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Abstract: Chronic myeloid leukemia (CML) is associated with the Philadelphia chromosome and
distinct BCR::ABL1 gene transcripts. We assessed the frequencies of these transcripts in Mexico,
Latin America, and worldwide. We determined the prevalence of BCR::ABL1 transcripts in CML
patients and intercontinental or regional variations using specialized databases and keywords. We
analyzed 34 studies from 20 countries, encompassing 5795 patients. Keyword-based searches in
specialized databases guided data collection. ANOVA was employed for transcript distribution
analysis. The b3a2 transcript was most prevalent globally, followed by b2a2, with e1a2 being the least
frequent. Interestingly, Mexico City exhibited a higher incidence of b2a2, while b3a2 predominated in
the remaining country. Overall, no significant intercontinental or regional variations were observed.
b3a2 was the most common BCR::ABL1 transcript worldwide, with b2a2 following closely; e1a2 was
infrequent. Notably, this trend remained consistent in Mexico. Evaluating transcript frequencies
holds clinical relevance for CML management. Understanding the frequency of transcript informs
personalized CML treatments.
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1. Introduction

Leukemia has among the highest mortalities of any cancer, and chronic myeloid
leukemia (CML) represents approximately 15–20% of all adult leukemias. CML is a hema-
tologic neoplastic disease clinically characterized by a proliferation of mature myeloid cells
and granulocytic precursors, both in the bone marrow and peripheral blood. The symptoms
of CML are tiredness without reason, low body weight, pallor, and skin spots; however,
most patients with CML do not present symptoms until the most advanced stages of this
cancer. This disease is most often diagnosed in people over 60 years of age, with a higher
percentage in men. There are three clinical stages for CML: the chronic phase (CML-CP),
the accelerated phase (CML-AP), and the blast crisis (CML-BC). Without therapeutic inter-
vention, the disease follows a natural progression from relatively benign CML-CP, through
CML-AP, to terminal CML-BC. One essential feature of this neoplasia is the presence of the
reciprocal translocation t(9;22)(q34;q11), which is found in approximately 90% of cases. This
translocation gives rise to the Philadelphia chromosome (Ph), resulting in a head-to-tail
fusion of the BCR and ABL genes. Consequently, a BCR::ABL1 chimeric gene is formed,
encoding for a protein with an exacerbated tyrosine kinase activity. This gene fusion is
a key point for CML pathogenesis because the oncoprotein activates signaling pathways
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such as RAS/MEK, JAK/STAT, and PI3K/AKT promoting cell growth, cell survival, and
inhibition of apoptosis [1–4].

The BCR::ABL1 protein found in chronic myeloid leukemia (CML) incorporates vari-
ous domains from both BCR and ABL1. Derived from BCR, these domains consist of an
N-terminal coiled-coil domain (CC; amino acids 1–63), a Ser/Thr kinase domain containing
a phosphorylated tyrosine 177 (Y177) docking site for the adaptor protein growth factor
receptor-bound protein 2 (GRB2), and a Rho guanine nucleotide exchange factor (Rho/GEF)
kinase domain (amino acids 298–413). On the other hand, domains from ABL1 include src
homology (SH) domains (SH1/SH2), a proline-rich domain, and DNA- and actin-binding
domains. Although distinct transcripts encode diverse proteins, a shared characteristic
among all hybrid proteins is their constitutively active protein kinase activity in comparison
to the wild-type ABL1 [5].

The most frequent breakpoint locations in the BCR gene are found in the major
breakpoint cluster region (M-bcr), a genomic region of approximately 300 kb located
between exons b2 and b3 or b3 and b4. Meanwhile, the breakpoint in the ABL gene is
located in the 5’-region of exon a2. Depending on the rearrangement, both genes give rise to
a combination of fusion messenger RNAs; for example, transcript b2a2 (e14a2) is expressed
when exon b2 is fused to exon a2, while transcript b3a2 (e13a2) is expressed when exon
b3 is fused with exon a2; however, other transcripts such as e1a2 (exon e1 fused to exon
a2) have been sporadically reported (approximately 1% of all CML) and show an inferior
outcome to treatment with tyrosine kinase inhibitors (TKIs). These fusion transcripts have
been proposed as central factors in CML pathogenesis and prognostic markers. However,
their role remains unclear, as some authors have suggested that the b3a2 rearrangement is
associated with a shorter chronic phase and reduced survival, whereas conflicting reports
have challenged this assertion. In this sense, Kjaer et al. and Bernardi et al. recently
discussed and attributed this phenomenon to a technical issue, suggesting that differences
between the expression of transcripts could be due to a technical limitation of RT-qPCR and
not to biological causality, suggesting the use of digital PCR (dPCR) for better diagnosis
and treatment of patients with chronic myeloid leukemia [4,6–12].

