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Abstract: Alzheimer’s disease (AD), a multifactorial neurodegenerative disorder, is prevalent among
the elderly population. It is a complex trait with mutations in multiple genes. Although the US
Food and Drug Administration (FDA) has approved a few drugs for AD treatment, a definitive
cure remains elusive. Research efforts persist in seeking improved treatment options for AD. Here,
a hybrid pipeline is proposed to apply text mining to identify comorbid diseases for AD and an
omics approach to identify the common genes between AD and five comorbid diseases—dementia,
type 2 diabetes, hypertension, Parkinson’s disease, and Down syndrome. We further identified the
pathways and drugs for common genes. The rationale behind this approach is rooted in the fact that
elderly individuals often receive multiple medications for various comorbid diseases, and an insight
into the genes that are common to comorbid diseases may enhance treatment strategies. We identified
seven common genes—PSEN1, PSEN2, MAPT, APP, APOE, NOTCH, and HFE—for AD and five
comorbid diseases. We investigated the drugs interacting with these common genes using LINCS
gene–drug perturbation. Our analysis unveiled several promising candidates, including MG-132 and
Masitinib, which exhibit potential efficacy for both AD and its comorbid diseases. The pipeline can
be extended to other diseases.

Keywords: Alzheimer’s disease; comorbid diseases; text mining; candidate gene identification; omics
techniques; drug perturbation

1. Introduction

Alzheimer’s disease (AD), a neurological disease that commonly affects elderly indi-
viduals, is characterized by a progressive decline in cognitive function and memory [1].
The National Institute on Aging estimates that more than six million people aged 65 or
older are affected with AD in the United States (US). Current therapeutic interventions
for AD strive to alleviate symptoms and potentially delay the progression of the condi-
tion. However, discovering a cure for the disease remains challenging due to its intricate
nature, influenced by variations within multiple genes and affected by genetic and environ-
mental factors [2]. Recently, the US Food and Drug Administration (FDA) has approved
Aducanumab, a human antibody for treating early-stage AD. The medication targets the
β-amyloid protein to mitigate the amyloid plaques or brain lesions associated with AD.
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The FDA also approved donepezil, rivastigmine, and a combination of donepezil and
memantine for treating moderate to severe AD. On 6 January 2023, the FDA approved
Leqembi (lecanemab-irmb) for treating AD (https://www.fda.gov/, accessed on 6 May
2024). Despite the available treatments for AD, researchers continue to seek improved
treatment options.

Elderly patients are generally diagnosed with multiple diseases and they receive simul-
taneous treatment for all. Knowledge on these comorbid diseases and related treatments
is vital when exploring the treatment options for diseases such as AD [3]. The treatments
administered for comorbid diseases may impact AD because the medications prescribed
for AD and its comorbid diseases may interact with each other. Most of the existing works
on identifying the comorbid diseases for a specific disease rely on the patients’ electronic
health records (EHRs) [4,5]. However, access to EHR data is not readily available. Obtain-
ing permission from an Institutional Review Board (IRB) is necessary [6]. Alternatively,
PubMed contains numerous biomedical articles related to comorbidity. A basic query to
search comorbidity in the Medical Subject Heading (MeSH) index, “Comorbidity” [MeSH],
retrieved 129,341 PubMed articles (accessed on 6 March 2024). The same basic query to
search comorbidity in all sections of PubMed (e.g., Title, Abstract, and MeSH) retrieved
193,969 PubMed articles (accessed on 6 March 2024). Manual retrieval of comorbid diseases
from PubMed is impractical and time-consuming. Alternatively, automated approaches
such as text mining can process the entirety of PubMed and retrieve the needed information
within a few minutes to hours. Unlike EHRs, which have numerous limitations on access,
PubMed is freely accessible without any restrictions.

