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Abstract: Retinitis pigmentosa is a group of genetically determined retinal dystrophies characterized
by primary photoreceptor apoptosis and can occur in isolated or syndromic conditions. This study
reviewed the clinical data of 15 patients with syndromic retinitis pigmentosa from a Rare Disease
Reference Center in Brazil and the results of their next-generation sequencing tests. Five males and
ten females participated, with the mean ages for ocular disease onset, fundoscopic diagnosis, and
molecular evaluation being 9, 19, and 29 years, respectively. Bardet–Biedl syndrome (n = 5) and
Usher syndrome (n = 3) were the most frequent diagnoses, followed by other rare conditions. Among
the patients, fourteen completed molecular studies, with three negative results and eleven revealing
findings in known genes, including novel variants in MKKS (c.432_435del, p.Phe144Leufs*14), USH2A
(c.(7301+1_7302-1)_(9369+1_9370-1)del), and CEP250 (c.5383dup, p.Glu1795Glyfs*13, and c.5050del,
p.Asp1684Thrfs*9). Except for Kearn-Sayre, all presented an autosomal recessive inheritance pattern
with 64% homozygosity results. The long gap between symptom onset and diagnosis highlights
the diagnostic challenges faced by the patients. This study reaffirms the clinical heterogeneity of
syndromic retinitis pigmentosa and underscores the pivotal role of molecular analysis in advancing
our understanding of these diseases.

Keywords: molecular diagnoses; retinitis pigmentosa; genetic testing; Bardet–Biedl syndrome; Usher
syndrome; precision medicine

1. Introduction

Retinitis pigmentosa (RP) constitutes a group of genetically determined retinal dystro-
phies characterized by progressive photoreceptor degeneration encompassing rods and
cones [1]. Considered a neurodegenerative disease due to photoreceptor cell death and
retinal pigment epithelium atrophy, it initially manifests as nyctalopia and is followed by
continuous vision loss until blindness. Onset age is highly variable, and early-onset RP
subtypes tend to progress rapidly, starting around ten years old. Vision impairment is
evident and refractory by age 40–50 [2]. The diagnosis of RP primarily relies on fundoscopic
examination, revealing characteristic features such as pigment deposits resembling bony
spicules, attenuated retinal arterioles, peripheral retinal epithelial atrophy, and a pale optic
disc; the extent of these findings varies depending on the disease stage [3]. This visually
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debilitating condition afflicts approximately 2.5 million individuals globally, disproportion-
ately impacting individuals under 60 years of age. RP impairs the accomplishment of daily
tasks and employment maintenance, causing a significant reduction in quality of life and
psychological well-being [4,5].

The genetic nature of RP is well-established, with most cases demonstrating an in-
herited pattern [3]. Following diagnosis, it is crucial to determine whether RP occurs as
an isolated condition or represents an ocular manifestation of a broader multisystemic
disorder categorized as Syndromic Retinitis Pigmentosa (SRP). The four main categories of
SRP include ciliopathies, Usher syndrome, inborn errors of metabolism, and mitochondrial
disorders. Comprehensive management and treatment planning for individuals affected
by RP necessitate a thorough understanding of these conditions.

Ciliopathies, arising from dysfunction of primary cilia critical for sensory percep-
tion, signal transduction, and development, often exhibit pleiotropic effects, impacting
multiple systems beyond the eyes, such as the urinary, central nervous, and skeletal
systems [6,7]. Photoreceptors, modified primary cilia themselves, are particularly suscepti-
ble to ciliopathy-related dysfunction, leading to RP as observed in Bardet–Biedl syndrome
(BBS), Senior-Løken syndrome, and Alstrom syndrome [7,8].

Usher syndrome (USH) affects both the retinal stereocilia and the connecting cochlear
cilium, resulting in hearing loss and, in some cases, vestibular dysfunction. This has
led some to consider USH a ciliopathy [9]. However, the non-ciliary nature of USH
proteins prompts others to disagree with this classification [10]. Among SRPs, USH is the
most prevalent, encompassing approximately 18% of all RP cases and presenting with a
combination of RP, sensorineural hearing loss, and occasional vestibular involvement [9,11].
While traditionally classified into four subtypes based on the age of onset and vestibular
involvement, distinct vestibular phenotypes within these groups and the genetic accuracy
of this classification are called into question [12–14].

