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Abstract: Statistical genetic models of genotype-by-environment (G×E) interaction can be divided
into two general classes, one on G×E interaction in response to dichotomous environments (e.g., sex,
disease-affection status, or presence/absence of an exposure) and the other in response to continu-
ous environments (e.g., physical activity, nutritional measurements, or continuous socioeconomic
measures). Here we develop a novel model to jointly account for dichotomous and continuous
environments. We develop the model in terms of a joint genotype-by-sex (for the dichotomous
environment) and genotype-by-social determinants of health (SDoH; for the continuous environ-
ment). Using this model, we show how a depression variable, as measured by the Beck Depression
Inventory-II survey instrument, is not only underlain by genetic effects (as has been reported else-
where) but is also significantly determined by joint G×Sex and G×SDoH interaction effects. This
model has numerous applications leading to potentially transformative research on the genetic and
environmental determinants underlying complex diseases.

Keywords: polygenic model; heritability; genotype-by-environment interaction; depression;
social determinants of health

1. Introduction

There is presently a robust body of approaches to modeling the genotype-by-environment
(G×E) interaction in statistical genetics developed from within a linear mixed model framework,
which can be divided into genotype-by-dichotomous environment [1–8] and genotype-by-
continuous environment [1,2,7,9–13] interaction models. The former class has been applied to
sex (male/female) [1,4–7], disease affection status (affected/unaffected), or presence/absence of
environmental exposures (e.g., smoking/non-smoking, basal/high cholesterol–high-fat diet) [2].
The latter class has been applied to continuous environments such as the age continuum [7,9],
physical activity levels and sedentary behavior [10], and socioeconomic status variables [8,13]
(e.g., socioeconomic index, household income, or education levels) among others. It would be
advantageous to biomedical investigations to combine the two approaches to address interesting
questions like a dichotomous sex-specific response to a continuous index of social determinants
of health (SDoH), as we do here, or disease affection-status-specific responses to continuous
environmental exposures, for example. Deeper reflection shows a plethora of invigorating,
potentially transformative research that could be carried out using such a joint interaction model.
Here, we review the G × E interaction models for dichotomous and continuous environments
and demonstrate for the first time that they can be integrated into a single unified model. The
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results of our review show that the joint model can uncover important patterns and phenomena
that neither model can elucidate alone.

Since the work of Sir Michael Marmot and colleagues beginning in the seventies, SDoH
has come to the forefront of biomedical studies aimed at elucidating the causal mechanisms
underlying disease [14–17]. Not surprisingly, the role of SDoH subsequently became an
active area of research and application in mental health, particularly depression [18–26]. In
physiological research, stress in general and SDoH-associated stress have been linked to
depression, mainly by the hypothalamus–pituitary–adrenal (HPA) axis [27–30], which is
the primary physiological system that deals with stress [31,32]. We theorize that SDoH may
be conceptualized as a complex environment [33] in which the genetic factors underlying
depression respond dynamically. That is, there is an observable genotype-by-environment
(G × E) interaction between the genetic basis of depression on the one hand and the
(composite multivariate) SDoH environment on the other. The SDoH environment may
trigger our genetically based stress response system, which may lead to mental health
disorders such as depression or anxiety. Moreover, there is an additional layer of complexity
to consider because there is now ample evidence of sex-specific genetic effects underlying
depression [34–37]. Thus, it is theoretically possible that the sex and SDoH environments
may jointly influence depression outcomes in non-trivial ways. Our novel joint interaction
model seeks to investigate how the genetic effects underlying depression may be jointly
influenced by the sex and SDoH environments.

2. Materials and Methods

The University of Texas Rio Grande Valley IRB approved the study protocol. All
participants provided informed consent before participating in the study. We evaluated
522 Mexican American participants recruited from the community in an ongoing genetic
study for the presence of obesity, diabetes, hypertension, hyperlipidemia, and depression.

The Beck Depression Inventory II (BDI-II) was used to assess the degree of depressive
symptoms over two weeks [12,38]. The BDI-II is a reliable screening tool for assessing the
severity of depression, and it can be administered in both Spanish and English. The BDI-II
assesses the severity of depression and is an acceptable screening instrument for depression
when administered in both Spanish and English [39–41].

For our measure of SDoH, we used the survey of health-related social needs screen
developed by Billioux et al. (2017)—known as the Accountable Health Communities Health-
Related Social Needs (AHC HRSN) screen—comprising ten questions covering housing
instability (2 questions), food insecurity (2 questions), transportation needs (1 question),
utility needs (1 question), and interpersonal safety (4 questions) [42]. The responses to the
ten questions were summed and then divided by 10.

Our main variable of interest in this report is depression as measured by the BDI-II screen-
ing instrument. The dichotomous and continuous environments of interest are respectively
gender and a derived SDoH environment described in greater detail below.