Furthermore, reports on the frequencies of these rearrangements are limited, although
b3a2 has been found in approximately 65% of CML cases, and b2a2 accounts for only 35%
of cases. However, cytogenetic studies in Mexico are limited and have focused only on the
detection of the Ph chromosome [13–19]. Therefore, this meta-analysis aimed to determine
the frequencies of BCR::ABL1 transcripts in patients diagnosed with CML in Mexico, Latin
America, and worldwide and intercontinental or regional variations in these frequencies.

2. Materials and Methods

In this study, we used the PubMed and SciELO databases for conducting searches. The
following keywords were employed in both Spanish and English: ‘LMC/CML’, ‘Leucemia
Mieloide Crónica/Chronic Myeloid Leukemia’, ‘Rearreglo de transcritos/Transcript rear-
rangement’, ‘b3a2′, ‘b2a2′, ‘Citogenética/Cytogenetics’, ‘Cromosoma Filadelfia/Philadelphia
Chromosome’, and ‘BCR::ABL1′. Only original articles published from 1997 to 2021, in ei-
ther English or Spanish, were selected. These articles needed to include a search for at least
b3a2 and b2a2 transcripts, identify the transcripts via reverse transcription polymerase chain
reaction (RT-PCR), provide absolute or relative frequencies of transcript rearrangements,
and involve a minimum of 10 samples.

Articles meeting the selection criteria were categorized according to the groups ‘Con-
tinents’ or the subgroups ‘Countries of the world’, ‘Latin America’, and ‘Mexico’. The
subgroup ‘Mexico’ was further enriched with data from the Bajío Regional High Spe-
cialty Hospital (Hospital Regional de Alta Especialidad del Bajío) (HRAEB), including
clinical data from the medical records of patients with Ph-positive CML and BCR::ABL1
rearrangement genotyping who were treated from 2007 to 2018.
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Data Analysis

Absolute frequencies for the b3a2, b2a2, and e1a2 transcripts were computed for
countries covered in the chosen studies and various regions examined (continents, countries
of the world, Latin America, and Mexico). Two-way analysis of variance (ANOVA) with
Tukey’s multiple comparison test was conducted, employing a significance threshold of
p < 0.05 and 95% confidence intervals. The objective was to identify significant variations in
transcript distributions within the same country and across different countries. Statistical
analyses were executed utilizing GraphPad Prism v.9.0.0, ensuring a robust and reliable
examination of transcript frequency differences in the specified regions and countries.

3. Results

This study included a total of 34 studies from 20 countries involving 5795 patients.
According to the analysis of ‘Continents’, America contributed 9 studies (n = 1445 patients),
Europe had 8 studies (n = 1445 patients), Asia had 15 studies (n = 2818 patients), and Africa
had 2 studies (n = 87 patients). The Asian continent had the highest number of studies
published up to the date of this study. The two-way ANOVA with Tukey’s multiple com-
parison test was applied to continents (rows) and transcript type (columns) to determine
the presence of significant differences, showing significant differences between the b3a2
and e1a2 transcripts and between the b2a2 and e1a2 transcripts (Table 1). Moreover, the e1a2
transcript had the lowest frequency in all continents (mean frequency: 0.55%), whereas the
b3a2 and b2a2 transcripts occurred in statistically significantly similar proportions, although
b3a2 (mean frequency: 56.21%) was clearly the most frequent transcript in all the continents
analyzed (Figure 1).
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Table 1. Tukey’s multiple comparison results for BCR::ABL1 transcript frequencies in the different 
continents based on 34 reports [6,7,10,13,20–49]. 
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America America 