Inborn errors of metabolism, another significant cause of SRP, can impact photorecep-
tors in diverse ways. For instance, neuronal ceroid lipofuscinoses and mucopolysaccharido-
sis can lead to substance accumulation within the retina [15,16]. Also, abetalipoproteinemia,
causing lipid and fat-soluble vitamin E deficiencies, can result in RP [17]. Lipid metabolism
disorders like Refsum disease, Sjögren-Larsson syndrome, and peroxisomal disorders like
Zellweger syndrome represent further examples of metabolic conditions contributing to
SRP [17,18].

Mitochondrial diseases, another leading group of SRPs, can also affect the retina
due to photoreceptors’ high energy demands. Mitochondrial dysfunction can trigger
photoreceptor apoptosis and RP, as seen in MELAS, Kearn-Sayre syndrome (KSS), and
Leigh syndrome [17].

Acknowledging the diverse nature of SRP and recognizing the existence of additional
syndromes beyond those mentioned is essential. The critical step lies in establishing a
specific diagnosis, encompassing both clinical and molecular aspects, for each case of SRP
to ensure optimal care coordination and effective genetic counseling.

The Brazilian population is extensively mixed, and its genetic background is mainly
descended from three major ethnic populations: Europeans, Africans, and Native Ameri-
cans [19]. Additionally, within the Brazilian population, the occurrence rates of inherited
retinal dystrophies are underreported, and their underlying genes are under-investigated.
Nonetheless, the proportional rates of various inherited retinal dystrophies in Brazil appear
to be similar to those observed globally, with non-syndromic retinitis pigmentosa, Star-
gardt disease, and Leber congenital amaurosis prevailing as the most common dystrophies,
followed by syndromic inherited retinal dystrophies [20].

2. Patients and Methods

This case series aimed to analyze clinical and molecular data from patients with SRP.
Patients with confirmed or suspected syndromic conditions featuring the fundoscopic
diagnosis of RP who attended a single Reference Center for Rare Disease in Campinas,
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Brazil, from 2019 to 2023 were recruited. Individuals were invited to join a research
protocol approved by the Institutional Ethics Committee, and written consent was obtained
from the patients or legal guardians before procedures. Data collection comprised the
information presented in Supplementary File S1; all data was obtained from medical records
and confirmed by patients and relatives. Furthermore, molecular results of previously
performed new-generation sequencing (NGS) tests were analyzed, specifically gene panel
sequencing (GPS) for retinopathies, whole exome sequencing (WES), or whole-genome
sequencing (WGS).

GPS was performed on DNA extracted from peripheral blood samples. These samples
were enriched for targeted regions using a hybridization-based protocol and sequenced
using Illumina technology. The gene panel consisted of sequence analysis and copy number
variation (CNV) testing for 328 genes (Supplementary Material), performed by Invitae
Corporation. Targeted regions were sequenced with a minimum depth of 50×, and the
reference genome was GRCh37/hg37.

WES was performed at Mendelics Genomic Analysis (São Paulo, Brazil) facilities using
Illumina NovaSeq 6000. The sequencing library was built with Illumina Nextera Flex,
and a Customized Exome Kit from Twist Biosciences was used to capture target regions.
Sequencing of samples results in paired 101 bp sequences mapped to the hg38 reference
using BWA MEM software version 1.1.4 (http://bio-bwa.sourceforge.net/) accessed on 12
March 2024. The resulting VCF files were processed using Mendelics’ in-house pipeline for
annotation and filtering. Quality metrics were minimum coverage over 10× and at least
90% depth.

WGS was performed on DNA extracted from peripheral blood using an Illumina plat-
form, following mechanical fragmentation and a PCR-free protocol. Data were processed
to detect point mutations, CNVs, and structural variants according to best practices for
bioinformatics pipelines [21]. Quality metrics were a minimum coverage of 20× and at
least 90% depth above 15×. The reference genome was GRCh38/hg38.

