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Abstract: In order to study the genetics of local adaptation in all main deserts of northwest China,
whole genomes of 169 individuals were resequenced, which covers 20 populations of Zygophyllum
loczyi (Zygophyllales: Zygophylaceae). We describe more than 15 million single nucleotide polymor-
phisms and numerous InDels. The expected heterozygosity and PIC values associated with local
adaptation varied significantly across biogeographic regions. Variation in environmental factors
contributes largely to the population genetic structure of Z. loczyi. Bayesian analysis performed with
STRUCTURE defined four genetic clusters, while the results of principle component analysis were
similar. Our results shows that the Qaidam Desert group appears to be diverging into two branches
characterized by significant geographic separation and gene flow with two neighboring deserts.
Geological data assume that it is possible that the Taklamakan Desert was the original distribution
site, and Z. loczyi could have migrated later on and expanded within other desert areas. The above
findings provide insights into the processes involved in biogeography, phylogeny, and differentiation
within the northwest deserts of China.

Keywords: deserts; China; resequencing; genetic diversity; phylogeny; Zygophyllum loczyi;
Zygophyllaceae

1. Introduction

Widely acknowledged as a type of microevolutionary phenomenon, environmental
adaptation means the progressive transformation of organisms across generations [1,2].
Differential selection pressures caused by the spatial heterogeneity of the environment on
natural populations may cause a species to adapt variably throughout its range [3,4]. While
microevolutionary investigations pertaining to this subject are not uncommon, they are
frequently carried out on model plants and cash commodities [5–8]. A growing number of
interests has been focused on the environmental adaptability benefits of genomic popula-
tion genetics research [9]. The environmental adaptation and genomic differentiation of
Agriophyllum squarrosum were investigated by Ma et al. via simplified genome sequencing
technology [10]. Insufficient reference genomes for organisms other than models, in ad-
dition to the lack of clarity regarding the most suitable sample preparation methods and
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analyses for various research inquiries and evolutionary time scales, have caused a delay
in the application of genomes to the study of adaptation in wild desert plants [11]. The
evolutionary history of wild desert plants and their adaptation to environmental change
require more consideration [12–14]. Investigations into the population genetics of desert
plant differentiation and adaptation not only yield fresh insights into the study of evolution
in its natural habitat, but also present a chance to identify stress-resistance genes that may
have significant agricultural implications in the face of climate change [15,16].

Based in the mid-latitudes of the heartland of the Eurasian continent, the Northwest
Arid Zone of China has undergone substantial plate tectonic processes [17]. The unique
topography formed as a result of these geological processes is composed of expansive
inland basins interspersed with towering mountain ranges. Desert basins such as the
Taklamakan Desert (TKD), Gurbantunggut Desert (GTD), Badanjilin Desert (BJD), Teng-
ger Desert, Kumtage Desert, and Qaidam Desert (QD) are prominent characteristics of
this area. These desert basins are separated by towering mountain ranges [18,19]. These
deserts share several inherent attributes: arid conditions characterized by infrequent pre-
cipitation, a broad annual temperature spectrum that fluctuates between extreme heat and
cold, frequent occurrences of winds and sandstorms, and a vegetation community that
is sparse and susceptible to damage [20]. Evidence dates back to the early Cretaceous,
according to Wu et al. (1995), which suggests that deserts have existed intermittently in
China since at least the Pliocene [21]. During the Early Tertiary, the majority of China’s
sandy regions received subtropical arid vegetation [22]. However, as a result of its extensive
scale and geographical diversity, vegetation formation differed across different locations,
and contemporary communities cannot be classified as either exclusively younger nor
uniformly ancient [23]. Quaternary desert evolution and formation resulted from the
combined effects of Ice Age climate variability and Tibetan Plateau uplift [24,25]. The
Junggar flora, predominantly influenced by their Central Asian component, emerged in
the Quaternary period [26,27]. Floral diversity in the Tarim Basin experienced significant
expansion during the Quaternary, having its origins in the Early Tertiary [28–30]. During
the Pliocene of the Late Tertiary, a temperate desert emerged in the Qaidam Basin, which
underwent further development during the Quaternary [31,32]. During the Quaternary,
the desert flora of Alashan underwent significant development, having originated during
the Tertiary [33,34]. Populations may experience large-scale replicative gene duplication
events when species distributions are negatively impacted by extreme environments [35].
The correlation between environmental stress and polyploidization events is strong, and it
has been suggested that polyploidization can enhance organisms’ capacity to swiftly adapt
to severe environmental fluctuations [36,37]. Many plant species, including Zygophyllum
loczyi (Kanitz, 1891) (Zygophyllales: Zygophyllaceae), which has adapted to arid environ-
ments, are found in every major desert basin in the region [38]. As a result of combining
phylogenetic analysis and population genetic structure, one can discern the sequence of
population formation and the mechanisms underlying the dispersal of widespread plants
like Z. loczyi. This can provide insights into the overarching characteristics of adaptation
and dispersal in the arid regions of Northwest China.

