sites of Keap1, potentially allowing Pin1 to compete with Keap1 for Nrf2 binding [154].
Furthermore, Pin1 may interact with other oncoproteins to promote Nrf2 activity. Pin1
interacts with c-Myc to bind to the Nrf2 promoter, enhancing the positive effect of c-Myc on
the promoter activity [154]. Additionally, H-Ras, also known as transforming protein p21,
is an oncogenic GTPase that regulates cell survival and differentiation and is correlated
with increased Pin1-Nrf2 interaction [155]. Downstream, Pin1 upregulates the glutathione
peroxidase 4 (GPX4) expression via Nrf2, promoting chemotherapy resistance [156]. Lastly,
Pin1 has also been found to regulate the extracellular matrix composition and redox balance
in pancreatic cancer through the NRF2/ARE pathway [157].

Pin1 has also been identified as a novel regulator and protein stabilizer in the oncogenic
Hippo pathway, which controls the organ size by promoting cell proliferation, apopto-
sis, and cell stemness [158]. The Hippo pathway is divided into a tumor-suppressing
serine–threonine kinase regulator module and an oncogenic transcriptional module, the
latter in which Yes-associated protein (YAP) and PDZ-binding protein (TAZ) transcription
factors participate [158]. Cancer cells specifically leverage YAP/TAZ to upregulate genes
associated with increased stem cell renewal, cell proliferation, and apoptosis resistance.
The amplification of the effects of other transcription factors, including AP-1, E2F, Myc, and
CTGF, is also facilitated by YAP/TAZ, which functions as an integrator of several carcino-
genic pathways, including the Wnt pathway [75,158]. Ortega and colleagues conducted
a thorough review of this subject [158]. Pin1 promotes tumorigenesis by stabilizing YAP
and TAZ, as well as by promoting their nuclear localization and transactivation [75,76],
resulting in increased drug resistance and tumorigenicity in a breast cancer model [76].
While the exact mechanism is still being clarified, Pin1 interacts with YAP and TAZ in a
phosphorylation-independent manner, suggesting that it regulates YAP/TAZ indirectly [76].
The downregulation of Pin1-YAP/TAZ activity using Cinobufacini injections is an effective
treatment for osteosarcoma [159].
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With regard to other components of the Hippo pathway, Pin1 also interacts with
LATS1 and LATS2, two upstream kinases that phosphorylate and inhibit YAP and TAZ
in the context of the anti-tubulin drug response [160]. The administration of anti-tubulin
chemotherapies hyperactivates the CDK1-mediated phosphorylation of LATS2 and sub-
sequent interactions with Pin1; the authors of this study purport that Pin1 catalyzes the
conformational change of LATS1/2, switching its preferred substrate from YAP/TAZ to
Pin1 and augmenting anti-tubulin-induced apoptosis [160]. Furthermore, Pin1 induces
the ubiquitin-mediated degradation of STK3, a kinase that activates LATS1/2, resulting in
increased tumorigenicity in melanoma mouse models [75]. As illustrated, Pin1 stabilizes a
broad range of oncogenes, some of which include BRD4 in oncogenic gene expression [71],
estrogen receptor-alpha in tumorigenic signaling [57], and tissue factors that can contribute
to angiogenesis [72,73].

