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Abstract: TR2 and TR4 (NR2C1 and NR2C2, respectively) are evolutionarily conserved nuclear
orphan receptors capable of binding direct repeat sequences in a stage-specific manner. Like other
nuclear receptors, TR2 and TR4 possess important roles in transcriptional activation or repression
with developmental stage and tissue specificity. TR2 and TR4 bind DNA and possess the ability to
complex with available cofactors mediating developmental stage-specific actions in primitive and
definitive erythrocytes. In erythropoiesis, TR2 and TR4 are required for erythroid development,
maturation, and key erythroid transcription factor regulation. TR2 and TR4 recruit and interact with
transcriptional corepressors or coactivators to elicit developmental stage-specific gene regulation
during hematopoiesis.
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1. Introduction

Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that
act as precisely controlled activators or repressors based on their ability to bind small
target ligands. NRs feature a highly conserved DNA-binding domain (DBD), a variable
N-terminal regulatory domain (NTD) that contains an activation function (AF-1), a hinge
region, and a ligand-binding domain on the C-terminus which may mediate dimerization
or interaction partner binding. The ligand-binding domain (LBD) retains an activation
function (AF-2) mediating the action of ligand binding [1].

NR families are divided based on the phylogeny of the most prominent members, as
follows [2]:

I. Thyroid hormone receptor-like, which includes non-steroid hormone receptors
thyroid hormone (TR), retinoic acid receptors (RARs), peroxisome proliferator-activated
receptor (PPAR), and vitamin D receptor-like (VDR).

II. Retinoid X receptor-like, which includes retinoid x receptor (RXR), chicken ovalbu-
min upstream promoter transcription factors (COUP-TFs), and Testicular receptors (TR2
and TR4).

III. Estrogen receptor-like, which includes estrogen and androgen receptors (ER and
AR), as well as glucocorticoid and mineralocorticoid receptors (GR and MR).

Testicular receptors 2 and 4 (TR2/TR4) were discovered in 1988 and 1994, respectively,
and are expressed at similar levels in most major tissues, such as the kidney, brain, intestine,
and liver, as well as in spermatocytes and erythrocytes [3–9]. TR2 and TR4 have roles in
central nervous system development, lipid regulation, spermatogenesis, erythropoiesis,
diabetes, and cancer initiation and progression [5,8–15]. This review attempts to summa-
rize the most recent advances in TR2 and TR4 functions during hematopoiesis without
discussing their roles in cancer and other diseases.
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2. TR2/TR4 Structure and Putative Ligands

Like other NRs, both TR2 and TR4 have several function domains. The N-terminal
DBD can recognize and bind to specific DNA sequences. The LBD near the C-terminal
enables the binding of potential ligands, such as hormones or small molecules, which may
induce conformational changes in TR2 and TR4 and affect their transcriptional activity. AF
domains might be responsible for target gene activation or repression by recruiting either
coactivator or corepressor proteins to the transcription initiation complex (Figure 1).
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Figure 1. TR2 and TR4 function domains and putative ligands. AF, activation function; DBD,
DNA-binding domain; LBD, ligand-binding domain.

Most NRs homo- or heterodimerize with another NR before binding two copies of a
directly repeated (DR) hexanucleotide sequence called a half-site. The half-site consensus
sequence for TR2 and TR4 is AGGTCA and occurs in variable orientations, such as the
sequencing being everted or inverted [3,4]. The two half-sites may be separated by a
variable number of nucleotide spacings, with a number indicating the nucleotide difference
between them, for example, DR1 indicates one nucleotide between both directly repeated
half-sites [16]. The variation of half-site orientation and spacing likely varies the affinity,
which correlates with TR4 binding. Consistent with that notion, ChIP-seq and CUT&RUN
analysis have revealed DR1 as the highest-represented DR element in erythroid cells [16].