Z. loczyi is a C4 herbaceous plant with a life history of one to two years [39,40].
With seventeen species, two subspecies, and three varieties found in China, this genus
comprises around 150 species throughout the Old World [38,41,42]. The family of
Zygophyllaceae is not only widespread but also prevalent in arid and semi-arid regions,
particularly deserts with seasonal dryness [41]. Zygophyllum species grow in stony
residual dune slopes, fixed and semi-fixed sands, dry riverbeds, gravelly inter-dune flats,
and steep loess walls. These species are exceptionally adapted to arid conditions and
provide essential ecosystem services in arid environments such as deserts and steppes in
the Gobi [43–45]. Zygophyllum serves as a fundamental component in arid environments
due to its susceptibility to wind erosion, drought tolerance, salinity tolerance, and the
capacity to thrive in infertile soils. [39,46,47]. Research on the genus has so far focused
on its molecular systematics and genetic diversity [48–50], morph-anatomy [41,50–52],
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seed biology [53,54], and genetic and chemical aspects of adaptation [55]. Different
Z. loczyi phenotypes have resulted from the distinct climatic characteristics of China’s
desert regions, indicating that local adaptation may be extraordinarily beneficial to
comprehend when thinking of plant environmental tolerance.

A total of 169 Z. loczyi individuals have been sequenced genetically in this investigation,
which spanned four significant desert regions in northwestern China. Our analysis focused
on comprehending the potential environmental adaptations of the species in relation to its
evolutionary lineage and the geological background of the area.

2. Materials and Methods
2.1. Sampling and DNA Extraction

A total of 169 plant samples were collected in July 2021 and 2022 from four different
desert Z. loczyi populations in western China. A total of 28 individuals were from TKD, 35
from GTD, 39 from BJD, and 67 from QD (Table 1). We defined these natural populations
as the following four groups: (1) TKD group, (2) GTD group, (3) BJD group, and (4) QD
group. Four different regions of Z. loczyi seeds were selected to germinate to obtain fresh
samples, and the ploidy of each individual was measured by flow cytometry. During
sample processing, at least 10 individuals were collected from each population. Detailed
records were kept for each sample, including geographic coordinates, elevation, and other
environmental conditions at the sampling sites (Figure 1).

Table 1. Population information of Z. loczyi.

Area Pop Latitude Longitude Amount

TKD

a1 80.912446 41.430356 8
a2 77.35496 37.60674 13
a3 77.67286 37.79617 3
a4 78.256189 37.509027 4

GTD

b1 88.797772 44.94489 12
b2 89.472407 44.771408 7
b3 89.972732 44.607383 5
b4 83.328662 44.574587 11

QD

c1 97.233058 37.124617 6
c2 95.60336 37.458975 11
c3 97.334042 37.141595 15
c4 95.377427 37.572502 8
c5 95.287567 37.88953 10
c6 91.039958 38.098013 14

BJD

d1 100.559867 39.710435 5
d2 100.802402 39.587463 9
d3 98.796332 39.895022 3
d4 101.515437 39.19226 3
d5 103.137744 41.685669 17
d6 102.925948 38.442503 10
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2.2. Determination of DNA Content by Flow Cytometry

Total genomic DNA was extracted from leaf tissues using the Cetyl Tri-methyl Ammo-
nium Bromide (CTAB) method [56]. The DNA quality and concentration were assessed
using 1% agarose gel electrophoresis and a NanoDrop 2000 Spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA). For resequencing, library construction and sequenc-
ing were conducted at Biomarker technologies (Beijing, China) on an Illumina platform
(Illumina HiSeq 4000 PE150, Santiago CA, USA), employing a 300-bp read length.