2.1. Statistical Genetic Models and Inference
2.1.1. Polygenic Model

For a generic phenotype vector y, assumed to follow a multivariate normal distribution,
we write the following:

y = Xβ+ g + e

where X is a matrix of covariates augmented at the left by a column of 1s, β is a vector of the
intercept parameter and corresponding regression coefficients, and g and e are unobserved
random genetic and environmental effects, respectively [43–45]. The phenotypic covariance
matrix, denoted by Σ, is given as follows:

Σ = Kσ2
g + Iσ2

e ,
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where K and I, respectively, denote the genetic relationship and identity matrices, and σ2
g and σ2

e
are correspondingly the additive genetic and environmental variance components. In statistical
genetics, this base model is called the polygenic or additive genetic model [43–46]. In our initial
polygenic models, we accounted for age, sex, age-squared, age-by-sex, and age-squared-by-sex
as covariates, and then subjected the residuals to an inverse normalization transformation to
induce agreement with the normality assumption [44]. The polygenic model is used to obtain
estimates of trait heritability, defined as the ratio of the additive genetic variance to the total

phenotypic variance, h2 =
σ2

g

σ2
g+σ2

e
=

σ2
g

σ2
p
, and as a model reference point upon which more

complex models can be elaborated.
Using the polygenic model, the initial SDoH variable (the AHC HRSN score) was found

to have a moderate heritability (h2 = 0.47; p = 4 × 10−6). Given our objective of analyzing
SDoH strictly as an environment, we, therefore, employed a best linear unbiased prediction
(BLUP) approach to extract the genetic effects that then yielded a predicted value of the
environmental effects, which, in turn, can be thought of as a representation of the SDoH
variable no longer confounded by genetic effects [45,47]. We term this latter BLUP-derived
variable the SDoH Index (SDHI) and use it as our SDoH environmental variable.

2.1.2. Modeling the Genotype-by-Environment Interaction for Discrete and
Continuous Environments

For a sample of related individuals, assuming fully uncorrelated genetic and environ-
mental effects, the polygenic model posits that the phenotypic covariance is decomposable
into additive genetic and residual environmental variance components and that inter-
individual covariances are determined strictly by the additive genetic variance weighted
by the genetic relatedness coefficient (see the polygenic covariance equation). The latter
feature of the polygenic model makes two implicit assumptions regarding the genetic
covariance: that the pairwise genetic correlation is unity and that the additive genetic
variance is homogeneous. Explicitly modeling these assumptions is key to our approach to
modeling the G×E interaction.

For the simplest case of contrasting two different environments, the G × E variance is
zero if the following two conditions are simultaneously true: homogeneity in the additive
genetic variance, σ2

g1 = σ2
g2 = σ2

g , where σ2
g1 and σ2

g2 are the additive genetic variances
in environments 1 and 2 (for example, male and female status for a G × Sex model or
unaffected and affected status for a G × dichotomous disease model), respectively; the
genetic correlation (ρg) is one across environments, ρg = 1 [1,6,10,12]. Rejection of either or
both is evidence that the phenotypic response to the environment has a genetic basis.

We formulate the G × E model for discrete environments in terms of the G × Sex
model, with which our group has had great success in elucidating interesting G × Sex or
G × dichotomous environment interaction effects (for more detail, see the Appendix A) [4,6].
Under the G × Sex model, the total phenotypic covariance can be decomposed into (1) a
within-female polygenic model; (2) a within-male polygenic model; and (3) the across-sex
additive genetic covariance. The G × Sex model has parameters σ2

g f , σ2
gm, σ2

e f , σ2
em for the

sex-specific additive genetic and environmental variances and ρG( f ,m) for the across-sex
genetic correlation.

We can extend this theory to an environmental spectrum to model G × E for arbi-
trary continuous environments as opposed to two levels of the environmental variable
(for more detail, see the Appendix A). To this end, we employ variance and correlation
functions [10,12,13], which we define as follows:

σ2
g = exp

[
αg + γg(qi − q)

]
, and ρg = exp

(
−λg

∣∣qi − qj
∣∣),

where the additive genetic variance is reparameterized as an exponential function of the
value of the environmental variable q for the ith individual, qi, scaled against the sample
mean, q, and where the genetic correlation is reparameterized as an exponential decay
function of the difference of environmental variables for any pair of individuals i and j, and
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where αg, γg, and λg are parameters to be estimated. The statistical null hypotheses under
the reparameterizations for variance homogeneity and genetic correlation stationarity at
unity, respectively, are given as γg = 0 and λg = 0. To guard against model misspecification
bias, we also model the residual environmental variance as a function of the environment in
the same way as the additive genetic variance. Thus, the G × SDHI model has parameters
αg, γg, αe, γe, and λg.