3.2. Pin1 Decreases Tumor Suppressor Protein Stability

Conversely, Pin1 may also disrupt the balance between oncoproteins and tumor
suppressors by promoting the degradation of key tumor suppressors. Pin1 is a well-
known regulator of many CDK substrates, including cyclin E, GRK2, tau, and TRF-1 [128],
and it has recently been identified as a regulator of CDK substrates, like tripartite motif
family 59 (TRIM59). TRIM59 is an E3 ligase and CDK5 substrate that mediates the CDK5
progression of glioblastoma. TRIM59 is phosphorylated at Ser308 by the CDK5-activated
epidermal growth factor receptor (EGFR), which then recruits Pin1 to catalyze the cis–trans
isomerization of TRIM59 [74]. This exposes the nuclear localization sequence of TRIM59
and facilitates its nuclear localization, wherein TRIM59 subsequently degrades macroH2A1,
a tumor-suppressive histone variant [74], and inhibits TC45 from the dephosphorylation
of STAT3 [74,161]. Both these mechanisms result in the sustained upregulation of STAT3
and increased glioblastoma tumorigenicity, and they are linked to a poor clinical prognosis
in glioblastoma patients [74]. Similarly, TRIM32 is an E3 ligase and CDK2 substrate that
mediates the CDK2 promotion of radio resistance in triple-negative breast cancer [85].
Radiotherapy stimulates the CDK2 phosphorylation of Ser328 and Ser339 on TRIM32,
resulting in the subsequent Pin1 isomerization and nuclear localization of TRIM32 [85].
Nuclear TRIM32 inhibits TC45, leading to upregulated STAT3 and radio resistance in
triple-negative breast cancer [85].

In addition to CDK substrates, two major regulators of cell cycle progression that inter-
act closely with CDKs are the retinoblastoma protein (Rb) and anaphase-promoting complex
(APC/C), both of which functionally collaborate to control the G1/S transition [162]. Both
the APC/C and Rb are Pin1-regulated tumor suppressors that are largely inactivated in
cancer [126]. Rb inhibits S-phase entry by sequestering the key transcriptions factors nec-
essary for DNA replication during the S phase [163]. However, near the end of G1, Rb is
hyperphosphorylated by cyclin–CDK complexes so that it releases chromatin-modifying
enzymes and transcription factors that mediate the G1/S transition [163]. In addition, Pin1
catalyzes a conformation change in Rb, facilitating the release of the E2F transcription factor
while also enabling the Rb to become fully phosphorylated [164–166].

Yet, Rb is frequently disrupted in many aggressive human cancers, such as triple-
negative breast cancer, due to the constitutive expression of CDKs [167]. Thus, the APC/C
becomes the sole regulator of the G1/S transition in these Rb-deficient cancers [126]. Re-
cently, the involvement of Pin1 in regulating the APC/CCDH1 was uncovered. When bound
to its CDH1 co-activator, the APC/CCDH1 E3 ligase typically blocks cell cycle entry by
targeting various critical mitotic proteins for degradation [126]. Near the end of the G1
phase, CDKs become more active and phosphorylate CDH1 at Ser163 [126]. Pin1 then binds
to CDH1 to catalyze a trans–cis isomerization that renders the co-activator resistant to de-
phosphorylation, inactivating the APC/CCDH1 and allowing mitotic proteins to accumulate
and propel the cell into the S phase [126]. However, when CDH1 is not dephosphorylated,
such as in the G0/G1 phase, the APC/CCDH1 is active and recognizes the D-box motif in
the PPIase domain of Pin1, ubiquitinating Pin1 and other mitotic proteins for proteolysis
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and preventing S-phase entry [126]. Therefore, when Pin1 is overexpressed and CDK is
constitutively expressed, like in cancer cells, the G1/S regulatory checkpoint breaks down
as the APC/CCDH1 is inhibited and the cell proliferates unchecked [126].

Interestingly, the APC/CCDH1-mediated degradation of Pin1 explains why effective
Pin1 inhibitors, like Sulfopin and ATRA-ATO, induce Pin1 degradation [68,142,168–170].
By blocking Pin1 enzymatic activity, the balance of dephosphorylated CDH1 to phospho-
rylated CDH1 may increase and promote APC/CCDH1 activation and the degradation of
Pin1 [126]. Significantly, by combining Pin1 and CDK4 inhibitors to prevent APC/CCDH1

inactivation, the APC/CCDH1 induces the degradation of Pin1 and other mitotic proteins,
forcing the cells into cell cycle arrest and triggering increased anti-tumor immune activ-
ity [126]. This combination treatment was highly effective in delaying cancer progression
in a triple-negative breast cancer model, both disrupting the immunosuppressive tumor
microenvironment and enhancing the anti-tumor immunity [126].