TR2 and TR4 are classified as orphan receptors, meaning that their associated endoge-
nous ligands have not been identified definitively. A few studies indicate that their activity
can be influenced by a range of exogenous ligands and cofactors. While TR4 has been
shown to respond to vitamin A, the concentrations at which it responds in vitro suggests
this may not be the bona fide activating ligand [10]. A physical interaction-based surface
plasmon resonance imaging assay has revealed that nilotinib demonstrated the most potent
inhibition, whereas genistein emerged as the most potent activator of TR4 [17]. Other
potential ligands, including polyunsaturated fatty acids, have also been shown to promote
modest TR4 transcriptional activity when compared to the concentration necessary to
induce activation of a variety of other known NRs [18,19]. Metformin and extracellular
signal-regulated kinase (ERK) inhibitors, MEK-162 and PD98059, have been reported to
inhibit TR4 transcriptional activity [20–22].

3. Hematopoiesis and Globin Switching

Within hematopoiesis, the roles of TR2 and TR4 have been highly characterized in ery-
thropoiesis. In mammals, the first erythroid cells emerge from “blood islands” comprised of
hemangioblasts within the yolk sac, which gives rise to the first wave of primitive erythroid
progenitors. In mice, this wave of transient progenitors arises from the yolk sac around em-
bryonic day 7.5 (e7.5), and wanes from e12.5–e16.5 to give way for definitive erythropoiesis
occurring in the developing fetal liver [23]. The fetal liver is seeded by erythromyeloid
progenitors (EMPs) derived from the yolk sac at e8.5, which produces the first wave of
definitive erythrocytes to sustain embryogenesis until birth [24]. After birth, the primary
site of erythropoiesis shifts to the bone marrow where hematopoietic stem cells (HSCs)
take over as the primary source of all hematopoietic cells, including erythrocytes. HSCs
initially specify a heterogeneous population of multipotent progenitors (MPPs), which
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have the potential to produce increasingly restricted pools of downstream progenitor pop-
ulations, such as the megakaryocyte-erythroid progenitor (MEP), granulocyte-macrophage
progenitor (GMP), or common lymphoid progenitor (CLP) (Figure 2). The final stage in
commitment to the erythroid lineage occurs when MEPs differentiate into a functionally
defined burst-forming unit (BFU-E) [25]. BFU-E possesses the bulk of the proliferative
potential of erythroid cells and ultimately differentiates to produce smaller functionally
defined erythroid precursors known as colony-forming units (CFU-E) [26]. Each CFU-E
differentiates to produce a proerythroblast, which undergoes successive symmetric divi-
sions to generate basophilic, polychromatic, and orthochromatic erythroblasts, doubling
the number of cells at each stage. Orthochromatic erythroblasts undergo enucleation to
produce reticulocytes that mature to erythrocytes as they enter circulation.
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Figure 2. Model of hematopoiesis. HSCs retain high plasticity and produce MPPs which are totipotent
with limited self-renewal capacity. The progeny of MPPs are increasingly lineage-restricted and
responsible for the production of all differentiated blood cell types. HSC, Hematopoietic Stem
Cell; MPP, Multipotent Progenitor; MEP, Megakaryocyte-Erythroid Progenitor; GMP, Granulocyte-
Macrophage Progenitor; CLP, Common Lymphocyte Progenitor.

While circulating erythrocytes may have different developmental origins during em-
bryogenesis, depending on which wave of erythropoiesis is responsible for their production,
so too does the content of their hemoglobin differ depending on their developmental ori-
gins. Hemoglobin is comprised of two subunits, namely an α-like subunit and a β-like
globin gene subunit. The human α- and β-globin loci each hold four and five different
globin genes, respectively, while the murine α- and β-globin loci have three and four
different respective globin genes. These genes are expressed in order during development
under the control of the 5′ locus control region (LCR) for each globin gene cluster. The
LCR acts as a super-enhancer in conjunction with transcription factors that are recruited to
the promoter of each globin gene to activate or repress each respective subunit, thereby
controlling the timing and levels of globin gene expression [27–29].