Recent advancements in high-throughput genomics, transcriptomics, and proteomics
have driven the discovery of novel genes serving as biomarkers in diseases and targets of
drug therapy [7]. With the advent of drug databases, computational screening of drugs is
conducted using connectivity mapping methods, specifically CMap [8,9] and the Library
of Integrated Network-based Cellular Signatures (LINCS) [10]. Both CMap and LINCS
are comprehensive, large-scale drug perturbation databases with transcriptomic profiles
at an unprecedented scale. CMap and LINCS have revolutionized drug discovery and
systems biology by providing unprecedented access to large-scale, integrative datasets.
These initiatives accelerate the translation of basic research findings into clinically relevant
applications and advancing precision medicine. They explore the connections between
drugs, diseases, and biological processes by identifying similarities in gene expression
patterns induced by different perturbagens. The library of gene and drug profiles aids in
understanding disease mechanisms and identifying new drugs for each disease. This is
achieved by verifying whether the genes up-regulated in a disease are down-regulated after
drug perturbation, and vice versa, based on the enrichment score [8,10,11]. In summary,
these resources characterize the ‘signatures’ of gene expression changes induced by small
molecules [12]. These drug perturbation signatures are utilized to determine the drugs
associated with various diseases. The computational omics research and biomedical text
mining approaches may help in elucidating the association between genes, drugs, and
pathways and facilitating the identification of potential new drugs for AD and its comorbid
diseases [3].

In the current study, we developed a hybrid pipeline to extract the comorbid diseases
for AD from PubMed using a simple text mining approach and to find the common genes
for AD and five comorbid diseases for AD—dementia, type 2 diabetes, hypertension,
Parkinson’s disease, and Down syndrome—using omics approaches. We further retrieved
the drugs interacting with these common genes using omics approaches. The main objective
is to find new treatment options (i.e., common genes and drugs) for AD and its comorbid
diseases. The comorbid diseases associated with AD were extracted from the MeSH index
of PubMed. Our omics pipeline uses GeneWeaver [13] to identify the common genes for
AD and its comorbid diseases; STRING [14] and the Reactome database [15] to understand
the functional association and pathway enrichment analysis; and Sigcom LINCS [16] for
drug perturbation analysis to examine the impact of drugs on the up-regulation and down-
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regulation of the identified common genes. The major contributions of this work are
as follows:

(i) The proposed approach integrates text mining and genomics together to find common
genes and drugs for AD and its comorbid diseases. The existing works either use text
mining or genomics to find new treatment options for a disease. The existing works
do not consider the comorbid diseases too. Thus, we advance the existing research
methods for finding new treatment options.

(ii) The proposed approach queries PubMed abstracts to extract comorbid diseases for
AD. The existing approaches extract the comorbid diseases for a disease of interest
from patients’ electronic health records (EHRs). However, accessing EHRs requires
institutional revenue board (IRB) approval. There are other challenges too. Unlike
patients’ EHRs, PubMed is an open source and it is free to use.

(iii) A comorbidity-guided approach is proposed to identify new candidate genes and
drugs for AD and its comorbid diseases. To our knowledge, the existing works
on identifying new candidate genes and drugs for a disease, especially AD, do not
consider its comorbid diseases. However, the knowledge on comorbid diseases,
their candidate genes, and drugs prescribed for treating these comorbid diseases is
important to avoid drug–drug interaction.

We believe that our approach may reduce the number of drugs being prescribed for
AD and its comorbid diseases, and avoid possible drug–drug interactions between the
drugs prescribed to each disease (AD and its comorbid diseases).

2. Materials and Methods
2.1. Text Mining Approach

While many existing studies on identifying comorbid diseases utilize patients’ elec-
tronic health records (EHRs), the current study proposed a simple text mining approach to
extract the comorbid diseases associated with AD from PubMed. The text mining pipeline
includes two steps: (i) creating a lexicon of MeSH diseases and (ii) applying the created
lexicon to the MeSH index in PubMed to retrieve the comorbid diseases for AD.

2.1.1. Lexicon of MeSH Diseases

A total of 10,043 MeSH diseases belonging to 22 disease categories were collected
from https://www.ncbi.nlm.nih.gov/mesh/1000067 (accessed on 6 May 2024). After
removing the duplicates, the collection included 4871 unique MeSH diseases. The diseases
categorized under “Animal Diseases” were excluded from the lexicon.

2.1.2. Retrieving Comorbid Diseases from PubMed

A total of 1208 PubMed articles (accessed on 22 November 2022) were retrieved from
PubMed in PubMed format using the Boolean query “Alzheimer disease” [MeSH] AND
“Comorbidity” [MeSH]. A Python script was developed to retrieve the PubMed ID (PMID)
and MeSH index. The disease mentions in the MeSH index were identified using the
lexicon of MeSH diseases. Certain PubMed articles include two or more disease mentions
other than AD in the MeSH index. We retrieved all possible pairs of AD and co-occurring
diseases from the MeSH index. The co-occurring diseases were ranked based on sort ratio
(Equation (1)). We selected the top five diseases for subsequent omics analysis.