14.85 
−5.472–35.17 0.1752 

America Europe −16.19–45.89 0.5501 
America Asia −16.19–45.90 0.5499 

Figure 1. Distribution of frequencies of b3a2, b2a2, and e1a2 transcripts for the analyzed continents. A
two-factor ANOVA was conducted, with rows representing continents and columns representing
transcripts. For the row-wise ANOVA, no significant differences were found (p > 0.99), while
for the column-wise ANOVA, a p-value of < 0.0001 was obtained, indicating differences between
the transcripts. Significant differences were observed only between the b3a2 and e1a2 transcripts
(p < 0.0001) and between the b2a2 and e1a2 transcripts (p = 0.0002). *** p < 0.001; **** p < 0.0001.
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Table 1. Tukey’s multiple comparison results for BCR::ABL1 transcript frequencies in the different
continents based on 34 reports [6,7,10,13,20–49].

Mean
Difference 95% CI p-Value

b2a2

b3a2

America America

14.85

−5.472–35.17 0.1752

America Europe −16.19–45.89 0.5501

America Asia −16.19–45.90 0.5499

America Africa −16.19–45.89 0.5501

Europe Europe −5.472–35.17 0.1752

Europe Asia −16.19–45.90 0.5499

Europe Africa −16.19–45.89 0.5501

Asia Asia −5.472–35.17 0.1752

Asia Africa −16.20–45.89 0.5504

Africa Africa −5.472–35.17 0.1752

Mean
difference 95% CI p-value

e1a2

b2a2

America America
41.96

21.64–62.28 0.0012 *

America Europe 10.92–73.00

0.0118 *America Asia 41.97 10.92–73.01

America Africa
41.96

10.92–73.00

Europe Europe 21.64–62.28 0.0012 *

Europe Asia 41.97 10.92–73.01
0.0118 *

Europe Africa

41.96

10.92–73.00

Asia Asia 21.64–62.28 0.0012 *

Asia Africa 10.92–73.00 0.0118 *

Africa Africa 21.64–62.28 0.0012 *

Mean
difference 95% CI p-value

e1a2

b3a2

America America
56.81

36.49–77.13 0.0002 *

America Europe 25.77–87.85

0.0024 *America Asia 56.82 25.77–87.86

America Africa
56.81

25.77–87.85

Europe Europe 36.49–77.13 0.0002 *

Europe Asia 56.82 25.77–87.86
0.0024 *

Europe Africa

56.81

25.77–87.85

Asia Asia 36.49–77.13 0.0002 *

Asia Africa 25.77–87.85 0.0024 *

Africa Africa 36.49–77.13 0.0002 *
* Significant values p < 0.05.

The subgroup ‘Countries of the world’ consisted of Mexico with five studies, including
data from the HRAEB (n = 646); Pakistan (n = 135) and Italy (n = 222), with three studies
each; Brazil (n = 259), Iran (n = 142), Korea (n = 652), Malaysia (n = 76), India (n = 1395), and
Germany (n = 1058), with two studies each; and USA (n = 396), Syria (n = 15), Indonesia
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(n = 177), Canada (n = 144), England (n = 71), Iraq (n = 98), France (n = 32), Sudan (n = 43),
Tunisia (n = 44), Saudi Arabia (n = 128), and Poland (n = 62), with one study each.

Regarding the frequencies of different BCR::ABL1 transcripts in the included coun-
tries, the b3a2 variant was the most prevalent in most of the cases included in this study
(n = 3433 patients), followed by b2a2 (n = 2316 patients) and e1a2 (n = 46 patients). However,
b2a2 was the most prevalent variant in some Middle Eastern countries, such as Syria and
Sudan, with frequencies of 80% (n = 12) and 58% (n = 25), respectively, followed by the b3a2
variant (Table 2).

Table 2. Relative frequency of BCR::ABL1 transcripts in countries of the world based on 34 reports
[6,7,10,13,20–49].

n b3a2
% (n)

b2a2
% (n)

e1a2
% (n)

Mexico 646 47.21 (305) 50.15 (324) 2.63 (17)

USA 396 49.49 (196) 50.51 (200) 0.00 (0)

Pakistan 135 62.96 (85) 35.56 (48) 1.48 (2)

Brazil 259 66.41 (172) 33.59 (87) 0.00 (0)

Iran 142 70.42 (100) 28.17 (40) 1.41 (2)

Syria 15 20.00 (3) 80.00 (12) 0.00 (0)

Korea 652 66.87 (436) 33.13 (216) 0.00 (0)