At the human β-globin locus, the first β-like globin gene that is expressed is the embry-
onic ε-globin gene, and it is expressed in primitive erythroid progenitors derived from the
yolk sac. To meet the oxygen demands of the developing fetus, the first switch in β-globin
transcription results in the silencing of ε-globin and concomitant activation of the fetal
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γ-globin genes as the production of erythrocytes shifts to the fetal liver, marking the begin-
ning of definitive erythropoiesis. Fetal hemoglobin (HbF) consisting of two α-globin chains
and two γ-globin chains (α2γ2) has a greater affinity for oxygen than adult hemoglobin,
thus enabling sufficient transfer of oxygen across the placenta. Gradually, at around the
time of birth, a second switch from fetal γ-globin to adult β-globin transcription occurs as
the site of hematopoiesis shifts again to the adult bone marrow (Figure 3). Shortly after
birth, adult β-globin becomes the predominant form of globin subunit used in hemoglobin
synthesis. The molecular mechanisms underlying the lineage and stage-specific globin
switches through chromatin modifications have made the β-globin locus an attractive
model for the dynamic role of epigenetics in gene regulation [30].
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Figure 3. Structure and organization of human and mouse β-type globin loci. The LCR super-
enhancer drives the developmentally coordinated β-type globin genes in order of their arrangement
in the loci, beginning with the embryonic-type globin genes (ε in humans or εy/βh1 in mice) and
progressing through the fetal globin genes (Gγ and Aγ) to express the definitive β-globin genes (δ/β
in humans or βmajor/βminor in mice) after birth. LCR, Locus control region; BM, Bone marrow.

Mice are a commonly studied model due to their similarity in β-globin switching
compared to humans. Mice express εy- and βh1-globin genes in primitive erythrocytes,
until the βh1-globin gene is silenced, while the εy-globin gene persists as the adult β-globin
genes (βmajor and βminor) become the predominantly expressed and incorporated β-globin
subunit near parturition (Figure 3).

4. Role of TR2/TR4 in Erythropoiesis

TR2 and TR4 are constitutively expressed throughout definitive erythroid differen-
tiation [31,32]. The genetic requirements of TR2 and TR4 have been revealed through
extensive use of loss-of-function mouse models. TR2 null mice display no obvious pheno-
type, while TR4 mice display growth and behavioral defects [9,33–35]. Compound mutant
embryos lacking both TR2 and TR4 die preimplantation, initially suggesting the roles of
TR2/4 may be partially redundant [36,37]. However, the complete loss of TR4 in congenic
C57BL/6 background led to embryonic lethality before e9.5 of gestation, while partial loss
led to defects in erythropoiesis [38].

The role of TR2 and TR4 in erythrocytes was first discovered while searching for
the mechanisms that facilitate β-globin switching. Analysis of the β-globin locus has
revealed DR sites in the promoter of ε- and γ-globin genes that, when mutated, lead to aber-
rant autonomous expression of either gene causing high-persistence of fetal hemoglobin
(HPFH) [39,40]. Research investigating the phenomenon led to the isolation of TR2 and
TR4 from erythroid cell lines in the form of proteins bound to the repressive DRED complex



Genes 2024, 15, 563 5 of 12

(Direct Repeat Erythroid-Definitive). Subsequently, TR2 and TR4 were shown to bind to
DR1 sites in the ε- and γ-globin gene promoters in vitro using biochemical assays [33].

Experiments examining the role of TR2 and TR4 on globin expression in vivo by
using human β-globin yeast artificial chromosome (β-YAC) transgenic mice (containing
the entire human β-globin gene cluster) in conjunction with dominant-negative TR4 mice,
demonstrated activation of human ε-globin in primitive and definitive erythrocytes as well
as the activation of γ-globin in definitive erythroid cells, suggesting stage-specificity to the
repressive roles of TR2 and TR4. Compound TR2 and TR4 mutants demonstrated induction
of murine embryonic εy- and βh1-globin gene expression and the repression of the adult
βmajor gene [37].