All the NGS reports (GPS, WES, and WGS) provided a classification of variants. How-
ever, we reclassified the variants according to the American College of Medical Genetics
(ACMG) criteria recommendations to standardize variant classification, using the refine-
ments proposed by the Sequence Variant Interpretation Working Group by 2023 [22,23].
Our group followed the nomenclature recommendations of the Human Genome Variation
Society [24]. A variant was considered novel if it had not been previously published or
registered in the Clinvar database [25]. When a variant was present in Clinvar in only one
assertion, and that assertion corresponded to one of our patients, we also considered it a
novel variant.

Additionally, low-pass whole genome sequencing (LP-WGS) was performed in two
patients using the Illumina DNA PCR-Free Library Prep tagmentation protocol (Illumina,
San Diego, CA, USA) and quantified by qPCR assay using the KAPA Library Quantification
Kit (Roche, Switzerland). Experiments were performed on the NovaSeq 6000 equipment
(Illumina, USA) using the NovaSeq 6000 S4 Reagent Kit v1.5 (300 cycles) in a paired-read
sequencing strategy with 150 cycles from each end of the DNA fragment. CNV data analysis
was performed using the NxClinical software 5.0 (BioDiscovery, El Segundo, CA, USA).

3. Results

Fifteen patients from fourteen unrelated families with syndromic conditions featuring
a fundoscopic retinitis pigmentosa diagnosis were enrolled. The sex ratio was 1:2 (M:F).
Consanguinity was present in four (31%) families, and familial recurrence was present in
three (23%) families, all in the sibship. The median age at the onset of vision impairment
and fundoscopic diagnosis was 9 and 19 years, respectively, with a median gap of ten years.

Regarding syndromic diagnosis, five patients had BBS, three USH, two with AGBL5-
associated phenotype, one KSS, one CEP250-associated phenotype, and three with undiag-
nosed syndromic conditions. Except for KSS, which presents mitochondrial inheritance, all
the other syndromic diagnoses follow autosomal recessive inheritance.

http://bio-bwa.sourceforge.net/
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Excluding patient BB5, all other patients diagnosed with BBS were initially identified
based on clinical criteria.

Concerning USH, three patients were diagnosed with the combination of RP and
SNHL; none of them presented vestibular dysfunction signals. Patient US3 stood out for
her multiple comorbidities.

The most common non-ocular findings among the patients were bilateral sensorineural
hearing loss (SNHL) in 47% of the overall sample, while obesity and postaxial polydactyly
(PAP) were seen in 33% of the overall sample, with higher frequency in the BBS group
where they were seen, respectively, in 100% and 60% of the subjects.

Patient BB1, the offspring of consanguineous parents, exhibited a classical presenta-
tion of BBS and had a clinical diagnosis in early infancy. Throughout her life, she faced
severe complications of the disease, including renal failure (requiring transplantation),
keratoconus, and schizophrenia. Her condition was confirmed at age 27, revealing the
homozygous variant c.1375C>T in the BBS12 gene.

Patient BB2 also exhibits a classic presentation of BBS, and molecular confirmation
identified compound heterozygosity for the c.271dup and the c.1122dup variants in the
BBS10 gene.

Patient BB3′s molecular evaluation showed compound heterozygosity for the c.1375C>T
variant, the same presented by the BB1 patient, and the c.1627G>A variant, a nucleotide
change in the BBS12 gene.

BB4 is the son of consanguineous parents and presents the c.432_435del homozygous
variant in the MKKS gene.

Patient BB5, daughter of consanguineous parents, presented with loss of vision at
the age of twenty-four years, which was later diagnosed as RP. Her molecular evaluation
revealed the homozygous variant c.1169T>G in the BBS1 gene.

Patient US1 presented with RP (Figure 1), progressing into vision impairment from
early childhood and progressive hearing loss, but had no balance problems.
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Figure 1. A typical fundoscopic aspect of retinitis pigmentosa in patient US1, with pigment in the
form of bony spicules in 360 degrees, vascular thinning, and waxy pallor aspect of the optic disc.