2.1.3. Joint Genotype-by-Environment Interaction for Discrete and
Continuous Environments

We now have the elements to construct a model to allow for a joint accounting of the
G × E interaction under both a dichotomous environment and a continuous environment
(sex and SDHI in the current case, respectively). The full model (detailed in the Appendix A)
is decomposed into five equations specifying the within-female variance (1) and (2) covari-
ance, the within-male variance (3) and (4) covariance, and across-sex covariance functions
(all functions of the SDHI environment). The joint model has 11 total parameters, namely
αg f , γg f , λg f , αe f , γe f , αgm, γgm, λgm, αem, γem, and ρG( f ,m).

2.2. Statistical Inferential Theory

For the basic polygenic model, denote the parameter vector by θ =
[
β, σ2

g , σ2
e

]′
and the

residuals vector by ε = (y − Xβ). On assuming multivariate normality of the phenotype
vector, the log-likelihood function is as follows:

lnL(θ|y, X ) = −1
2

[
Nln2π + ln|Σ|+ ε′Σ−1ε

]
The statistical genetics package SOLAR was used to obtain the model likelihoods,

maximum likelihood estimates (MLEs) of model parameters, and their standard errors
(SEs) [48]. Hypothesis tests were performed by way of the likelihood ratio test (LRT)
statistic, which is given as follows:

Λ = −2
[
lnL(θN)− lnL

(
θ̂
)]

,

where for the simplest example, θN denotes the parameter vector for which a single
parameter is constrained to 0 and all other parameters are free to be estimated at their
MLEs, and θ̂ denotes the fully unconstrained parameter vector. In this case, the LRT is
distributed as a chi-square random variable with degrees of freedom (df) given by the
difference of the number of constrained and unconstrained parameters, which in this
simplest case is 1 df: Λ ∼ χ2

1.
It is necessary at this point to distinguish between so-called standard and non-standard

conditions. Under standard conditions, the null hypothesis is not on a boundary of the
acceptable parameter space, in which case the usual asymptotics for the limiting distribution
of the LRT hold. For example, a regression coefficient, being essentially a slope term, takes
values on the real line and, more to the point, the null hypothesis of β = 0 is not on a
boundary. Under non-standard conditions, however, the null hypothesis is on a boundary
of the parameter space, in which case the asymptotic limiting distribution for a 1 parameter
difference can be shown to be given by a 1

2 : 1
2 mixture of a chi-square random variable with

a point mass of 0, denoted by χ2
0 and χ2

1 [44,49–53]. Thus, for this non-standard case, we

have Λ ∼
(

1
2 χ

2
0 +

1
2 χ

2
1

)
. For example, testing h2 = 0 is such a 1-parameter testing scenario

where the LRT follows this last mixture distribution.
Our first step is to establish that there is a genetic basis for the trait of interest, which

amounts to testing and rejecting h2 = 0. Moving forward from this point, we advocate a
staged hypothesis testing approach that our team has successfully developed and imple-
mented in analyses of the gene-by-environment interaction [10,12,13]. In the first stage,
we compared the polygenic model to the G × Sex and to the G × SDHI models. Both
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interaction models are 5-parameter models. Thus, there is an overall 3-parameter difference
between the polygenic model (with parameters σ2

g and σ2
e ) and either G × E model. As

made clear below in the next stage, 2 of the 3 parameters making up the difference may
be considered to be under standard conditions, whereas the remaining parameter can
be shown to be under a non-standard condition. Given that, in general, chi-squares are
additive, these considerations give rise to Λ ∼ χ2

1 + χ2
1 +

(
1
2 χ

2
0 +

1
2 χ

2
1

)
=

(
1
2 χ

2
2 +

1
2 χ

2
3

)
.

In the second stage, we examine the specific sources of potential G × E. In particular,
we examine the null hypothesis of additive genetic variance homogeneity (σ2

g f = σ2
gm and

γg = 0 under G × Sex and G × SDHI, respectively) and a genetic correlation equal to 1
(ρG( f ,m) = 1 and λg = 0 under G × Sex and G × SDHI, respectively). We note that these
reparameterizations and their resulting hypothesis tests are predicated on the principle
that the likelihood function is invariant under one-to-one reparameterization [46,54–58].
Under the null, the G × Sex model reduces to the polygenic model, whereas the G × SDHI
model reduces to a reparameterized polygenic model: exp

(
αg

)
+ exp(αe). The additive

genetic variance homogeneity null under the G × Sex model is a standard scenario because
it is algebraically equivalent to testing the null hypothesis that their difference equals 0,
σ2

g f − σ2
gm = 0, where this difference may take values on the real line and is thus not on a

boundary. Regarding the G × SDHI model, γg is essentially a slope term on the log-linear
scale and, similar to the case for regression coefficients, the null hypothesis of γg = 0 is
thus not on a boundary. Therefore, for either model, Λ ∼ χ2

1. As for the null hypothesis
of a genetic correlation equal to 1 under the G × Sex model, this is clearly on the right
boundary of the acceptable parameter space for any correlation coefficient, which takes
values in the closed interval [−1,+1]. As for the G × SDHI model, it happens that λg = 0 is
on the left boundary of the permissible parameter space for the exponential decay function,
which corresponds to the right boundary of the genetic correlation coefficient because
for λg = 0 we have ρG = exp

(
−λg

∣∣qi − qj
∣∣) = e0 = 1. Thus, for both cases, we have

Λ ∼
(

1
2 χ

2
0 +

1
2 χ

2
1

)
.