Since compound TR2/TR4 null mice die peri-implantation, the role of TR2 and TR4 in
erythropoiesis in vivo has been determined through conditional knockout experiments. In
Tr2−/− Tr4f/f mice, isolated bone marrow progenitors were infected with a Cre-expressing
adenovirus to delete TR4. After differentiation in an in vitro culture system that closely
recapitulates erythroid development in vivo, loss of TR2 and TR4 attenuated differentiation
and terminal maturation. While the cause of blocked differentiation is unclear, there was a
significant loss in Kruppel-like Factor 1 (KLF1) and induction of GATA Binding Protein 1
(Gata1), both essential to erythroid development [37].

Tr4−/− mice exhibited embryonic lethality prior to the onset of hematopoiesis [38].
Therefore, the role of Tr4 in murine erythropoiesis was studied in Tr4+/− mice, which
identified defects in erythroid differentiation and the proliferation of erythroid precursors.
This is attributed to reduced expression of factors required for heme biosynthesis, such as
Alas2 or Alad, and the increased expression of Cdkn1c, a factor which is responsible for
negative regulation of cell-cycle progression [41].

The forced expression of TR2 and TR4 in sickle cell disease (SCD) mice has been shown
to reduce pathological symptoms associated with the disease [42]. Subsequent studies
attempting to ascertain the cause of the improvement have found evidence of a decrease in
sickled erythrocytes adhering to vascular cell-adhesion molecule 1 (VCAM-1), which leads
to vaso-occlusive events on endothelial cells [43]. The reduction in adherence may reflect
either an increase in HbF or a reduction in circulating reticulocytes, which have greater
properties of adherence than mature erythrocytes.

5. TR2/TR4 Interacting Corepressors

The DRED complex consists of a TR2/TR4 dimer as the DNA-binding scaffold, as well
as cofactors DNA methyltransferase-1 (DNMT1) and lysine-specific histone demethylase
1 (LSD1) [44]. DNMT1 has been shown to recognize and methylate CpG dinucleotides
opposite of MeCpG residues during DNA replication, allowing for epigenetic inheritance
of DNA methylation essential for cell identity [45]. LSD1 can act as a transcriptional
repressor by demethylating the activating marks mono- and dimethyl-histone H3 Lysine
4 (MeH3K4 and Me2H3K4) [46,47]. Alternatively, LSD1 may also act as a transcriptional
activator in the context of other cofactors, such as androgen and estrogen receptors (AR
and ER), by demethylating repressive marks mono- and dimethyl-histone H3 Lysine
9 (MeH3K9 and Me2H3K9) [48]. Recently, findings have shown that conditional loss
of LSD1 or DNMT1 alters erythropoiesis, globin transcription, and corepressor binding
on globin gene promoters [49]. Deficiency and chemical inhibition of LSD1 or DNMT1
reactivates γ-globin expression [49–52]. Preclinical studies of LSD1 inhibitors and DNMT1
inhibitors further support their roles in modulating HbF as a potential therapy to alleviate
β-globinopathies [53,54].

TIF1β (also known as Trim28) was investigated subsequently following its copurifica-
tion from TR2 and TR4 to determine what role it may play in β-globin gene expression and
erythropoiesis due to its previous characterization of a transcriptional repressor in many
cell types [55,56]. The TIF1β-HP1 system is responsible for maintaining HSC transcrip-
tional integrity [57]. The in vivo loss of TIF1β in murine adult HSCs resulted in defective
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erythropoiesis, reduced heme biosynthesis enzymes, and increased apoptosis in immature
erythrocytes [58].

Nuclear receptor corepressor-1 (NCoR1) was identified as the key component of
the DRED complex through the use of proximity-dependent biotin identification (BioID),
and serves as the direct adapter between TR2/TR4 and other corepressors [59]. The
deubiquitinase BRCA1-associated protein-1 (BAP1) is responsible for maintaining NCoR1
at sites in the β-globin locus. Disruption of NCoR1 interaction with TR2/TR4 or deficiency
of BAP1 reactivates γ-globin expression and induces HbF production.