Patient US2, the son of non-consanguineous parents, also exhibited both hearing loss
and vision impairment in early childhood, leading to a clinical classification of Usher type
2 syndrome. The NGS study revealed a homozygous c.189C>A p.(Tyr63*) variant in the
CLRN1 gene.

Patient US3 had neurosensorial hearing loss since early childhood; at the age of 28, she
developed nyctalopia and peripheral vision loss, which was diagnosed as RP; due to this, a
diagnosis of Usher syndrome type 2 was suspected. After WGS evaluation, two variants
were found in the USH2A gene, c.2299del and c.14285A>G.

The present study also identified a pair of sisters, AG1 and AG2, born to first cousins’
parents, with a syndromic presentation of early childhood vision and hearing impairment,
later defined as RP and neurosensory hypoacusis, respectively. NGS revealed they carried
the homozygous variant c.938G>A in the AGBL5 gene.
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Another patient, CP1, presented with childhood-onset vision impairment due to RP,
hearing impairment, ataxia, and vitiligo. Initially diagnosed with Usher syndrome, the
WGS study revealed two variants, c.5383dup and c.5050del, in the CEP250 gene, associated
with a syndromic form of RP known as cone-rod dystrophy and sensorineural hearing loss
type 2.

This study also included a patient with KSS, identified as KS1. The onset of symptoms
occurred at 12 years of age, manifesting as severe blepharoptosis, progressive external
ophthalmoplegia, and visual impairment (Figure 2). The fundoscopic diagnosis of pigmen-
tary retinopathy was established at 22 years. In addition to ocular findings, the patient
developed progressive muscular hypotrophy, respiratory restriction, and dysarthria. A
muscular biopsy supported the KSS diagnosis, but there was no diagnostic confirmation
through molecular testing.
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Figure 2. Ocular region of patient KS1 showing residual blepharoptosis after three surgical blepharo-
plasties, and external ophthalmoplegia when requested to look forward (a), to the left (b), and to the
right (c).

In this case series, there were three patients for whom a final diagnosis could not be
established.

Patient UD1 presented with RP associated with congenital bilateral SNHL, cerebellar
ataxia, and hypergonadotropic hypogonadism. The complementary investigation included
chromosome microarray analysis, targeted GPS, and WGS, but no candidate variants
were identified.

Patient UD2 presented with RP in the first year of life and was initially thought to
have Leber congenital amaurosis due to the early onset of symptoms and significant vision
impairment. However, it became later evident that the RP was part of a broader diagnosis,
as she developed epilepsy (onset at seven months), microcephaly, global developmental
delay, and dysphagia. UD2 underwent LP-WGS and GPS for retinopathy target genes
without significant findings, as was the investigation through WES, which did not find
variants related to her clinical picture.

Finally, the third undiagnosed patient is UD3, who had early-onset RP associated
with a right foot post-axial polysyndactyly and global developmental delay. A ciliopathy,
probably BBS, was suspected but was not confirmed in the WES. An LP-WGS test was
performed and was also negative.

A summary of the clinical findings of the 15 patients is presented in Table 1.
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Table 1. Summary of identification data, sex, family history, and ocular and clinical findings.

Group Patient Family History Findings
ID Sex Consanguinity Recurrence Ocular Neurological/Other

BBS

BB1 F First cousins - RP, keratoconus,
high myopia

Global DD, central obesity, ESRD,
metabolic syndrome, hands and feet
PAP, epilepsy, anxiety, schizophrenia

BB2 F - - RP
Global DD, central obesity, metabolic

syndrome, hands PAP, horseshoe
kidney

BB3 M nd nd RP, XT SS, central obesity, hands and feet PAP,
hypogonadism, asthma

BB4 M First cousins
once removed + (one sister) RP

LD, central obesity, metabolic
syndrome, hands PAP, genital

hypoplasia

BB5 F Double
second cousins -

RP, pachychoroid, thin
retina, peripheral

leakage
Obesity

USH

US1 F - - RP, cataract Bilateral SNHL (from infancy)