Under the joint G × Sex and G × SDHI model, we now advocate a third stage,
where we test the joint model against whichever of the two 5-parameter models (G × Sex
or G × SDHI) has the higher likelihood (this difference need not be significant). The
joint model has 11 total parameters, namely αg f , γg f , λg f , αe f , γe f , αgm, γgm, λgm, αem,
γem, and ρG( f ,m). Therefore, there is a 6-parameter difference, whereupon focusing on
the parameters relevant for G × E testing (or environmental variance heterogeneity), we
have 2 parameters on a boundary (λg f and λgm) and 4 not on a boundary (γg f , γgm,
γe f , and γem). The sum of 4 χ2

1 variables gives χ2
4. Further, to jointly determine the

mixture distribution for λg f and λgm we sum their individual mixture distributions as

follows:
(

1
2 χ

2
0 +

1
2 χ

2
1

)
+

(
1
2 χ

2
0 +

1
2 χ

2
1

)
=

(
1
4 χ

2
0 +

1
2 χ

2
1 +

1
4 χ

2
2

)
. Therefore, by comparing

the joint G × E model to the G × Sex model, we find Λ ∼ χ2
4 +

(
1
4 χ

2
0 +

1
2 χ

2
1 +

1
4 χ

2
2

)
=(

1
4 χ

2
4 +

1
2 χ

2
5 +

1
4 χ

2
6

)
.

The fourth stage would then consist of the individual tests with limiting distributions
given by their corresponding parameters under either the G × Sex or G × SDHI models.
Note that although ρG( f ,m) was not relevant in deriving the LRT mixture distribution for
the comparison of the joint model to the G × Sex model (because this is the only parameter
present under both models), it is necessary in this last stage to test if it is significant by
using the same procedure given earlier for the G × Sex model.

Before concluding this section, we note that two models, namely the G × SDHI
and joint interaction models, had a parameter with a standard error (SE) greater than its
corresponding maximum likelihood estimate (MLE). Likelihood theory shows that the
MLE of a parameter should be greater than twice its SE if it is significant [57]. Given this
principle, we elected to constrain the parameter in question (where the MLE was less than
the SE) to its null value following our previously published G × E investigations where
this issue was addressed [10,12,13]. To be sure, we also formally tested the parameter by
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the appropriate test discussed above and confirmed it to be non-significant. In the ensuing
sections of this study, such models are referred to as a reduced (abbreviated Red.) version
of the model. More importantly, the resulting LRT distributions were accordingly modified
by one less parameter following the principles detailed above.

2.3. Comparison of Sex-Specific Additive Genetic Variance Functions

In order to enable statistical comparison of the sex-specific additive genetic variance
functions at fixed values of the SDHI continuum (minimum, mean, and maximum), we
computed their sampling variances using a second-order Taylor expansion approximation
for a multivariable non-linear function (see Appendix A) [59].

These sampling variances were then used to compute the adjusted confidence intervals
for a two-sided hypothesis test [60]. We note that we have adjusted our confidence interval
to correspond to a two-sided test of the hypothesis of no difference [61–63]. It can be
shown that the proper confidence level corresponding to a significance level of α ≤ 0.05 is
conservatively given as 84%, yielding a confidence interval of 8% and 92% for the lower
and upper bounds, respectively. We also performed a modified Wald test [46,54,56,57,64]
denoted by W, as follows:

W =

(
σ2

g f |q − σ2
gm|q

)2[
Var

(
σ2

g f |q

)
+ Var

(
σ2

gm|q

)]
where σ2

g f |q and σ2
gm|q are the sex-specific additive genetic variances for females and males,

respectively, expressed as a function of a fixed SDHI value, denoted by q, and where
Var

(
σ2

g f |q

)
and Var

(
σ2

gm|q

)
are their respective variance approximations. Given that we

are testing if the difference is different from 0, W ∼ χ2
1.

3. Results

In Table 1, we report the demographic characteristics of the study sample by sex. The
heritabilities of both BDI-II and AHC HRSN, each estimated under a polygenic model, were
both found to be significant (Table 2). In all analyses, the focal variable is BDI-II. Given that
we were interested in using the AHC HRSN score as a measure of the SDoH environment,
we used BLUP to statistically extract its genetic effects, at which point we termed it the
SDoH index (SDHI).

Table 1. Demographic characteristics of the sample.