Other interacting partners of TR2 and TR4 include histone deacetylase (HDAC) 1/2/3,
CoREST, and the nucleosome-remodeling deacetylase (NuRD) complex (MTA1/2, Mi2B,
RbAp, MBD2/3, and p66) [44,60]. TR2 and TR4 interact with CoREST and HDAC1/2 [44].
The association of LSD1, CoREST, and HDAC1/2 has been suggested to be responsible
for histone deacetylation and H3K4 demethylation to bring about repressed chromatin
states [46,61–63].

The NuRD complex has been shown to interact with LSD1 and DNMT1 to facili-
tate chromatin remodeling [64,65]. Numerous NuRD complex components, including
MBD2, Mi2B (CHD4), and GATAD2A, have been shown to repress γ-globin expression
directly or indirectly by disrupting the NuRD complex [55,66–68]. However, it is not
clear whether interaction exists between these proteins and TR2 and TR4 as it pertains to
γ-globin expression.

Those findings suggest that TR2 and TR4 may function as repressors in various
capacities based on the properties of bound cofactors. Interestingly, the majority of the
TR2/TR4 corepressors also interact with the BCL11A or ZBTB7A (LRF) [69–72], both of
which are demonstrated to be the most physiologically significant γ-globin repressors,
indicating that the corepressors may be recruited by multiple DNA-binding transcription
factors to contribute to γ-globin repression. Whether different transcription factors interact
with the same corepressors competitively remains to be elucidated.

6. TR2/TR4 Interacting Coactivators

A cell-based transfection assay system found that TR4 transcriptional activation is
potentiated by PPARGC1A (PGC1α) and other members of the steroid receptor co-family
(SRC1-3), with PGC1α being the most effective [10]. Subsequently, PGC1α and PGC1β
were immunoprecipitated with TR2 and TR4. Of note, however, TR2 only bound PGC1α in
erythrocytes, while TR4 bound both [73].

PGC1 compound mutant mice display hematological deficiencies such as anemia,
thrombocytopenia, and leukopenia. The complete compound loss of PGC1 depletes globin
gene expression at all stages and results in a block in terminal erythrocyte differentiation.
During primitive erythropoiesis, the role of PGC1α and PGC1β appears to be compensatory
since the loss of both genes has a more severe phenotype compared to the loss of either
PGC1 variant. Conversely, in definitive erythroid cells there is no significant difference in
globin gene expression in single PGC1 knockout versus compound mutant mice, indicating
there is stage and gene specificity in its role of gene transcription.

In primitive erythroid cells, both PGC1α and PGC1β bind to εy- and βh1-globin pro-
moters during times of abundant expression. In definitive erythroid cells, PGC1α/PGC1β
associates the εy-globin gene promoter, while it is typically expressed and is not found
at the repressed βh1 promoter or expressed βmajor gene. At postnatal day 0, PGC1α and
PGC1β do not bind with TR2 or TR4 at either promoter when the genes should be repressed.
The concurrent binding of PGC1α and PGC1β in close proximity to TR2 and TR4 in strong
correlation with the coordinated expression of εy- and βh1-globin genes strongly suggests
their roles as stage-specific activators in association with TR2 and TR4 [73].

Similarly, in human primary erythroid progenitor CD34+ cells, an intriguing inter-
action between PGC-1α and TR4 was observed. Upregulation of PGC-1α in CD34+ cells
using lentiviral overexpressing of PGC-1α or a PGC-1α agonist (ZLN005) leads to increased
γ-globin expression at both mRNA and protein levels, as well as increased number of
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HbF positive cells (F-cells) during cultures [74]. These findings shed light on the potential
regulatory roles of TR2/TR4 with the transcriptional co-activator PGC-1α in modulating
γ-globin expression in human primary erythroid progenitor CD34+ cells.