As illustrated, Pin1 regulates a substantial range of CDK substrates, including SEPT9
for cytokinesis completion [171], Smad3 for oncogenesis in CDK triple-negative breast
cancer [172,173], and even p27, a CDK inhibitor that is regulated by Pin1 [42]. However,
beyond CDK substrates, Pin1 can also directly regulate CDKs themselves, specifically
CDK10. CDK10 directly interacts with the WW domain of Pin1 and becomes ubiquitinated
and degraded [105]. Among other substrates, CDK10 inhibits the phosphorylation and
activation of Raf-1, a key regulator for cell proliferation and survival [174]. The downregu-
lation of CDK10 facilitates increased Raf-1 phosphorylation, resulting in increased Raf-1
activity and tamoxifen resistance in breast cancer cells [105].

Furthermore, Pin1 has also been found to regulate multiple components of the DNA
repair pathway. Recently, Pin1 has also been found to promote the stability of FAAP20 in
the Fanconi anemia pathway [79], to counteract excessive chromatin ubiquitination by pro-
moting the sumoylation of the RNF168 E3 ligase [175], and to enhance the genoprotective
activity of the BRCA1-BARD Ub ligase complex [78]. The Pin1 stabilization of BRCA1 also
contributes to the maintenance of genomic integrity and checkpoint controls. Specifically,
after ionizing radiation triggers the phosphorylation of BRCA1, Pin1 isomerizes BRCA1 at
p-Ser1191 and prevents its ubiquitination at Lys1037, thereby promoting BRCA1 activity at
nuclear DNA repair foci [80]. The inhibition of Pin1 removes BRCA1-mediated radio resis-
tance and homologous recombination repair mechanisms, sensitizing breast cancer cells to
radiation and PARP inhibitor treatments, which both induce stress and DNA damage that
the cells can no longer fully alleviate [80].

Lastly, Pin1 was recently found to induce the ubiquitination and degradation of
RUNX3, a tumor suppressor transcription factor that controls apoptosis, cell differentiation,
and metastasis [110]. Pin1 binds to any of the four phosphorylated Ser/Thr-Pro sites
on RUNX3 and downregulates its transcriptional activity and stability, thereby promot-
ing breast cancer progression [110]. Similarly, tamoxifen resistance is conferred on and
enhanced in breast cancer cells by Pin1-mediated SGK1 degradation [176].

4. Pin1-Regulated Ubiquitination in Neurodegenerative Disease

Compared to other cells in the body, Pin1 is highly expressed throughout the central
and peripheral nervous systems [86,177]. While the role of Pin1 in regulating physiological
neuronal functions was previously not well known, within the last decade, there has been
mounting evidence of its integral role in promoting neuronal differentiation, axonal growth,
synaptic transmission, and apoptosis [178]. In contrast, Pin1 attenuation in neurodegen-
erative diseases has been long well established, with Pin1 being most famously known
to suppress Alzheimer’s Disease (AD) by regulating tau and amyloid precursor protein
turnover and degradation [179,180]. In addition, the Pin1 modulation of proteins central
to other neurodegenerative diseases, such as Parkinson’s Disease (PD) and Huntington’s
Disease (HD), is an emerging area of research that should not be neglected. In this section,
we will examine recent advancements in our understanding of Pin1’s role in negatively
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regulating the stability and ubiquitin-mediated degradation of proteins associated with
neurodegenerative diseases, specifically AD, PD, and HD.