Trait
Females N = 389 Males N = 133

p-Value
Mean SD Mean SD

Age 44.33 14.76 45.96 15.70 0.2936

BDI-II 19.88 15.99 25.67 19.99 3.1 × 10−4

AHA HRSN 0.10 0.14 0.07 0.12 0.0025

Table 2. Heritability analysis of BDI-II and AHC HRSN screening on residualized normalized data.

Trait Heritability Standard Error Sample Size p-Value

BDI-II 0.37 0.14 521 7.8 × 10−6

AHC HRSN 0.40 0.13 521 6.6 × 10−4

We proceeded to separately test the performance of the G × Sex and G × SDoH models
of BDI-II against the polygenic model for this variable. From the formal comparison in
Table 3, we infer that the G × Sex model provides a significantly better fit to the data than
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the polygenic model. Thus, in Table 4, we proceeded to test the individual hypotheses
of homogeneity in the additive genetic and residual environmental variances, and of the
genetic correlation equal to 1. We found that there is significant G × Sex interaction due
to the cross-sex genetic correlation being significantly different from 1. There was also
evidence of significant residual variance heterogeneity.

Table 3. Testing the G × Sex interaction model against the polygenic model for BDI-II.

Trait Model Ln Likelihood Chi-Square p-Value

BDI-II Polygenic −247.716 36.97529 2.8 × 10−8

G × Sex −229.228

Table 4. Testing the critical parameters of the G × Sex interaction model for BDI-II.

Trait Model Ln Likelihood Chi-Square p-Value

BDI-II Additive genetic
variance homogeneity −229.317 0.178 0.67

Residual environmental
variance homogeneity −233.465 8.473 1.0 × 10−3

Constrained genetic correlation
across sex −234.850 11.240 4.0 × 10−4

G × Sex interaction model −229.230
The LRT statistic for this comparison is distributed as a 50:50 mixture of chi-squares with 2 and 3 degrees of freedom.

Similarly, we found that the G × SDoH model performed significantly better than
the polygenic model in explaining the data (Table 5). We thus proceeded to test the slopes
of the additive genetic and residual environmental variance functions, and whether the
genetic correlation function was different from 1 (Table 6). We found that there was
evidence of G × SDoH interaction due to both additive genetic variance heterogeneity and
a genetic correlation function that decays away from 1 with increasing differences in the
environmental index, SDHI (Figures 1 and 2).

Table 5. Testing the G × SDHI interaction model against the polygenic model for BDI-II.

Trait Model Ln Likelihood Chi-Square p-Value

BDI-II Polygenic −241.401 22.026 9.6 × 10−6

Red. G × E −230.388

Table 6. Testing the critical parameters of the G × SDHI interaction model for BDI-II.

Trait Model Ln Likelihood Chi-Square p-Value

BDI-II Constrained genetic slope −237.646 14.517 1.3 × 10−4

Constrained environmental slope --- --- ---

Constrained genetic correlation decay −233.509 6.245 6.2 × 10−3

Red. G × E interaction model −230.388
The distributions of the LRT statistics are a chi-square with 1 df and a 50:50 mixture of a chi-square with a point
mass at 0 and a chi-square with 1 df. “---” indicates the parameter constrained to the null hypothesis under the
reduced G×E interaction model.
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Up to this point, we have demonstrated evidence of G × Sex and G × SDoH interac-
tions. However, each interaction analysis was conducted separately from the other, and
supposing that our investigation ended here, we could not be certain if both significant
interactions hold when considered together. Therefore, we performed a joint interaction
model analysis to address whether both interactions are still important when considered
together. We selected the G × Sex interaction model to be the baseline model to assess
the significance of the joint interaction model because it had a higher likelihood than the
G × SDoH interaction model. On comparing the joint interaction model to the G × Sex
interaction model, we found that it had a significantly better fit to the data (Table 7). We
further investigated the potential significance of the sex-specific variance and correlation
functions and the cross-sex genetic correlation (Table 8). We found that there was still
evidence of the G × Sex interaction in this case due to the genetic correlation being sig-
nificantly less than 1. There was evidence of the G × SDoH interaction in males due to
additive genetic variance heterogeneity.

Table 7. Testing the joint G × Sex and G × SDHI interaction model against the G × Sex for BDI-II.

Trait Model Ln Likelihood Chi-Square p-Value

BDI-II G × Sex −229.228 42.73996 1.8 × 10−8

Red. G × E −207.858

Table 8. Testing the critical parameters of the joint G × Sex and G × SDHI interaction model for BDI-II.

Trait Model Ln Likelihood Chi-Square p-Value

BDI-II Constrained genetic slope in females −208.182 0.647 0.42

Constrained environmental slope
in females −207.942 0.169 0.68

Constrained genetic correlation
decay in females −208.576 1.436 0.12

Constrained genetic slope in males −216.248 16.780 4.2 × 10−5

Constrained environmental slope
in males --- --- ---

Constrained genetic correlation
decay in males −208.28 0.84433 0.18

Constrained across-sex
genetic correlation −211.642 7.568402 2.0 × 10−3

Red. G × E interaction model −207.858
“---” indicates the parameter constrained to the null hypothesis under the reduced G×E interaction model.