Malaysia 76 76.32 (58) 21.05 (16) 2.63 (2)

Indonesia 177 76.84 (136) 23.16 (41) 0.00 (0)

India 1395 63.94 (892) 34.41 (480) 1.65 (23)

Canada 144 57.64 (83) 42.36 (61) 0.00 (0)

England 71 54.93 (39) 45.07 (32) 0.00 (0)

Germany 1058 52.08 (551) 47.92 (507) 0.00 (0)

Italy 222 57.21 (127) 42.79 (95) 0.00 (0)

Iraq 98 60.20 (59) 39.80 (39) 0.00 (0)

France 32 59.38 (19) 40.63 (13) 0.00 (0)

Sudan 43 41.86 (18) 58.14 (25) 0.00 (0)

Tunisia 44 63.64 (28) 36.36 (16) 0.00 (0)

Saudi Arabia 128 64.06 (82) 35.94 (46) 0.00 (0)

Poland 62 70.97 (44) 29.03 (18) 0.00 (0)

N 5795 59.24 (3433) 39.97 (2316) 0.79 (46)

The two-way ANOVA with Tukey’s multiple comparison was applied to determine
the presence of significant differences in the frequencies of the transcripts in the countries
of the world, showing with statistical significance that e1a2 had the lowest frequency and
b3a2 had the highest frequency, although b2a2 only showed significant differences when
compared with e1a2 (Figure 2). Notably, in the cases of Syria and Sudan, b2a2 seemed to
be the most common variant, but there was not enough significant evidence to confirm
this claim, especially considering that the Syrian study included only 15 patients and the
Sudanese study included only 43.
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Figure 2. Histogram of frequencies of the different BCR::ABL1 transcripts in countries of the world.
A two-factor ANOVA was conducted, with rows representing countries and columns representing
transcripts. For the country-wise ANOVA, no significant differences were found (p > 0.999), while
for the transcript-wise ANOVA, a p-value of <0.0001 was obtained. Significant differences were
observed in all countries between the b3a2 and e1a2 transcripts (p < 0.0001) and between b3a2 and
b2a2 transcripts (p = 0.0002), with b3a2 being the most frequent transcript. Significant differences were
also found for the b2a2 transcript when compared to the e1a2 transcript (p = 0.0001). *** p < 0.001;
**** p < 0.0001.

In the case of Latin America, a total of 14 reports were included, involving 1386 patients
with CML: two studies from Cuba (n = 271), one from Venezuela (n = 81), one from Brazil
(n = 21), one from Bolivia (n = 250), one from Chile (n = 19), one from Guatemala (n = 34),
one from Ecuador (n = 37), one from Colombia (n = 27), and five from Mexico, including
data from the HRAEB (n = 646).

The analysis of transcript frequencies showed that b3a2 was the most frequent variant
in most Latin American countries included in this study, with relative frequencies ranging
from 44% to 73%. However, in Colombia and Ecuador, the frequencies were 37% (n = 10)
and 5.4% (n = 2), respectively, with b2a2 emerging as the most frequent variant in these two
countries. Interestingly, the e1a2 transcript was the least frequent, with a frequency of <4%
in most Latin American countries. However, Guatemala and Chile had frequencies of 11%
(n = 4) and 26% (n = 5), respectively (Table 3).

Subsequently, to determine significant differences in the distribution of different
transcripts among Latin American countries, a two-factor ANOVA was conducted, with
countries as rows and transcript types as columns. Interestingly, significant differences
were observed only between different transcripts (p = 0.0014). However, Tukey’s multiple
comparison showed no significant differences (p > 0.99) between the frequencies of each
transcript in the countries analyzed, despite the clear differences in the frequencies of
countries such as Colombia, Ecuador, and Chile. Nevertheless, the prevalence of b2a2 in
Ecuador was approximately 95%, suggesting the need for further studies to confirm this
distribution, especially given that the analyzed study included only 37 patients.
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Table 3. Relative frequencies of BCR::ABL1 transcripts in Latin American countries based on
14 reports [14,15,44–47,50–55].

n b3a2
% (n)

b2a2
% (n)

e1a2
% (n)

Mexico 646 47.2 (305) 50.2 (324) 2.6 (17)

Cuba 271 56.5 (153) 41.0 (111) 2.6 (7)

Venezuela 81 55.6 (45) 44.4 (36) 0.0 (0)