4.1. Pin1-Regulated Ubiquitination in Alzheimer’s Disease

AD is classically characterized by the abnormal aggregation of tau into neurofibril-
lary tangles and APP into amyloid-beta plaques. Firstly, physiological tau plays a crucial
role in promoting microtubule stability and axonal outgrowth; however, when tau be-
comes hyperphosphorylated, it dissociates from microtubules and aggregates into the
pathological neurofibrillary tangles that give rise to the synaptic dysfunction and neurode-
generative symptoms of AD [181]. Pin1 regulates tau by directly binding pThr231-Pro
to catalyze a cis–trans conformation change, facilitating pThr231 dephosphorylation via
protein phosphatase 2A and CDK5-p25 [182]. However, Pin1 is reduced in the AD brain
by tangle sequestration [104,108], downregulation [87,183,184], phosphorylation at S71
by DAPK1 [185–187], oxidation at C113 [188,189], or even degradation induced by the
environmental pollutant cobalt [190].

Indeed, the recent development of conformation-specific antibodies has offered the
first opportunity to distinguish the cis from trans conformation of tau in AD pathogenesis.
Specifically, cis-P-tau does not participate in microtubule assembly, is prone to aggregation,
and resists dephosphorylation and Ub-mediated degradation, as opposed to trans-P-tau,
which cannot self-associate into paired helical filaments and instead preferentially binds
to microtubules to stabilize axonal transport [191]. This neuroprotective role of Pin1 is
exemplified in gene manipulation studies, wherein Pin1 knockout induced tauopathy and
increased tau stability in murine models while Pin1 overexpression suppressed tauopathic
phenotypes [192]. Thus, Pin1 protects against tangle formation by inducing a cis–trans
conformation change that restores the biological activity of phosphorylated tau to bind and
promote microtubule assembly [86].

During AD, however, neurons are commonly exposed to oxidative stress, and, con-
sequently, Pin1 may be aberrantly modified by oxidation, leading to a loss of function
and polyubiquitination [107,179,193]. Furthermore, the loss of Pin1 in synapses during
AD progression affects the ubiquitination of postsynaptic density proteins, a huge protein
complex associated with the membrane of postsynaptic excitatory synapses that regulates
synaptic plasticity [194,195]. This results in the polyubiquitination and degradation of the
Shank3 protein, which regulates the organization of the postsynaptic density, ultimately
leading to an increased vulnerability to the toxic effects of amyloid-beta and glutamate
while also decreasing synaptic plasticity during AD progression [194].

Moerover, Pin1 is also a critical regulator of the amyloid precursor protein (APP), from
which amyloid-beta (Aβ), the main component of AD-chatracteristic amyloid plaques, is
derived. Physiologically, the APP plays an important role in brain development, mem-
ory, and synaptic plasticity, although its full role is not yet fully understood due to the
complex manner in which the APP is processed by various secretases [196]. Pin1 binds
the phosphorylated Thr668-Pro motif of the APP and catalyzes a cis–trans conformation
change that reduces Aβ peptide secretion [197]. Mechanistically, it is hypothesized that, as
opposed to trans-APP, the cis-APP conformation favors amyloid formation by β-secretase
cleavage [197,198]. Moreover, another mechanism by which Pin1 protects against AD is by
upregulating the UPS-mediated APP turnover by promoting the degradation of Glycogen
Synthase Kinase-3β (GSK3β), a kinase that regulates the ubiquitination of several cancer
or neurodegenerative-associated proteins in conjunction with Pin1 [177]. Other GSK3β
substrates have been reviewed by Liou and colleagues [121]. By binding to Thr330-Pro,
Pin1 inhibits the GSK3β phosphorylation of the APP, allowing the APP to subsequently be
degraded [177]. Pin1 may also regulate GSK3β substrates; for instance, in a rat hippocam-
pal cell culture model, Pin1 isomerized GSK3β-phosphorylated cis-HIF-1α to mediate the
polyubiquitination and consequent degradation of trans-HIF-1α by the UPS [63]. This
becomes therapeutically relevant in AD, wherein Pin1 and GSK3β may be downregulated
under hypoxic or ischemic conditions, allowing cis-HIF-1α to accumulate and contribute to
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the increased expression of β-secretase 1 and the consequent amyloidogenic APP process-
ing [63,199,200].