Live samples from different distribution areas of Z. loczyi individuals were selected
and rinsed repeatedly under running water for 30 s 3–5 times, then dried with tissue paper
and set aside. Leaves were digested with both WPB disassociation solution and GLB
disassociation solution, respectively, to screen for the suitability of different disassociation
solutions. Ploidy was determined using DAPI solution (20 mg/L) staining under UV light
during flow cytometry. Genome size was detected using PI solution (20 mg/L) staining
and flow cytometry at 632 nm frequency [57–59]. We used Populus tomentosa (Malpighiales:
Salicaceae) leaves as the reference standard.

2.3. Genome Resequencing, Assembly, and Annotation

After the evaluation and qualification of the genomic DNA sample, it underwent
fragmentation by ultrasound-induced mechanical interruption [60]. The produced frag-
ments were subsequently cleaned by fragment purification, end repair, 3′-end addition
of A, connection of sequencing junctions, agarose gel electrophoresis to select fragment
size, and PCR amplification to create a sequencing library [61]. Clean Reads were obtained
after the Raw Reads were filtered to eliminate those containing adapters, exceeding 10% N
content, or more than 50% bases with a quality value below 10 [62].

As the sequencing accuracy escalates in relation to the length of the sequenced reads,
the quality values had been transformed into error rates and executed the base type of
distribution analysis to detect the existence of AT and GC segregation [63]. Due to the
fact that Z. loczyi is known as a wild plant and acquiring the reference genome of close
relatives has a stronger challenge, Zygophyllum. Xanthoxylum is selected by us, which is
also a species of the Zygophyllum genus, as the reference genome [44]. It is necessary to
transfer the clean sequences obtained by sequencing to the reference genome. Therefore,
we compared the Clean Reads with the reference genome using bwa-mem2 (v2.2) software,
sorted the results using samtools (v1.9) sort comparison, and statistically calculated the
sequencing depth and genome coverage of each sample based on the sorted results [64,65].
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We determined the starting and ending positions of the reference genome’s double-
ended sequence. The CollectInsertSizeMetric.jar application from the Picard (v2.25.5) soft-
ware toolset is used for calculating the insert fragment’s size subsequent to the interruption
of the sample DNA [66,67].

2.4. SNP and Variant Detection and Annotation

SnpEff [4] is software made to identify the impact of variants and to annotate vari-
ants [68]. To ensure the reliability of SNPs, the statistical cumulative distribution of dis-
tances between neighboring SNPs is used along with the number of reads that correlate
with the detected SNPs [69]. The finding of the variant locus’s site and the consequence
of the variant can be accomplished by utilizing the reference genome’s gene position
information combined with the variant locus’s position.

Detection of SNPs and InDels was performed using GATK (v3.8) [70]. To ensure the
accuracy of the detection results, redundant reads were filtered using samtools (v1.9) based
on the alignment of cleaned reads to the reference genome [64,65]. Subsequently, the GATK
HaplotypeCaller algorithm was employed for SNP and InDel variant detection. Through
filtering, a final set of variant sites was obtained and stored in VCF format [71]. Using the
vcfutils.pl subroutine of bcftools (var Filter-W 5-W 10), SNPs is filtered out SNPs in the
5 bp range of InDels and neighboring InDels in the 10 bp range. Cluster Size is set to 2
and Cluster Window Size to 5, indicating that the number of variants in a 5 bp window
should not exceed 2. We filtered out variants with quality scores below 30, QD values below
20, FS values above 60, and/or MQ values below 40. Other variant filtering parameters
followed the default values specified by GATK. Making use of the Circos (0.69-9) software,
the distribution of the results for each type of mutation obtained from the assay was
plotted [72].

The annotations of these genes were accessible for the purpose of analyzing the
functions of the genes through the comparison of variant genes with functional databases
maintained by Diamond, including NR, Swiss Prot, GO, COG, and KEGG [73–77].

2.5. Genetic Evolution Analysis

The population structure and admixture are inferred among our 169 samples using
MEGA X (https://www.megasoftware.net/, accessed on 25 July 2023) under the Kimura
2-parameter model; clade support was calculated using 1000 bootstrap replications [78]. We
also performed clustering analyses as a complimentary way to detect genetic structure. The
population genetic structure of Z. loczyi was assessed by employing ADMIXTURE (v1.22)
and utilizing high-quality SNPs [79]. The most likely number of clusters was computed
with 10-fold cross-validation (CV), comparing K-values from 2 to 10.