Brazil 21 57.1 (12) 42.9 (9) 0.0 (0)

Bolivia 250 61.6 (154) 38.4 (96) 0.0 (0)

Chile 19 73.7 (14) 0.0 (0) 26.3 (5)

Guatemala 34 44.1 (15) 44.1 (15) 11.8 (4)

Colombia 27 37.0 (10) 59.3 (16) 3.7 (1)

Ecuador 37 5.4 (2) 94.6 (35) 0.0 (0)

N 1386 51.2 (710) 46.3 (642) 2.5 (34)

Finally, to determine the frequency of different transcripts in Mexico, data from
the five included reports were examined, and the regions they originated from were
determined, with two studies from Mexico City (n = 308); one study from Puebla (n = 232);
one study from western Mexico, with patients from Jalisco, Colima, Michoacan, and Nayarit
(n = 81); and data from the HRAEB in Guanajuato (n = 25). The two-way ANOVA test
was applied to determine the presence of significant differences in the frequencies of the
transcripts (columns) depending on the region (rows), but no significant differences were
found between regions (p > 0.999). However, the Tukey’s multiple comparison test showed
significant differences between transcript variants (p = 0.0025), with b3a2 (p = 0.02) having
the highest frequency in the regions of Guanajuato, western Mexico, and Puebla, compared
with e1a2. However, no significant differences were found between the b2a2 and b3a2
transcripts. Notably, Mexico City displayed a slightly different pattern compared to the
findings in the other regions analyzed; b2a2 was the most frequent transcript with 57.5% of
the cases (n = 177), followed by b3a2 with 37.3% of the cases (n = 115) (Figure 3).
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while for the transcript-wise ANOVA, a p-value of 0.0025 was obtained, indicating significant differ-
ences in the Tukey multiple comparison for the frequency between b3a2 and e1a2 transcripts. In the
case of Guanajuato, the western region of Mexico, and Puebla, the b3a2 transcript was significantly
more frequent compared to e1a2 (0.0202). In Mexico City (CDMX), the most frequent transcript was
b2a2. Meanwhile, no significant differences were noted between the b3a2 and b2a2 transcripts for any
of the regions analyzed. CDMX = Mexico City. * p < 0.05.

4. Discussion

At a global level, cancer remains a significant public health problem, positioning itself
as one of the leading causes of death. However, advances in the diagnosis and treatment of
these types of diseases have contributed to a drastic reduction not only in the number of
cases but also in the annual death toll. This reduction can be attributed to factors such as
increased access to healthcare services, early diagnosis, improvements in the monitoring of
neoplastic diseases, and better management.

Nevertheless, one of the primary challenges in understanding cancer lies in population
differences, impacting both treatment and diagnostic criteria. These differences stem from
ethnic, genetic, socioeconomic, and even environmental factors. Therefore, exploring ge-
netic variations at the population level becomes extremely important for the comprehension
and improved management of cancer diseases.

Several diseases are caused by gene variants and show epidemiological differences
depending on geographic location or ethnicity, but similarities between ethnic groups have
been demonstrated in some cases in different regions of the world. In this sense, our work
found some similarities in the frequency of BCR::ABL1 transcripts in CML patients, in the
special case between Syria and Sudan, showing a high frequency of the b2a2 transcript,
which may be caused by the migration of the Sudanese population to Syria due to armed
conflicts in the region. This has resulted in a high number of Sudanese refugees in Syria.
However, this premise needs to be evaluated, considering current displacements in the
Middle East regions.

On the contrary, in the Americas, the distribution of transcript variants among Latin
American patients with chronic myeloid leukemia (CML) was generally uniform, showing
no notable distinctions. Nevertheless, certain countries examined in this research exhibited
skewed outcomes that might imply substantial variations. Notably, in Chile and Ecuador,
there were notable deviations, with higher relative frequencies observed for b3a2 (73.7%)
and b2a2 (94.6%) transcripts, respectively. These findings suggest the presence of potential
differences that warrant more precise investigations to validate this phenomenon. There-
fore, more detailed studies are essential to ascertain and confirm the observed disparities,
emphasizing the need for a thorough examination of transcript variant distributions in
different regions of Latin America [47,56,57].