4.2. Pin1-Regulated Ubiquitination in Parkinson’s Disease

PD pathogenesis centers around the accumulation of alpha-synuclein (α-syn), a pre-
synaptic neuronal protein that aberrantly misfolds into Lewy-body aggregates that per-
turb dopaminergic signaling, ultimately resulting in neuronal death and neurodegener-
ation [201,202]. Although α-syn plays a physiological role in neurotransmitter release,
elevated levels of α-syn drive toxicity; thus, it is crucial for synuclein production and clear-
ance to be tightly regulated and balanced [202]. Pin1 is commonly localized to Lewy bodies
in PD brain tissue, indirectly interacting with α-syn to inhibit its degradation, thereby
increasing the half-life and insolubility of α-syn and facilitating the formation of Lewy
bodies [203]. In a PD murine model, the overexpression of Pin1 increased α-synuclein ag-
gregation and upregulated pro-apoptotic cascades in dopaminergic neurons, contributing
to PD onset and the associated neurodegeneration [204]. Treatment with a Pin1 inhibitor
ameliorated PD-associated motor deficits, neurochemical depletion, and dopaminergic
neuron degeneration in this experimental PD animal model [204]. Furthermore, Pin1 di-
rectly binds synphilin-1, a protein that participates in Lewy-body formation with α-syn,
at the phosphorylated Ser-211-Pro and Ser-215-Pro motifs to promote its interaction with
α-syn [204,205].

4.3. Pin1-Regulated Ubiquitination in Huntington’s Disease

HD is a neurodegenerative disease caused by mutant Huntingtin (Htt) protein with an
elongated segment of glutamine residues [206]. Although Htt plays a critical physiological
role in early development as well as in post-developmental activities, like axonal trafficking
and anti-apoptotic signaling [207], mutant Htt tends to form intranuclear and cytoplasmic
aggregates in neurons, especially those in the striatum, which results in cytotoxicity and
HD-associated neurodegenerative symptoms [208,209]. Pin1 is playing an emerging role in
HD pathogenesis. For instance, in an HD murine model, Pin1 was essential for mediating
the downstream apoptotic effects of Htt, specifically by binding to the phosphorylated
Ser46-Pro motif of p53, a master tumor suppressor protein, and stabilizing it into an acti-
vatable form [210]. This implies that mutant Htt may indirectly induce neuronal death by
acting as an upstream inducer of Pin1-isomerized p53, rather than directly interact with
it [210]. Additionally, p53 has been shown to upregulate mutant Htt expression, suggesting
a positive-feedback loop [210]. Further studies by the same group using HdhQ111 knock-in
mice demonstrated that Pin1 is involved in HD pathogenesis throughout the lifespan of
the animal [211]. In early life, Pin1 participates in the DNA damage response, presumably
by stabilizing p53 [211]. For mid-age mice, Pin1 regulates hormone synthesis as well as
Wnt/β-catenin signaling by stabilizing the substrate β-catenin to control neuronal differen-
tiation [114,211]. To note, the mutant Htt stabilization of β-catenin has been demonstrated
to also contribute to striatal neurotoxicity in a Drosophila HD model [212].

However, the ablation of Pin1 in this same HdhQ111 model also decreased the mutant
Htt aggregate load in the mouse striatum [211]. Similarly, a subsequent study by the same
group found that Pin1 upregulated the mutant Htt clearance and reduced aggregation in an
in vitro model through indirect interactions [115]. In particular, Pin1 indirectly promotes
the degradation of both wild-type and mutant Htt through the UPS or autophagy [115].

Ultimately, the conflicting roles of Pin1 and the associated ubiquitination-mediated
degradation in HD pathogenesis reveal the exciting therapeutic potential for targeting Pin1
manipulation, especially as previous work has demonstrated that, despite an initial impair-
ment, the UPS functions normally during HD [213–217]. Moreover, moderate depletion
of wild-type and mutant Htt to levels no lower than 50% does not introduce any major
detrimental effects, as the mutant Htt retains some physiological activity [218–223]. This
was evident in a recent clinical trial wherein a maximum reduction of 42% of mutant Htt
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did not yield any clinically relevant adverse effects [224]. Nevertheless, much investigation
is required to elucidate the exact nature of these mechanisms in HD.