US2 M - - RP, cataract Bilateral SNHL (from infancy)

US3 F - - RP

Congenital club feet, bilateral SNHL
(from early childhood), Crohn’s

disease, Takayasu arteritis,
hidradenitis suppurativa, ASD

(Asperger syndrome)

AGBL5
AG1 F

+ (undefined) Sisters
RP Bilateral SNHL (from age 32 y)

AG2 F RP, pale optic disk Bilateral SNHL (from age 25 y)

CEP250 CP1 M - - RP
Bilateral SNHL (from age 7 y), vitiligo,
depression, ataxia, hypergonadotropic

hypogonadism

KSS KS1 M - + (one brother) RP, PEO,
blepharoptosis

SS, muscular hypotrophy, dysarthria,
restrictive lung disease

undiagnosed

UD1 F - - RP, XT,
nystagmus

Congenital bilateral SNHL, cerebellar
ataxia, hypergonadotropic

hypogonadism

UD2 F - - RP, XT, nystagmus,
pale optic disk Global DD, epilepsy, microcephaly

UD3 F - - RP, nystagmus, high
myopia

Global DD, right foot PAP +
syndactyly, depression

Key: +: positive; -: negative; AGBL5: AGBL5-associated phenotype; ASD: autism spectrum disorder; BBS: Bardet–
Biedl syndrome; CEP250-associated phenotype; DD: developmental delay; ESRD: end-stage renal disease; F:
female; KSS: Kearn-Sayre syndrome; LD: learning disabilities; M: male; nd: no data; PAP: postaxial polydactyly;
PEO: progressive external ophthalmoplegia; RP: retinitis pigmentosa; SNHL: sensorineural hearing loss; SS: short
stature; USH: Usher syndrome; XT: exotropia; y: years.

Patients were diagnosed with RP through typical fundoscopic changes. For some of
them, complementary evaluation with further exams included retinal scanning that con-
firmed RP fundoscopic findings, such as pale optic discs and retinal pigmentary alterations
in patients AG2 and UD2. Patient BB5 underwent optical coherence tomography showing
pachychoroid and thinning of outer retinal layers, fluorescein angiogram showing fibrotic
macular scar, discal hyperfluorescence, and peripheral leakage, and electroretinography
with confirmatory RP changes.

The present cohort’s mean age for performing NGS testing was 29 years. The genes
involved were BBS1, BBS10, BBS12, MKKS, USH2A, CLRN1, AGBL5, and CEP250. Most
variants are frameshift, resulting in premature stop codons, missense, and nonsense vari-
ants. Four novel variants were identified in MKKS, USH2A, and CEP250. Seven patients
had homozygous variants. For patients BB2, BB3, US3, and CP2, it was not possible to
confirm whether these variants were in trans due to limitations in testing the parents.

Table 2 shows the molecular results of this case series according to the available NGS
test and ACMG criteria.
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Table 2. Molecular results, according to the NGS test performed, gene/transcript, variant, zygosity,
and ACMG criteria and classification.

Patient Test
Gene

Variant(s) Zygosity
ACMG

Ref.
Transcript Criteria Classif.

BB1 GPS BBS12
NM_152618

c.1375C>T
p.(Gln459*) hom PM2, PVS1 strong,

PM3 sup LP a

BB2 GPS BBS10
NM_024685

c.271dup
p.(Cys91Leufs*5)

c.1122dup
p.(Ile375Tyrfs*3)

het
het

PVS1 str, PM3 vs,
PP4

PVS1 str, PM2
sup, PP4

P
LP

[26]
b

BB3 WGS BBS12
NM_152618

c.1375C>T
p.(Gln459*)
c.1627G>A

p.(Glu543Lys)

het
het

PM2, PVS1 str,
PP4

PM2, PP3, PM1,
PP4

LP
LP

c

d

BB4 GPS MKKS
NM_018848

c.432_435del
p.(Phe144Leufs*14) hom PM2 mod, PVS1,

PM3 sup, PP4 P Novel

BB5 GPS BBS1
NM_024649

c.1169T>G
p.(Met390Arg) hom

PM2 sup, PM3
very strong, PP3,

PP4, PS3
P [27]