A PCA based on SNP using the smartPCA program (https://data.broadinstitute.org/
alkesgroup/EIGENSOFT/EIG-6.1.4.tar.gz, accessed on 25 July 2023) in EIGENSOFT also
be created (v6.0) (https://www.megasoftware.net/, accessed on 25 July 2023) to study
genetic relatedness and clustering among populations [80]. Finally, we created a kinship
heat map for estimation of kinship between any two individuals using GCTA (v1.92.1)
(https://yanglab.westlake.edu.cn, accessed on 25 July 2023) [81]. The PopLDdecay has
been used (v3.41) to estimate linkage disequilibrium (LD) decay based on the coefficient of
determination (r2) between any two loci (https://github.com/BGI-shenzhen/PopLDdecay,
accessed on 25 July 2023) [82]. The Plot_MultiPop.pl script that comes with the software
was then used to plot the decay curve.

Diverse population genetics metrics were computed utilizing the VCFtools (0.1.15)
software utility, with a sliding window of 100 kb and a step size of 10 kb, the SNPs that
exhibited the highest degree of consistency [71].

https://www.megasoftware.net/
https://data.broadinstitute.org/alkesgroup/EIGENSOFT/EIG-6.1.4.tar.gz
https://data.broadinstitute.org/alkesgroup/EIGENSOFT/EIG-6.1.4.tar.gz
https://www.megasoftware.net/
https://yanglab.westlake.edu.cn
https://github.com/BGI-shenzhen/PopLDdecay
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3. Results
3.1. Quality Control of Sequencing Data
3.1.1. Genome Size and Sequencing

As Z. loczyi is a non-model species, we used Z. xanthoxylum for a reference genome
(NCBI BioProject PRJNA933961). By flow cytometry, we determined that the Z. loczyi
chromosomal ploidy is diploid, with a genome size of approximately 500 Mb. (Figure 2).
A total of 1491.98 Gbp of genome-pure data were obtained by resequencing, with Q30
reaching 91.96–95.75% and an average GC content of 34.28%. The alignment rate between
the sample and the reference genome was about 60.77%, while average coverage depth was
average 3.81× (Supplementary Table S1).
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Figure 2. Four different Z. loczyi populations’ DNA content and ploidy measured by 670-30A Dual-
beam Infrared Spectrophotometer. The excess spectral absorption peaks may be a result of uneven
cell staining.

3.1.2. Analysis of Base Sequencing Quality Distribution

During the execution of base sequencing quality distribution analysis, it was observed
that the samples which include the final dozen bases and the first four bases show lower
quality values compared to the intermediate sequencing bases. However, all of these
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samples carried quality values more than Q30%. To illustrate that, we transformed the
quality values into error rates and graphically represented the error rate distribution as
follows (Figure 3). The examination of base type distribution showed that AT and CG bases
were basically not separated, the curve was gentle, and the sequencing results were normal
(Figure 4).
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Figure 3. Distribution of base error rate among part of Z. loczyi samples. The horizontal coordinate
is the base position of the Reads, and the vertical coordinate is the single base error rate. The
first 150 bp is the distribution of error rate of the first end of the sequenced Reads of the bipartite
sequenced sequence, and the last 150 bp is the distribution of the error rate of the other end of the
sequenced Reads.
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Figure 4. Distribution of the proportion of each base of the bases in some samples of Z. loczyi. The
horizontal coordinate is the base position of the Reads, and the vertical coordinate is the proportion
of bases; green represents base G, blue represents base C, red represents base A, purple represents
base T, and grey represents base N that was not identified in sequencing. The first 150 bp is the base
distribution of the first end of the sequenced Reads of the bipartite sequencing sequence, and the
last 150 bp is the base distribution of the sequenced Reads of the other end of the sequence. The first
150 bp is the base distribution of the first end of the sequenced Reads of the double-ended sequences,
and the second 150 bp is the base distribution of the sequenced Reads of the other end.

3.1.3. Analysis of Reference Genome Comparisons

Comparison with the reference genome has shown that there is no contamination in
the experimental process, and graphing based on the depth of coverage of each chromo-
some locus shows that the genome is covered more evenly, indicating better sequencing
randomness. The uneven depth on the graph may be due to repeated sequences, PCR
preference.

By detecting the start and stop positions of the bipartite sequences on the reference
genome, the precise measurements of the sequenced fragments acquired subsequent to the
interruption of the sample DNA could be ascertained. This analysis confirmed that the
length distribution of the insert fragments followed a normal distribution, suggesting that
the library construction of the sequencing data was normal.