Our final analysis compared the sex-specific additive genetic variance functions at the
minimum, mean, and maximum SDHI values (Table 9; Figure 3). The male and female
additive genetic variance functions significantly differed at the minimum SDHI value but
not at the mean or maximum. Consistent with the finding of male-specific additive genetic
variance heterogeneity (Table 8), the adjusted confidence intervals for the male-specific
additive genetic variances do not show overlap when comparing the variances at the
minimum to the mean SDHI values and when comparing the variances at the mean to the
maximum SDHI values, indicating a sustained and significant increase in the male-specific
additive genetic variance with increasing SDHI (Table 9; Figure 3).
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Table 9. Comparison of sex-specific additive genetic variances at the minimum, mean, and maximum
SDHI values (95% confidence interval at the lower and upper bounds).

Sex Additive Genetic Variance Adjusted
Lower Bound *

Adjusted
Upper Bound

Wald
Statistic p-Value

Min. SDHI
Females 0.618 0.347 0.890 6.527 0.011
Males 0.053 0.013 0.092
Mean SDHI
Females 0.944 0.437 1.451 1.550 0.213
Males 0.429 0.354 0.503
Max. SDHI
Females 1.5253 −0.1185 3.169 0.6485 0.4206
Males 4.6378 0.8509 8.4247

* See text on the adjusted lower and upper bounds.
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Figure 3. Sex-specific additive genetic variances as functions of SDH Index (SDHI) at the minimum,
mean, and maximum SDHI values. The horizontal dashed black lines demonstrate no overlap
between the confidence intervals for the male-specific additive genetic variances at the minimum and
the mean and at the mean and the maximum. The different color en dash lines indicate the adjusted
confidence intervals corresponding to the sex-specific colors (pink for females and blue for males in
this case).

4. Conclusions

In this study, we developed a novel model to jointly account for genotype-by-environment
interactions for dichotomous and continuous environments. In particular, we applied this
joint interaction model to account for the G × Sex and G × SDoH interaction influencing
depression. A motivating factor for developing this model is that it allows us to establish
if both types of interaction are important independent of one another, similar to the ratio-
nale underlying multivariate logistic regression models. We were able to show that there
is G × SDoH interaction but only in males and that there is G × Sex interaction due to
the cross-sex genetic correlation being significantly different from 1, which indicates that
depression is underlain or influenced by different sets of genes in males and females. This
model has potentially critical applications in medical research. For example, the dichotomous
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environment component of the model could be used to model the affected and unaffected
states of a given disease of interest, while the continuous environment component could be
used to investigate how the genetic response of individuals in both states may be different
across a continuous environment of interest, such as physical activity or sedentary behavior.
Whatever the case, we are confident that this novel model can lead to fruitful investigations
on the genetic basis of response to the environment.
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Appendix A. On the Statistical Genetic Models

Appendix A.1. Polygenic Model

For a generic phenotype vector y, assumed to follow a multivariate normal distribution,
we write the following:

y = Xβ+ g + e

where X is a matrix of covariates augmented at the left by a column of 1s, β is a vector of the
intercept parameter and corresponding regression coefficients, and g and e are unobserved
random genetic and environmental effects, respectively [43–45]. The phenotypic covariance
matrix, denoted by Σ, is given as follows:

Σ = Kσ2
g + Iσ2

e ,

where K and I, respectively, give genetic relationship and identity matrices, and σ2
g and σ2

e
are correspondingly the additive genetic and environmental variance components. In
statistical genetics, this base model is called the polygenic or additive genetic model [43–46].
It is instructive at this point to provide the following scalar phenotypic covariance equation,
which specifies the elements of the covariance matrix for all possible ij-comparisons:

σp
(
yi, yj

)
= kijσ

2
g + δijσ

2
e =


σ2

g + σ2
e ∀ i = j; kij = 1; δij = 1

kijσ
2
g ∀ i ̸= j; δij = 0

where σp
(
yi, yj

)
denotes the phenotypic covariance, kij is the ij-th element in K, and

δij =

{
1 ∀ i = j
0 ∀ i ̸= j

denotes the Kronecker delta [65,66]. The top case on the right-hand side

gives the diagonal elements of the covariance matrix under the polygenic model, and the
bottom case gives the off-diagonal elements.
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Appendix A.2. Modeling the Genotype-by-Environment Interaction for Discrete and
Continuous Environments

For a sample of related individuals, assuming fully uncorrelated genetic and environ-
mental effects, the polygenic model posits that the phenotypic covariance is decomposable
into additive genetic and residual environmental variance components and that inter-
individual covariances are given strictly by the additive genetic variance weighted by the
genetic relatedness coefficient (see the polygenic covariance equation). The latter feature
of the polygenic model makes two implicit assumptions regarding the genetic covariance:
that the pairwise genetic correlation is unity and that the additive genetic variance is homo-
geneous. Explicitly modeling these assumptions is key to our approach to modeling the
G × E interaction.