US1 GPS USH2A
NM_206933

c.(7301+1_7302-
1)_(9369+1_9370-

1)del
hom PM2, PVS1, PM3

sup P Novel

US2 GPS CLRN1
NM_174878

c.189C>A
p.(Tyr63*) hom PVS1, PM2 sup,

PM3, PP1 P [28]

US3 WGS USH2A
NM_206933

c.2299del
p.(Glu767Serfs*21)

c.14285A>G
p.(Asn4762Ser)

het
het

PVS1, PM2, PM3
vs, PP1, PP3

PM2, PM3, PM1

P
LP

[29]
[30]

AG1 WGS AGBL5
NM_021831

c.938G>A
p.(Arg313His) hom

PM2 sup, PP3,
PM3 sup

VUS e
AG2 GPS

CP1 GPS CEP250
NM_007186

c.5383dup
p.(Glu1795Glyfs*13)

c.5050del
p.(Asp1684Thrfs*9)

het
het

PVS1, PM2
PVS1, PM2

LP
LP

Novel
Novel

Key: GPS: Gene Panel Sequencing; het: heterozygous; hom: homozygous; LP: likely pathogenic; mod: moderate;
P: pathogenic; str: strong; sup: support; vs: very strong; VUS: variant of uncertain significance; WGS: Whole
Genome Sequencing; ClinVar accession number: a VCV000531820.6; b VCV000556154.3; c VCV001043917.2;
d VCV001043917.2; e VCV001213944.3.

4. Discussion

The average interval between the onset of RP symptoms and the fundoscopic diagno-
sis was ten years. Such delayed diagnoses have been observed for other retinal conditions
in Brazilian studies [31,32]. Late referral to the ophthalmology specialist is one hypothesis
for explaining the matter; however, Oliveira and Arieta studied the flow of care in oph-
thalmology in the Campinas region and found that the waiting time for ophthalmology
consultation is between 30 and 60 days, indicating that delay in ophthalmologist referral
might not be the cause for such a long gap in RP diagnosis [33]. Moreover, two of our
patients (US1 and AG2) spontaneously reported that, although they received ophthalmolog-
ical evaluation shortly after experiencing vision impairment symptoms, their eye condition
was managed as refractive errors, and fundoscopic evaluation took many years. This
raises the hypothesis that the delay in performing fundoscopic evaluation might cause the
Brazilian health system’s failure to identify and diagnose retinopathies properly. Besides,
the gap between fundoscopic diagnosis and molecular testing was also ten years, reflecting
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the challenges the Brazilian health system faces in offering genetic testing to its population
due to cost and lack of funding [34].

Concerning the molecular results in this cohort, the c.1375C>T variant in patient BB1
results in a premature translational stop signal (p.Gln459*). It is predicted to disrupt the
final 252 amino acids of the BBS12 protein. Furthermore, it affects a segment of the BBS12
protein where other pathogenic variants have been previously identified [35,36].

The patient BB2 molecular study identified the c.271dup and the c.1122dup variants in
the BBS10 gene. The first variant causes a premature stop signal (p.Cys91Leufs*5), which is
expected to truncate the last 633 amino acids of the BBS10 protein. This frameshift variant
has been observed in individuals with Bardet–Biedl syndrome [26,37], and it has been
detected across different ethnicities, suggesting it emerged in early states of the human
diaspora [38] or due to a mutational hotspot. The second variant creates a premature stop
signal (p.Ile375Tyrfs*3), which is expected to truncate the last 349 amino acids of the BBS10
protein. Additionally, this variant disrupts a protein region in which other variants have
been determined to be pathogenic [39,40].

Patient BB3’s molecular evaluation showed compound heterozygosity for the c.1375C>T
variant, the same presented by the BB1 patient, and the c.1627G>A variant, a nucleotide
change in the BBS12 gene. Also, this variant scores 0.88 in silico prediction by Revel, which
corresponds with strong pathogenic evidence [41].