After localization to the reference genome, the number of Reads can be discovered
with the quantification of base coverage on the reference genome (Figure 5). A more
uniform distribution of bases on the genome in terms of coverage depth suggests that
the sequencing randomness has been enhanced. Figure 6 below illustrates the coverage
distribution curve and base coverage depth distribution curve of the samples (Figure 7).
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3.1.4. SNP Identification and Quality Control

To provide a genome-wide overview of the dynamics underlying local adaptation, a
total of 169 Z. loczyi individuals were collected from 20 natural populations across their
current distribution in China (Figure 1). Based on these population samples, our genome
resequencing approach yielded 232,724,423 high quality SNPs (allele frequency > 0.05 and
integrity > 0.8) which were used for subsequent population genetic analyses (Figure 8). To
ensure the reliability of the SNPs, we examined the cumulative SNP depth distribution to
identify the predominant SNP types and their frequencies. Within the 25–75% interval, the
SNPs displayed high depths with pronounced peaks, suggesting that the SNPs are of better
quality (Figure 8).
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3.1.5. Detection and Distribution of Variation

A total of 150,819,465 SNPs were detected, with a Het-ratio (heterozygosity/homozygosity)
of 0.65% to 2.99%. The Ti/Tv (Transition/Transversion) ratio ranged from 1.38 to 1.43. These
values are based on a Ti range of 419,115–607,294 and a Tv range of 295,847–437,912, which
correspond to different samples (Supplementary Table S1). A comprehensive analysis of the
detected SNPs revealed distinct distribution patterns among different genomic regions. Among
all the SNPs identified, 18.85% were classified as intergenic, 25.79% were found in intronic
regions, and 31.94% were within CDS (Figure 9). Notably, among the CDS SNPs, a significant
proportion consisted of non-synonymous coding variants (15.47%) and synonymous coding
variants (15.20%) (Figure 9). These findings highlight the prevalence of genetic variation
within protein-coding regions, with potential functional implications associated with both
non-synonymous and synonymous alterations.
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A total of 1,296,479 InDels were detected in the dataset. The heterozygosity ranged
from 2866 to 12,552, while the homozygosity ranged from 360,119 to 701,259. The Het-ratio
varied from 0.75% to 2.16% (Supplementary Table S1). In terms of distribution across dif-
ferent genomic regions, introns accounted for 0.35% of the total InDels, intergenic regions
represented 0.31%, downstream non-coding regions accounted for 0.10%, upstream non-
coding regions represented 0.09%, and the CDS accounted for 0.06% (Figure 10). Within the
CDS category, the main subtypes of InDels were frameshifts (0.04%) and codon-insertions
(0.006%) (Figure 10). These findings provide insights into the prevalence and distribu-
tion of InDels, including within protein-coding regions, suggesting potential functional
implications of genetic variation in the studied population.
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The SNP density across various chromosomes is depicted in Figure 11. Chromosome 1
exhibited the highest density of SNPs, with a count of 325,704 SNPs, while chromosome
9 displayed the lowest SNP density, comprising 132,516 SNPs (Figure 11). Within each
chromosome, the distribution of polymorphism was uneven, encompassing both densely
populated and sparsely populated regions of SNPs.
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3.1.6. Genomic Signals of Adaptation

GO analysis was performed to elucidate gene functions across three major categories:
biological processes, cellular components, and molecular functions (Figure 12). The GO
analysis of biological processes revealed the involvement of genes in various essential
biological activities. These processes ranged from fundamental cellular functions such as
metabolism, cell cycle regulation, and signal transduction, to more specialized processes like
immune response, development, and neuronal signaling. In terms of cellular components,
the GO analysis provided insights into the localization and organization of gene products
within cells. The variant gene COG categorization statistics revealed that the most prevalent
items were T (signal transduction mechanisms), G (carbohydrate transport and metabolism),
R (general function prediction only), and J (translation, ribosomal structure, and biogenesis)
(Figure 13).
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3.2. Genetic Evolution Analysis
3.2.1. Genetic Diversity

Based on the population structure of Z. loczyi, we calculated seven genetic indices
(MAF, Ae, Ao, He, Ho, PIC, and I) for each clade and population. The MAF across the four
clusters ranged from 0.25 to 0.28, demonstrating relatively consistent values. The QD clade
exhibited the highest genetic diversity (He = 0.365), followed by the TKD clade (He = 0.353)
and the BJD clade (He = 0.333), while the GTD clade had the lowest genetic diversity
(He = 0.318) (Table 2). These findings suggest that within the other three populations, there
exists a non-random distribution of genotypes among individuals, possibly attributable



Genes 2023, 14, 2152 15 of 24

to selection for specific beneficial genotypes or a heterozygote advantage at polymorphic
loci. In contrast, the QD population demonstrated the Ho lower than the He, implying
a genotype distribution closer to random among individuals in this group, devoid of
discernible selective advantages or excess heterozygosity effects.