For the simplest case of contrasting two different environments, the G × E variance is
zero if the following two conditions are simultaneously true: homogeneity in the additive
genetic variance, σ2

g1 = σ2
g2 = σ2

g , where σ2
g1 and σ2

g2 are the additive genetic variances
in environments 1 and 2 (for example, male and female status for a G × Sex model or
unaffected and affected status for a G × dichotomous disease model), respectively; the
genetic correlation (ρg) is one across environments: ρg = 1. Denoting the G × E variance as
σ2

g∆, we have the following expression:

σ2
g∆ =


σ2

g1 + σ2
g2 − 2ρgσg1σg2 ∀ σ2

g1 ̸= σ2
g2

2σ2
g
(
1 − ρg

)
∀ σ2

g1 = σ2
g2 = σ2

g

There is G × E evidence if either null hypothesis is rejected [1,6,10,12]. Rejection of either
or both is evidence that the phenotypic response to the environment has a genetic basis.

We formulate the G × E model for discrete environments in terms of the G × Sex
model, with which our group has had great success in elucidating interesting G × Sex or
G × dichotomous environment interaction effects [4,6]. Let there be an indicator variable
specifying the sex of individuals in the study, denoted by si, as follows:

si =

{
1 ∀ i ∈ Z
0 ∀ i /∈ Z

where Z is the set of males or, for generic clinical dichotomous variables, individuals in
the “1-class” or affected class. The phenotypic covariance can be decomposed under the
G × Sex model as follows:

σp
(
yi, yj

)
=



kijσ
2
g f + δijσ

2
e f ∀ si = sj = 0

kijσ
2
gm + δijσ

2
em ∀ si = sj = 1

kijσg f σgmρG( f ,m) ∀
(
si = 1 and sj = 0

)
or

(
si = 0 and sj = 1

)
Note that the decomposition covers three general classes, which in descending order are

the (1) within-female polygenic model; (2) within-male polygenic model; and (3) the across-sex
additive genetic covariance. To write the matrix model, let there be a n × 1 indicator vector s
with elements si, as defined above. To construct incidence matrices for pairwise comparisons
consisting of both individuals in the male class and both individuals in the female class, we
write, respectively, Mn×n = snx1s′1×n and Fn×n = rnx1r′1×n, where r = 1 − s and 1 is a vector
of 1s [4]. For the across-class pairwise comparisons, we write Cn×n = snx1r′1×n + rnx1s′1×n [4].
The covariance matrix for this model may be given as follows:

Σ = K
⊙(

Fσ2
g f + Mσ2

gm + Cσg f σgbρG( f ,m)

)
+ I

⊙(
Fσ2

e f + Mσ2
e f

)
,
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where
⊙

denotes the Hadamard matrix multiplication operator.
We can extend this theory to an environmental spectrum to model G × E for arbitrary

continuous environments as opposed to two levels of the environmental variable. To this
end, we employ variance and correlation functions [10,12,13], which we define as follows:

σ2
g = exp

[
αg + γg(qi − q)

]
, and ρg = exp

(
−λg

∣∣qi − qj
∣∣),

where the additive genetic variance is reparameterized as an exponential function of the value
of the environmental variable q for the ith individual, qi, scaled against the sample mean,
q, and where the genetic correlation is reparameterized as an exponential decay function
of the difference of environmental variables for any pair of individuals i and j, and where
αg, γg, and λg are parameters to be estimated. These functions can be interpreted as the
variance and correlation functions of a Gaussian stationary stochastic process [8,13,67–70],
where the index variable of the stochastic process is the SDHI environment. The statistical null
hypotheses under the reparameterizations for variance homogeneity and genetic correlation
stationarity at unity, respectively, are given as γg = 0 and λg = 0. To guard against model
misspecification bias, we also model the residual environmental variance as a function of the
environment in the same way as the additive genetic variance. The phenotypic covariance
function, with components given by the variance and covariance functions of a Gaussian
stationary stochastic process, can be partitioned as follows:

σp
(
yi, yj

)
=


σ2

g + σ2
e ∀ i = j; δij = 1; qi = qj

σiσjρg
∀ i ̸= j; δij = 0; qi ̸= qj

=


exp

[
αg + γg(qi − q)

]
+ exp[αe + γe(qi − q)] ∀ i = j; δij = 1; qi = qj

{
exp

[
αg + γg(qi − q)

]} 1
2
{

exp
[
αg + γg

(
qj − q

)]} 1
2

· · · × exp
(
−λg

∣∣qi − qj
∣∣) ∀ i ̸= j; δij = 0; qi ̸= qj

=


exp

[
αg + γg(qi − q)