Patient BB4 presented the c.432_435del variant in homozygosity in the MKKS gene.
This deletion causes a premature stop signal (p.Phe144Leufs*14) in the translation of the
MKKS gene, which is predicted to undergo nonsense-mediated decay [42]. Considering this,
it is predicted to result in a complete loss of function of the MKKS product and, consequently,
an inability to fold a range of target proteins, resulting in the clinical manifestations of
BBS [43]. Despite being a novel variant, the same protein consequence has previously been
reported by the variant MKKS c.429_434delinsTT [44].

Patient BB5 clinical presentation consisted of RP associated with obesity, with no other
relevant clinical findings or comorbidities; therefore, BBS was not previously suspected.
Her molecular evaluation revealed the homozygous variant c.1169T>G in the BBS1 gene.
This nucleotide substitution, which leads to the missense consequence p.(Met390Arg), is
the most common single variant for BBS, and its replication in mice was proven to cause
retinopathy and ventriculomegaly [45]. Indeed, it has been reported that BBS1 patients
tend to present a milder BBS phenotype [46].

Regarding the individuals with Usher syndrome, patient US1 presented the homozy-
gous deletion of the exons 39 to 47 of gene USH2A. Multiexon deletions are situations where
CNV and sequence variant classifications may be applicable; in this case, it was preferred
to apply ACMG sequence variant criteria adapted to single-gene copy number variants
proposed by Brandt et al. [47]. This variant is predicted to cause the absence of protein, and
functional studies have characterized USH2A null models, indicating increased apoptosis
levels in photoreceptors and reduced visual function in zebrafish and progressive photore-
ceptor degeneration and moderate hearing impairment in mice [48,49]. Notably, this variant
had not been previously reported in individuals affected by USH2A-related conditions.

Patient US2 was clinically classified as having Usher type 2 syndrome. However,
molecular testing revealed that the c.189C>A variant in the CLRN1 gene diagnosed USH
type 3. This nucleotide substitution leads to the nonsense p.(Tyr63*), and it has been found
in other Usher syndrome patients, being reported with an exceptionally high frequency
in Gado Bravo city, in the State of Paraiba, Brazil [50], the birth city of US2’s parents. This
observation suggests a possible founder effect. It is also crucial to note recent criticisms of
the traditional Usher syndrome classification. Doubts have been raised about vestibular
phenotypic differences in these groups [13]. Additionally, there is concern that this clinical
classification may lead to the diagnosis of most deaf–blindness syndromes as though they
were Usher syndrome, which could be inaccurate. In this context, a more comprehensive
classification with genotypic data is necessary for Usher syndrome [12].
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Patient US3 presented two variants in the USH2A gene, c.2299del and c.14285A>G.
The first is the most common disease-causing variant in the USH2A gene, and it is especially
recurrent in Europe and North America, probably due to European migratory movements
to the New World [51]. It is also the most common causative variation for RP and is
predicted to result in premature termination of the protein (p.Glu767Serfs*21), leading
to nonsense-mediated decay [52]. The second variant in the USH2A gene, c.14285A>G,
disrupts the p.Asn4762 amino acid residue, and other variants that disrupt this residue have
been observed in individuals with USH2A-related conditions, suggesting that this may be a
clinically significant amino acid residue [53]. In addition to the USH diagnosis, the patient
has the autoimmune disorders Takayasu’s arteritis and Crohn’s disease, also diagnosed at
the age of 28, and autism spectrum disorder (Asperger syndrome), recognized in infancy.
The association between Usher syndrome and inflammatory bowel disease has already
been described in USH1C patients, and it was explained by the expression of product
harmony in intestinal epithelial cell microvilli, which are structurally analogous to hair cell
stereocilia [54]. Usherin, a 5202 amino acid protein encoded by the USH2A gene, is believed
to be predominantly expressed in the retina and the cochlea. Interestingly, a usherin short
isoform, comprising 1546 amino acids, is widely distributed in the membranes of the small
intestine and the colon. However, to the best of current knowledge, USH2A mutations
are not suggested to induce enteropathy [48,55]. Additionally, the biallelic variants of
the USH2A gene have been documented as candidates for autosomal recessive autism,
exclusively in cases of protein-truncating variants [56].