Table 2. Genetic diversity of the four deserts.

Group MAF Ae He Nei Poly
Marker Ao Ho PIC I

TKD 0.27
1.000–2.000 0.035–0.500 0.036–0.533 45,656 1.000–2.000 0.036–1.000 0.034–0.375 0.090–0.693

(1.441) (0.353) (0.360) (1.718) (0.414) (0.280) (0.523)

GTD 0.25
1.000–2.000 0.028–0.500 0.029–0.517 42,241 1.000–2.000 0.029–1.000 0.028–0.375 0.075–0.693

(1.370) (0.318) (0.323) (1.664) (0.388) (0.253) (0.476)

QD 0.28
1.000–2.000 0.015–0.500 0.015–0.507 50,167 1.000–2.000 0.015–1.000 0.015–0.375 0.044–0.693

(1.500) (0.365) (0.368) (1.789) (0.362) (0.290) (0.540)

BJD 0.26
1.000–2.000 0.025–0.500 0.026–0.516 41,169 1.000–2.000 0.026–1.000 0.025–0.375 0.069–0.69

(1.375) (0.333) (0.337) (1.647) (0.404) (0.265) (0.498)

(MAF = average MAF, Ae = expected allele number, He = expected heterozygous number, Nei = Nei diversity
index, Mp = number of poly markers, Ao = observed allele number, Ho = observed heterozygous number,
PIC = Polymorphism information content, I = Shannon–Wiener index).

When using Nei’s diversity index, the mean values for the four groups were as follows:
TKD = 0.36, GTD = 0.323, QD = 0.368, and BJD = 0.337. Based on these mean values, the
QD group displayed the highest Nei’s diversity, while the GTD group had the lowest. In
this study, all populations showed medium variation (0.25 < PIC < 0.5). We also calculated
the Shannon Information Index for each of the four populations: TKD (0.523, 0.09–0.693),
GTD (0.476, 0.075–0.693), QD (0.540, 0.044–0.693), and BJD (0.498, 0.069–0.69). The TKD
group had the highest number of polymorphic markers (45,656), while the BJD group
had the lowest number of polymorphic markers (41,169). These findings demonstrate the
diversity and complexity of information across these groups. Despite the relatively low
average values, the wide distribution suggests the presence of distinct sources of genetic
information and unique characteristics within each group.

3.2.2. Phylogenetic and Population Genomic Analyses

The optimal ancestral clustering at K = 4 was determined based on the cross-validation
error rate (Figure 14). The geographic divisions observed in the population align closely
with the actual geographic divisions.

Genes 2023, 14, x FOR PEER REVIEW 16 of 24 
 

 

 

 

(a) (b) 

Figure 14. (a) Clustering results of samples corresponding to each of the ADMIXTURE population 

genetic structure; (b) Genetic structure analysis of Z. loczyi based on the Bayesian model, The red 

dot represents the appropriate K value. 

We also reconstructed the phylogenetic relationship of the 20 populations based on the 

same SNP dataset using the neighbor-joining method. The results are generally consistent 

with the population structure detailed above; however, the QD group is further divided into 

two subgroups (Figure 15a). Principal component analysis (PCA) further supported the exist-

ence of four distinct groups among the 20 populations (Figure 15b). Notably, although Z. loczyi 

exhibited a distinct spatial structure according to various genomic methods, a relatively small 

amount of genetic variation was observed. Additionally, PCA and ADMIXTURE analyses 

based on the Bayesian algorithm corroborated the population structure observed in the phy-

logenetic tree. The optimal clustering solution for the populations was K = 4. Similarities ex-

isted in terms of population composition and geographic dispersion. 

 
 

(a) (b) 

Figure 15. (a) Phylogenetic trees were generated for each sample by employing neighbor-joining 

with 1000 bootstrap replications and the Kimura 2-parameter model.; (b) the sample is clustered in 

two dimensions using principal component analysis (PCA), where PC1 and PC3 denote the first and 

third principal components, respectively. A color denotes a group, while a dot represents a sample. 

Figure 14. (a) Clustering results of samples corresponding to each of the ADMIXTURE population
genetic structure; (b) Genetic structure analysis of Z. loczyi based on the Bayesian model, The red dot
represents the appropriate K value.