]
+ exp[αe + γe(qi − q)] ∀ i = j; δij = 1; qi = qj

exp
[
αg +

1
2 γg

(
qi + qj − 2q

)
− λg

∣∣qi − qj
∣∣] ∀ i ̸= j; δij = 0; qi ̸= qj

We define a genetic covariance matrix Ψ =
{

ψij
}

, with elements given as follows:

ψij =


exp

[
αg + γg(qi − q)

]
∀ i = j; δij =; qi = qj

exp
[
αg +

1
2 γg

(
qi + qj − 2q

)
− λg

∣∣qi − qj
∣∣] ∀ i ̸= j; δij = 0; qi ̸= qj

We posit a diagonal matrix Ω = diag{ωii} with diagonal elements containing the
residual environmental variance function, ωii = exp[αe + γe(qi − q)]. The covariance
matrix for this G × E model for continuous environments is then given as follows:

Σ = K
⊙

Ψ + Ω

Appendix A.3. Joint Genotype-by-Environment Interaction for Discrete and
Continuous Environments

We now have the elements to construct a model to allow for a joint accounting of the
G × E interaction under both a dichotomous environment and a continuous environment
(sex and SDHI in the current case, respectively). A necessary first step is to posit sex-specific
variance and correlation functions subscripted by f for females and m for males. Further,
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we specify the cross-sex genetic covariance function (as opposed to the separate within-sex
genetic covariance functions), denoted by ∆, as follows:

∆ =

{
exp

[
αg f +

1
2

γ
g f

(
qi + qj − 2q

)
− λg f

∣∣qi − qj
∣∣]} 1

2

×
{

exp
[

αgm +
1
2

γ
gm

(
qi + qj − 2q

)
− λgm

∣∣qi − qj
∣∣]} 1

2

= exp
[

1
2

(
αg f + αgm +

1
2

(
γg f + γgm

)(
qi + qj − 2q

)
−

(
λg f + λgm

)∣∣qi − qj
∣∣)]

We can write the scalar covariance equation specifying all possible ij-comparisons
as follows:

σp
(
yi, yj

)
=



exp
[
αg f + γg f (qi − q)

]
+ exp

[
αe f + γe f (qi − q)

]
∀ i = j; kij = 1; δij = 1; s

i
= sj = 0

kijexp
[
αg f +

1
2 γg f

(
qi + qj − 2q

)
− λg f

∣∣qi − qj
∣∣] ∀ i ̸= j; δij = 0; qi ̸= qj ; si = sj = 0

exp
[
αgm + γgm(qi − q)

]
+ exp[αem + γem(qi − q)] ∀ i = j; kij = 1; δij = 1; s

i
= sj = 1

kijexp
[
αgm + 1

2 γgm

(
qi + qj − 2q

)
− λgm

∣∣qi − qj
∣∣] ∀ i ̸= j; δij = 0; qi ̸= qj ; si = sj = 1

kij∆ρG( f ,m) ∀ i ̸= j; δij = 0; qi ̸= qj ;
(
si = 1 and sj = 0

)
or

(
si = 0 and sj = 1

)
In descending order, this scalar covariance equation specifies the variance and covari-

ance for the within-female comparisons (the first two cases), the variance and covariance
for the within-male comparisons (the next two cases), and the cross-sex covariance. The
matrix model, with obvious subscripts for the sex-specific matrices, is given as follows:

Σ = K
⊙(

F
⊙

Ψ f + M
⊙

Ψm + C∆ρG( f ,m)

)
+ FΩ f + MΩm

Comparison of sex-specific additive genetic variance functions.
In order to enable statistical comparison of the sex-specific additive genetic variance

functions at fixed values of the SDHI continuum (minimum, mean, and maximum), we
computed their sampling variances using a second-order Taylor expansion approximation
for a multivariable non-linear function [59]. The sampling variance approximation, denoted
by D[ f (y)], may be written as follows:

D[ f (y)] ≈ a′Σya − 1
4
[
tr
(
AΣy

)]2

where y =
[
αs γs

]′ (s = f or m), f (y) = exp[αs + γs(qi − q)]; a is the vector of first partial

derivatives evaluated at the maximum, a = ∂ f (y)
∂y′ |y=µ =

[
exp[αs + γs(qi − q)]

(qi − q)exp[αs + γs(qi − q)]

]
; A

is the Hessian matrix of second partial derivatives evaluated at the maximum,

A = ∂2 f (y)
∂y∂y′ |y=µ =

[
exp[αs + γs(qi − q)] (qi − q)exp[αs + γs(qi − q)]

(qi − q)exp[αs + γs(qi − q)] (qi − q)2exp[αs + γs(qi − q)]

]
; and where

Σy is the asymptotic covariance matrix of the parameters (which can be computed from
the output in SOLAR) [59]. The full approximation contains two more terms that were not
included in this study due to our focus being on the immediate vicinity of the MLEs.
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