4.4. Pin1-Regulated Ubiquitination in Other Neurological Disorders

Beyond classical neurodegenerative diseases, Pin1-mediated ubiquitination has emerged
as a regulator of adjacent neurological disorders, such as epilepsy, stroke, spinal cord injury,
retinal disease, and even physiological aging, although its role is much less defined.

In epilepsy, early studies on the role of Pin1, as recently reviewed by Chen and col-
leagues [225], suggest that Pin1 regulates the stabilities of several disease-related proteins.
For example, Pin1 binds and isomerizes protein kinase C, which is tenuously associated
with the neurotransmitter balance and neuronal hyperexcitability, subsequently priming
it for agonist-induced, ubiquitin-mediated degradation [107,226,227]. To note, Pin1 also
regulates synaptic transmission by destabilizing and promoting the degradation of the
postsynaptic density protein 95 (PSD-95), an integral regulator of synaptic plasticity and
excitatory signaling, the dysregulation of which has been implicated in epileptic seizure
generation [118,227,228]. As PSD-95 anchors NMDA receptors in the postsynaptic mem-
brane, Pin1 isomerization induces a structural change that interferes with this interaction
and results in a decrease in NMDA receptors, negatively affecting NMDA signaling and
the dendritic spine morphology [229].

Pin1 also regulates the Notch pathway in ischemic stroke pathogenesis to promote
neuronal death. In particular, Pin1 interaction with the Notch1 intracellular domain (NCID)
potentiates γ-secretase cleavage that inhibits the Fwb7-induced polyubiquitination of
NCID1, thereby preventing its ubiquitin-mediated proteolysis and enabling its enhance-
ment of neuronal death after simulated ischemia in an in vitro model [45]. The subsequent
treatment of Pin1-knockout mice with Pin1 inhibitors demonstrated reduced brain damage
and improved functional outcomes after the induction of focal ischemic stroke [45]. In
addition, Pin1 not only enhances Notch1 activity, but Notch1 also directly induces Pin1
transcription, forming a positive-feedback loop [39]. Notably, Pin1 also regulates other
key players in ischemic stroke, such as NF-kβ, HIF-1α, and p53, although the crosstalk
between these other molecules should not be understated [230]. For example, Pin1 directly
binds to the phosphorylated Ser33/46-Pro of p53 and stabilizes it, allowing it to induce
downstream apoptotic gene expression and the mitochondrial cell death pathways [28].
Specifically, rescued p53 subseqeuntly interacts with Notch to promote apoptotic pathways
in neurons, comprising their viability and resistance to ischemic damage and ultimately
promoting pathogenesis after ischemic stroke [231].

Moreover, in the context of spinal cord injury, Pin1 positively regulates the stability of
several anti-apoptotic proteins that resist neuronal death after traumatic injury. Normally,
Pin1 plays a physiological role in binding myeloid cell leukemia sequence-1 (Mcl-1) at
phosphorylated Thr163-Pro and preventing its ubiquitination [232]. However, upon injury,
Pin1 directly binds the phosphorylated Ser178-Pro motif in the death domain-associated
protein and promotes its rapid degradation by the UPS [97]. This activates the ASK1/JNK
pathway, specifically JNK3 [233,234], which facilitates the phosphorylation of Mcl-1 at
Ser121-Pro and a subsequent conformational change that leads to Pin1 dissociation [232].
The consequent Mcl-1 degradation inhibits the B-cell lymphoma 2 protein, enabling the ini-
tiation of mitochondrial-mediated apoptosis via cytochrome c release [33,232]. Conversely,
Pin1 upregulates neuronal apoptosis by stabilizing BIMEL via binding at phosphorylated
Ser65-Pro; uniquely, this pathway suppresses cell death in non-neural cells but increases
apoptosis in neurons, likely due to the presence of the neuron-specific JNK scaffold protein
JIP, which promotes Pin1 binding to BIMEL [33].