Genes 2023, 14, 2152 16 of 24

We also reconstructed the phylogenetic relationship of the 20 populations based on the
same SNP dataset using the neighbor-joining method. The results are generally consistent
with the population structure detailed above; however, the QD group is further divided into
two subgroups (Figure 15a). Principal component analysis (PCA) further supported the
existence of four distinct groups among the 20 populations (Figure 15b). Notably, although
Z. loczyi exhibited a distinct spatial structure according to various genomic methods, a
relatively small amount of genetic variation was observed. Additionally, PCA and AD-
MIXTURE analyses based on the Bayesian algorithm corroborated the population structure
observed in the phylogenetic tree. The optimal clustering solution for the populations was
K = 4. Similarities existed in terms of population composition and geographic dispersion.
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3.2.3. Linkage Disequilibrium Decay Analysis

The LD between any two SNPs within a certain distance range (20 kb) was calculated
on the same chromosome, and the strength of linkage disequilibrium was expressed as r2.
To assess the level of linkage disequilibrium in the 20 populations, genome-wide SNPs were
applied to map the attenuation of the different populations. The GTD and BJD populations
had lower levels of LD (r2 values) than the TKD and QD population groups (Figure 16).
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4. Discussion

The technology of resequencing sequencing contributes significantly to the inves-
tigation of the genetic information of a vast array of species, particularly non-model
organisms [5–8]. Through flow karyotyping, which detects alterations in chromosome
number and structure, we analyzed chromosomal polymorphisms [83,84]. SNP and InDel
mutation rates can be accelerated by the polyploidy of plant chromosomes under unfa-
vorable conditions, which can hinder the detection and analysis of these genetic variants
within the genome [37,85,86]. As a result, flow cytometric karyotype analysis is of the
utmost importance in plant genomics, which provides essential information for subsequent
genome sequencing, SNP detection, and genome assembly by facilitating the prediction
of the number and structure of chromosomal variants [87,88]. Genomic DNA sequences
frequently comprise an extensive number of SNPs and InDels, which can be efficiently
detected and exhaustively examined through the utilization of high-depth resequencing
technology [7]. Subsequent information analysis made use of sample base error rates, base
type distribution checks, maps showing the depth distribution of sample chromosome
coverage, statistics on the distribution of insertion fragments, and sample depth distribu-
tion posts. Moreover, the assessment of GC content holds significance as it is considered a
characteristic feature in genome organization [89]. The customary spectrum of GC content
in eukaryotic genomes extends from 30% to 65% [90]. This study’s GC concentrations fell
well within this range, indicating that the sequencing data were accurate [91].

When PIC ≥ 0.5, the locus is considered highly polymorphic. For 0.25 ≤ PIC < 0.5,
the locus is moderately polymorphic, while a PIC < 0.25 indicates low polymorphism.
Based on our results, the genetic diversity observed in Z. loczyi falls within the range of
0.25 ≤ PIC < 0.5, indicating moderate genetic diversity. Adaptive genetic variation is
influenced by various factors such as geology, climate, and altitude [92]. The values of He
and Ho were lower in the GTD region than in the other three regions. We hypothesize
that natural selection will likely favorably select environmentally acclimated individuals,
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thereby causing a shift in the genotypic distribution. Particular deviations from Harry
Weinberg may result from this, particularly in cases where particular genotypes possess a
substantial fitness advantage or disadvantage. Nevertheless, the possibility remains that
additional factors, such as genetic drift, migration, gene interactions, natural selection, and
so forth, could exert an influence. These results suggest that regions with lower genetic
differentiation among populations exhibit higher genetic variation [93]. Furthermore,
comparing genetic diversity among populations also emphasizes the importance of genetic
conservation efforts for Z. loczyi. An interesting result is that the QD group has the
highest Nei’s diversity index, while the GTD group has the lowest. Genetic diversity is
an important indicator of a population’s ability to adapt to changing environments and
potential threats [94]. A higher Nei’s diversity index in the QD group implies that this
population may possess a wider range of genetic variation, which could potentially provide
them with a greater capacity to respond to selective pressures or environmental changes.
On the other hand, the lower Nei’s diversity index observed in the GTD group indicates
that this population has less genetic variation [28]. This could imply a reduced ability to
adapt to environmental challenges due to this limited gene pool [95,96].