7. TR2/TR4 Regulate Key Erythroid Genes

TR2 and TR4 play essential roles in the development of erythroid cells via their ability
to regulate the expression of Gata1. Gata1 is an essential transcription factor required
for the survival and differentiation of erythrocytes, megakaryocytes, and eosinophilic
progenitors [75]. In erythropoiesis, Gata1 is responsible for the survival of erythroid pre-
cursors by activating erythropoietin signaling [76]. Loss of Gata1 results in embryonic
lethality between e10.5–e11.5 due to anemia, as other studies have shown Gata1 null prim-
itive and definitive erythroblasts undergo apoptosis [75,77–79]. TR2 and TR4 have been
shown to directly bind the Gata1 hematopoietic enhancer (G1HE) −3.7 Kb upstream from
the Gata1 1b exon and subsequently repress Gata1 during terminal erythroid differentia-
tion [80]. It is hypothesized that TR2 and TR4 are responsible for the repression of Gata1
transcription in developing erythroblasts, a requirement thought to be essential for terminal
erythroid maturation.

The compound loss of TR2 and TR4 in bone marrow progenitors leads to a loss of
KLF1 expression, a transcription factor critical to erythroid development, and is itself
activated by Gata1 [81,82]. KLF1 is required for the activation of the adult β-globin gene
and may also function as a fetal globin gene repressor through activation of BCL11A or
abrogation of repressors KLF3 and KLF8, null mutations of which cause increased fetal
hemoglobin [82–84]. TR2/TR4 may also indirectly regulate KLF1 through interaction with
Mi2B, a known activator of KLF1 and cofactor of TR2 and TR4 [55].

Reduction of TR4 abundance leads to decreased expression of Alad and Alas2 genes
that are essential for heme biosynthesis and erythroid differentiation. In contrast, TR4 reduc-
tion results in increased expression of the proliferation inhibitory factor, cyclin-dependent
kinase inhibitor (Cdkn1c). These findings support the key role of TR4 in promoting ery-
throid maturation and proliferation [38].

8. Summary and Future Perspectives

The dynamic landscape of chromatin throughout differentiation from the HSC requires
precise and coordinated epigenetic changes which are mediated by nuclear receptors such
as TR2 and TR4. TR2 and TR4 are capable of recruiting cofactors, and the interactions
between them enable the chromatin remodeling required for differentiation. Loss of TR2
and TR4 results in the attenuation of erythrocyte differentiation, but further work is needed
to elucidate the precise mechanism as TR2 and TR4 cannot be readily manipulated in vivo.

The regulatory targets of TR2 and TR4 are widely variable with regard to their necessity
and function. Some targets, such as Gata1, are crucial to successful cell development, while
others are required for cell metabolism. The multifaceted control of TR2 and TR4 target
genes demonstrates the ability of nuclear receptors to allow for cell-specific differences
in expression.

While TR2 and TR4 bind preferentially to DR1 sites, they possess the capability to bind
half-sites with variable orientations and spacing. Alterations in NR-binding site affinity
allow for multiple, simultaneous binding sites of TR2 and TR4 that may be occupied
preferentially based on similarity to the consensus sequence. The abundance of NRs may
determine the number and degree to which possible target genes are affected in a particular
cell type.

To further increase the target diversity, interactions between transcription factor fami-
lies allow for targets other than canonical binding sites. TR2 and TR4 interact with cofactor
complexes to mediate target gene activation or repression. After nuclear receptors bind
to their respective binding sites, the availability and the abundance of their cofactors
determine whether the gene will be expressed. If coactivators are the dominant species
of cofactor specific to an NR such as TR2 and TR4, then genes bound by them are acti-
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vated. Conversely, should corepressors be the most available cofactor, then the NRs would
mediate target gene suppression (Figure 4). The multitude of NR targets that require dif-
ferent patterns of expression can be mediated by one, if not more, regulatory mechanisms
previously described.
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