These examples highlight the involvement of Pin1 in various neurological disorders,
especially as Pin1 regulates various pro-apoptotic proteins, as described above, that are
involved in neuronal death. Paradoxically, Pin1-mediated ubiquitination seems to play
context-dependent, contrasting roles that are still not fully understood—for instance, pro-
moting cell death in stroke, but binding protectively in spinal cord injury. Delineating
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the specific protein networks governed by Pin1 could provide invaluable roadmaps to
understand disease triggers and guide therapeutic development. Thus, Pin1-mediated
ubiquitination provides an intriguing perspective to developing therapeutics for a wide
range of neurological dysfunctions.

5. Conformation-Specific Antibodies Target Intracellular Proteins for TRIM21-Mediated
and Ubiquitination-Mediated Proteolysis

The neutralization ability of antibodies was long thought to be limited to the ex-
tracellular space, as they could not penetrate the cell membrane. With few exceptions,
natural antibodies could not be used in live cells without permeabilization, making a wide
range of intracellular targets beyond the reach of antibody-mediated detection, visualiza-
tion, and inhibition [235]. Currently, most therapeutic antibodies are mostly restricted to
extracellular membrane proteins or secreted proteins, which are estimated to make up
8000–9000 proteins [236] of the estimated 20,000 proteins in the human proteome [237].
This implies that targeting the intracellular proteome could unlock around two-thirds of the
human proteome available for therapeutic intervention [236]. Among these intracellular
targets are notorious cancer-driving intracellular targets, such as NF-kB and c-Myc, that
have insofar been undruggable by small molecular inhibitors [238,239]. Although many
antibodies cannot naturally penetrate live cells and require further engineering to acquire
such a property [240], it has been shown that a subset of human and mouse antibodies
produced in autoimmune disease patients [241–245] and in labs [246–248] can penetrate
live cells and capture their intracellular antigens without engineering [234,249,250]. Mon-
oclonal antibodies against many intracellular proteins, including oncoproteins [251,252],
tau [253–259], TDP43 [260], and RANs [261], to name a few, are used as therapeutics with-
out engineering, with some being evaluated in human trials [262]. Thus, intracellular
antibodies represent a burgeoning extension of antibody therapeutics and research tools,
allowing the study and treatment of many intracellular disease-driving targets.

Moreover, the recent discovery of TRIM21 introduces a mechanism by which intracel-
lular antibodies may mediate their effects. TRIM21 is a cytosolic E3 Ub ligase and antibody
receptor that acts as a final line of defense against invading viruses. Its physiological role is
to intercept and neutralize antibody-coated viruses that have evaded extracellular immune
defenses and entered the cell [263]. Specifically, TRIM21 recognizes the Fc of antibodies
bound to invading pathogens and catalyzes K63-ubiquitin chain formation, stimulating
proinflammatory pathways and anti-viral cell activity [264]. These pathogens are rapidly
targeted for degradation by the proteasome and trigger innate immune activity, allowing
TRIM21 to act as a bridge between adaptive and innate immune mechanisms [265].