There is substantial evidence to suggest that the four genetic categories closely align
with regions of geographical distribution. The population structure is in accordance with
the species’ arid evolution [21]. The overlap between the population structure of K = 4
and geographic partitioning supports a genetic–geographic boundary correspondence [97].
This implies that Z. loczyi has evolved to differentiate advantageously due to variations in
the natural environment and geography across the four sampling regions. In particular,
probable gene flow between the BJD and QD populations was observed. This hypothetical
scenario posits that although the four primary deserts exhibit conspicuous distinctions,
there remains potential for genetic material exchange and interconnection among specific
desert populations. Principal component analyses and our phylogenetic tree indicate that
there may be some gene flow between BJD and QD [32]. Reduced genetic associations be-
tween the analyzed SNPs were indicated by the lower LD in the GTD and BJD populations,
which suggested the possibility of recombination events and increased genetic diversity in
these populations [98]. On the other hand, the larger LD values observed in the TKD and
QD population groups suggest a more robust genetic association and increased correlation
among the analyzed SNPs. This suggests that certain genomic regions may be undergoing
selection or genetic linkage [99,100]. Nevertheless, gene migration represents merely one
among several possible explanations [101]. Incomplete germline classification, convergent
evolution, the structure of ancestral populations, and additional variables may also account
for our results [102–105].

Over two million square kilometers in northern China are classified as sandy and/or
desolate terrain [106]. Variations in the distribution of plant species among the four primary
deserts are discernible within the ancient genus Zygophyllum [46]. Recurrent climatic fluctua-
tions throughout the Quaternary Ice Age may have prompted plant species to seek sanctuary
in regions more conducive to survival during cooler periods [107,108]. After the Ice Age,
certain plant species migrated and disseminated from their refuges to other regions [1,109].
TKD in the Tarim Basin began to appear during the mid-Pleistocene (0.78–0.13 Mya) as a
product of the fourth uplift of the Tibetan Plateau (3.5–1.6 Mya) [110]. By the Holocene
the desert was in a phase of major expansion [34]. Therefore, during the late Pleistocene
(0.13–0.01 Mya) LGM period, many large lakes and marshes existed in the TKD [111]. Fur-
thermore, we hypothesize that Z. loczyi may have sought refuge in the Tarim Basin. As a
result of subsequent environmental degradation in TKD, Z. loczyi populations gradually
migrated northward and expanded into GTD [112]. Hexi Corridor wind-sand landforms
emerged during the transition from the Late Pleistocene to the Holocene [111]. The subse-
quent developments might have played a role in the dispersal and migration of Z. loczyi
populations to BJD and QD. At this time, the BJD region was not blanketed by glaciers. QD
underwent an upward trend throughout the Tertiary Himalayan orogeny [113]. The onset of
arid tropical vegetation is composed primarily of plant species indigenous to the southern
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littoral of the Paleo-Mediterranean area [114]. Current distribution patterns may be the
result of the events described above, with the QDs retaining the greatest genetic diversity.

In summary, our research provides significant contributions to the understanding of
the ecological differentiation and population genetics of Z. loczyi populations in China.
Some of these results are applicable to conservation initiatives on a practical level, and
they lay the groundwork for further investigations in fields including functional genomics,
ecological genetics, and population modeling. Pursuing these directions will deepen our
understanding of Zygophyllum and inform its conservation and sustainable management.
Further studies could use SSR, cpDNA, and ITS to explore historical changes in local
Z. loczyi populations. A deeper comprehension of the origin and evolution of desert
ecosystems will result from this sequence of research efforts, which will also aid in the
validation of the theory attributing to desert origins.

5. Conclusions

In conclusion, the resequencing of the entire genome of Z. loczyi at the chromosome
level is presented. Population studies based on whole-genome resequencing identified three
distinct genetic lineages dispersed throughout the TKD, GTD, BDJ, and QD, indicating
the adaptive evolution of the species. Additionally, gene flow may occur within QD
and, respectively, between the populations of TKD and BJD. Phylogenetic tree and PCA
analyses indicate that the four major deserts are clearly divided, with possible causes
including climate fluctuations promoted by the uplift movement of the Tibetan Plateau.
The segregation of formerly dispersed desert origins of divergence is supported by our data;
therefore, we hypothesize that Z. loczyi populations spread from one branch of the TKD
to the GTD and the other branch from the TKD to the QD, which then spreads to the BJD.
Understanding the implications of this paper’s discovery is crucial for the preservation of
other drought-tolerant desert vegetation in Northwest China and the surrounding region.
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