With the exception of the findings in Chile and Ecuador, it can be suggested that,
as expected due to the ethnic origins of Latin American populations, similar transcript
distributions may be encountered. Studies on the interethnic admixture and evolution of
Latin American populations have shown similar ancestries. For example, all Latin Amer-
icans share a significant proportion of Native American ancestry, reflecting the region’s
indigenous heritage and emphasizing that the first inhabitants of the Americas were Native
Americans who migrated from Asia across the Bering land bridge. In addition, many Latin
Americans also have European ancestry, reflecting the legacy of European colonization.
These similarities are likely due to the shared history of the region. All Latin American
populations have been shaped by the same forces of migration, colonization, and inter-
marriage. As a result, they share a common genetic heritage that reflects the region’s rich
and complex history. Regarding this, countries such as Cuba, Venezuela, and Brazil have
mainly African and European genetic contributions and showed similar distributions of
the transcript variants in this study. Countries such as Mexico and Colombia which mainly
have European and Amerindian genetic contributions also showed similar distributions of
the transcripts. Although the Latin American colonization processes were complex, the
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ethnic similarity throughout Latin America is notorious. As a result, the distributions of
transcript variants are also very similar, except for that of Ecuador, which has a higher
Amerindian ancestry, and Chile, which has a higher European ancestry [56,58,59].

Likewise, in the examination of ancestry across various regions of Mexico, distinct
variations were identified. Mexico exhibits predominant genetic contributions from Euro-
pean and Amerindian ancestry, albeit in varying ratios depending on the state. Notably,
Mexico City displays nearly equal proportions of Amerindian and European ancestry,
whereas Puebla and the western states of Mexico primarily feature Amerindian ancestry.
This discrepancy in ancestry distribution may elucidate the minor distinctions observed
between these regions [60–62].

Racial or ethnic similarities regarding the distribution of BCR::ABL1 transcripts in
CML can be masked in certain circumstances, such as the current development of mobility
technologies and human settlement due to high world migration rates, a consequence
of globalization. In this respect, hereditary diseases behave quite differently from infec-
tious diseases, especially regarding epidemiological changes attributed to migration since
changes in the geographical distribution of hereditary diseases occur over long periods.
Thus, one must be cautious when determining the dominant BCR::ABL1 transcript vari-
ants and the prognosis of the disease based solely on the ethnic history of a country or
region [63–66]. Additionally, it is important to also consider environmental factors, as, at
least in this study, they were not an explored variable; however, they could be crucial for
understanding the differences and similarities among different transcript types present
in populations. Therefore, it is also suggested to conduct studies that incorporate the
environmental status and the presence of pollution markers that may be related to the
preferential expression of a particular BCR::ABL1 transcript.

The data obtained in this study suggest that the b3a2 variant is the most frequent
BCR::ABL1 gene transcript in patients with CML in the worldwide population, followed
by b2a2 and e1a2. Variations in this order exist in some countries around the world and in
the Latin American continent itself. These could be partially explained by ethnic differ-
ences, as mentioned previously, but further in-depth studies should be conducted to better
understand these aspects of CML.

The presence of BCR::ABL1 transcript variants in CML has implications for the disease
in terms of diagnosis, prognosis, and patient survival [4,6–10]. Some studies have reported
that the b3a2 variant is associated with worse prognosis and survival compared with b2a2.
Although there is contradictory literature regarding the association of transcript types in
the prognosis, treatment, and survival of patients with CML, it is important to be aware of
their distribution worldwide and in our country. Some reports have suggested different
tyrosine kinase inhibitor (TKI) treatment regimens based on the expressed transcripts,
although these claims still need to be validated with more in-depth studies. However, it is
important to mention that the presence of the e1a2 transcript has been linked to diagnoses
at older ages and an increased risk of progression to the blast phase, thus leading to a
poorer response to TKI treatments [67].

5. Conclusions

Determining the frequencies of BCR::ABL1 transcripts in CML has implications for
CML diagnosis, and potentially for prognosis and patient survival. The most frequent
transcript worldwide was b3a2, followed by b2a2 and e1a2. The frequency of e1a2 is higher
in some Asian countries compared with that in the rest of the world. In Mexico, there are
no significant differences in this trend. Further studies are warranted to determine the role
played by ethnicity in the presence of BCR::ABL1 gene variants, the role of these variants
in the course of the disease, and the clinical impact of these variants.
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