In the context of Pin1 substrates, natural monoclonal antibodies have been developed
that are able to reliably target cis or trans protein isomers inside the cell [266–271]. By target-
ing only one specific conformation of a protein for TRIM21-mediated protein degradation,
it is possible to selectively deplete the toxic disease-driving isomers while retaining the
beneficial forms (Figure 2). If used in combination with Pin1 inhibitors like Sulfopin [170]
and a combination of arsenic trioxide and all-trans retinoic acid [169], which both block the
further Pin1 generation of the target isomer, intracellular antibodies represent a fascinating
prospect for treating certain Pin1-related pathologies.
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Figure 2. Stereospecific antibodies selectively deplete extracellular and intracellular cis P-tau. Pin1
plays a physiological role in safeguarding neurons against pathogenic cis-P-tau accumulation and
neurofibrillary tangle formation by catalyzing the cis–trans isomerization of tau. However, when
Pin1 is depleted during brain injury, cis-P-tau can accumulate and result in tau-associated neu-
rodegeneration. Upon treatment with stereospecific cis-P-tau antibodies, cis-P-tau antibodies may
bind to the p-Ser/Thr residues of their antigen and capture it extracellularly or intracellularly. Re-
gardless, the antibody or antibody–antigen complexes enter the cell via Fc-receptor endocytosis.
Finally, the TRIM21 E3 ligase engages the Fc region of the antibody, facilitating the ubiquitination
and subsequent degradation of the TRIM21–antibody–antigen complex while sparing trans-P-tau or
unphosphorylated, unaltered tau to carry out their physiological functions.

Consistent the findings that Pin1 protects against tau-associated neurodegenerative
diseases by catalyzing cis–trans isomerization, the accumulation of cis-P-tau has been
shown to be an early biomarker and etiological factor for the neurodegenerative effects
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of traumatic and vascular brain injury and long-term sequelae like AD, chronic traumatic
encephalopathy, and vascular dementia [266–271]. After severe or repetitive TBI in mice,
cis P-tau mAb treatment not only eliminates cis P-tau231 and cistauosis but also prevents
short- and long-term neuropathology and brain dysfunction [267–269]. In htau mice of AD,
eliminating cis P-tau231 at a young age with cis mAb treatment prevented age-dependent
tauopathy, neuronal loss, and learning and memory impairment [270]. Moreover, even
after an NFT-like pathology and cognitive loss had already developed in aged htau mice,
treating the mice with cis mAb still prevented cis P-tau231 accumulation and rescued
the neuronal loss and brain atrophy [270]. Humanized cis P-tau mAb also reduced tau
seeding and attenuated neuropathological and behavioral endpoints in transgenic mice
expressing inducible mutant P301L tau, which has been linked with familial frontotemporal
dementia [271]. In stroke models, eliminating cis P-tau231 using cis mAb rescues most
stroke-like pathologies and brain dysfunction, and the efficacy is still strikingly obvious
even after reducing the cerebral blood flow by ~50% for 6 months, which was confirmed
by the unbiased single-cell transcriptomic profiling of VCID mice [270]. Thus, cis P-tau
mAb might provide a prophylactic therapy that blocks the onset of neurodegeneration
or a therapeutic intervention that is given after disease onset to reduce its severity in AD,
TBI/CTE, and VCID [270]. A phase 1 trial of the i.v.-administered humanized cis P-tau231
mAb (PNT001) did not show obvious side effects and also produced CSF concentrations of
PNT001 that suggest a potentially therapeutic effect [272].

Notably, TRIM21 mediates the neutralization of antibody-bound tau by promoting
tau y ubiquitination and proteolysis via the proteasome and VCP unfoldase [268,273]. In
mouse models, the antibody targeting of extracellular tau aggregates relied on TRIM21-
mediated degradation after the internalization of the tau–antibody complex [274]. Antibody
protection was lost in TRIM21-deficient mice [274].

Meanwhile, in immunotherapy for other diseases, antibodies have found massive
success in pivotal advances such as immune checkpoint inhibitors and antibody–drug con-
jugates, yet their targets are still mostly relegated to the extracellular domain. The advent
of stereospecific antibody technology that can capture intracellular targets and target them
for TRIM21-mediated degradation introduces a huge potential for the treatment of a wide
range of diseases in which dysfunctional Pin1 leads to the accumulation of a pathologi-
cal protein. Because an abundance of Pin1 substrates, their regulatory mechanisms, and
their pathological interactions have already been identified, future work will likely center
around selecting appropriate molecular targets and developing stereospecific antibodies
for translational experiments.
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