Few patients have been reported with a phenotype associated with the AGBL5 gene,
which is classically related to isolated RP [57]. However, there has been a described
case of an AGBL5 patient who presented both RP and hearing impairment; nevertheless,
in that instance, the latter was presumed secondary to maternal rubella exposure [58].
Patients AG1 and AG2 presented the homozygous variant c.938G>A in the AGBL5 gene, a
nucleotide substitution with an in silico prediction score by Revel of 0.7, indicating moderate
pathogenicity [41]. However, as it was classified as a variant of uncertain significance, it
cannot be definitively considered causative for the disease.

KSS is a mitochondrial DNA deletion syndrome. As extraocular muscles and the retina
are high-energy-demanding, the disease’s clinical presentation consists of the classic triad
of pigmentary retinopathy, progressive ophthalmoplegia, and onset before 20 years of age;
moreover, the characteristic “salt and pepper” retinopathy has been detected frequently,
which was not the case of KS1 [59].

Finally, patient CP1 was initially diagnosed with Usher syndrome. However, WGS
revealed two variants in the CEP250 gene, associated with retinitis pigmentosa, cone-rod
dystrophy, and sensorineural hearing loss [60,61]. Both variants, c.5383dup and c.5050del,
generate premature stop signals, p.Glu1795Glyfs*13 and p.Asp1684Thrfs*9, respectively,
predicted to undergo nonsense-mediated decay and result in loss of function [42]. It is
important to note that the disruption of Cep250 in murine models has been functionally
proven to result in severe impairment of retinal function and reduced retinal thickness [60].
This is the first time these variants have been associated with a specific phenotype.

It is also interesting to note that no record of the specific combination of clinical
findings of patient UD1 was found in the literature. However, the combination of ataxia,
hypergonadotropic hypogonadism, and hearing loss, which partially represent the clinical
presentation of UD1 and is known as AAHH, has been described and is considered ultra-
rare, with no knowledge of pathogenic mechanisms or genetic factors involved [62].

The second patient with an undiagnosed syndrome, UD2, was initially thought to
have Leber congenital amaurosis (LCA) due to the early onset of symptoms and significant
vision impairment. Individuals with mutations in genes associated with other syndromic
eye diseases might be initially diagnosed with LCA; this can occur before the emergence of
syndromic characteristics or before a more comprehensive analysis of their symptoms can
be conducted [63]. However, WES sequencing has detected no variants compatible with
her clinical presentation.
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At least, the molecular analysis of patient UD3 showed a homozygous c.158C>A
(p.Ser53*) pathogenic variant in the PAX1 gene, associated with otofaciocervical syndrome,
and another likely-pathogenic homozygous variant, c.1071T>G (pIle357Met) in the CFI
gene, associated with susceptibility to age-related macular degeneration. Once again, none
of these phenotypes was considered compatible with the patient’s clinical picture.

5. Conclusions

SRPs are clinically and molecularly heterogeneous conditions, and it is necessary
to recognize specific diagnoses to properly manage patients. In this study, the most
frequent causes of SRP were BBS and USH; other uncommon causes were identified,
such as AGBL5-associated phenotype, KSS, CEP250-associated phenotype, and three with
undiagnosed syndromic conditions. In their diagnostic odyssey, all patients in this series
faced a long gap between the onset of symptoms, the fundoscopic diagnosis, and the
molecular diagnosis, which reflects the challenges of the Brazilian healthcare system in
recognizing and managing individuals with RP. Concerning molecular investigation, novel
variants were found in the MKKS, USH2A, and CEP250 genes. Furthermore, the three
patients with undiagnosed syndromes illustrate the need for constant improvement in the
knowledge of SRP. At least, the clinical heterogeneity of SRPs is reaffirmed, underscoring
the pivotal role of molecular analysis in advancing the understanding of these diseases.
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