Sort ratio =
PeachPair

Pall
(1)

Here, PeachPair corresponds to the number of PubMed articles containing both AD and
a co-occurring disease, while Pall corresponds to the number of PubMed articles containing
AD and at least one co-occurring disease (i.e., 843 PubMed articles). All 843 PubMed
articles include the MeSH term “Comorbidity”.

https://www.ncbi.nlm.nih.gov/mesh/1000067
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The co-occurrence of AD and a disease in the MeSH index alone cannot validate their
comorbidity. The significant association between AD and a co-occurring disease, along
with the MeSH term “Comorbidity”, can validate comorbidity. We performed the Fisher
Exact Test (FET) to identify the significantly associated co-occurring diseases with AD. We
obtained four counts to estimate FET p-values:

(i) Number of PubMed articles with AD and a co-occurring disease in the MeSH index;
(ii) Number of PubMed articles with the co-occurring disease in the MeSH index;
(iii) Number of PubMed articles with AD in the MeSH index;
(iv) Total number of PubMed articles (125,924, access date 22 November 2022) with the

MeSH term “Comorbidity” in the MeSH index.

The following Boolean queries were used to retrieve the counts, (i), (ii), (iii), and (iv):

a. Boolean query (a) for count (i): “Alzheimer disease” [MeSH] AND “Comorbidity”
[MeSH] AND “CO-OCCURRING DISEASE” [MeSH];

b. Boolean query (b) for count (ii): “CO-OCCURRING DISEASE” [MeSH] AND “Co-
morbidity” [MeSH] NOT “Alzheimer disease” [MeSH];

c. Boolean query (c) for count (iii): “Alzheimer disease” [MeSH] AND “Comorbidity”
[MeSH] NOT “CO-OCCURRING DISEASE” [MeSH];

d. Boolean query (d) for count (iv): “Comorbidity” [MeSH].

To avoid the double counting of PubMed articles between counts (i) and (ii), the articles
with AD were excluded (see Boolean query (b)). Similarly, to avoid the double counting of
PubMed articles between counts (i) and (iii), the articles with co-occurring disease were
excluded (see Boolean query (c)). The FET p-value for AD and a co-occurring disease
summarizes the significance of comorbidity via the association reported in PubMed. Our
approach identified 321 significant comorbid diseases for AD. Among these, the top five
significant comorbid diseases were selected for further analysis using omics approaches:
dementia, type 2 diabetes, hypertension, Parkinson’s disease, and Down syndrome.

2.2. Genomics Approach
2.2.1. Identification of Common Genes for AD and Five Comorbid Diseases

The genes common to AD and five comorbid diseases under study were investigated
using Geneweaver, a web server for the integration and analysis of heterogeneous func-
tional genomic data (https://geneweaver.org/, accessed on 6 May 2024). Geneweaver
aggregates data from several integrated databases including Entrez, Unigene, and HUGO
Gene Nomenclature Committee (HGNC). The genes associated with AD, dementia, type
2 diabetes, hypertension, Parkinson’s disease, and Down syndrome were considered to
elucidate their involvement in shared pathways. The genes chosen for each disease were
sourced from Tier I (Public Resource Grade) in Geneweaver. The attributes such as MeSH
(Medical Subject Headings), Gene Ontology, Human Phenotype (HP) and genome-wide
association studies (GWASs) were linked to the gene sets using the search tool provided.
The intersection of genes common to AD and comorbid diseases were analyzed using
GeneWeaver’s ‘HiSim graph’ tool, with homology excluded.

2.2.2. Protein–Protein Interaction from STRING Database

A basic understanding of the interactions among the common genes for AD and
five comorbid diseases as well as common genes with other genes is necessary to explore
their roles in different diseases. We utilized the protein–protein interactions (PPIs) from
the STRING database (https://string-db.org/, accessed on 6 May 2024) to interpret the
interactions among the common genes for AD and five comorbid diseases, as well as other
genes. In the STRING database, each PPI is assigned with a score, ranging from 0 to 1,
to indicate the confidence level of interaction. These scores do not reflect the strength or
specificity of the interaction. The STRING database utilizes k-means clustering to construct
PPI networks, with the maximum number of interactions set to <10, and a cutoff for the
combined score of interactions fixed at >0.4. The combined score is derived from two

https://geneweaver.org/
https://string-db.org/


Genes 2024, 15, 614 5 of 14

independent scores, namely the normal score and the transferred score. Here, the normal
score is calculated from the data of the organism of interest and the transferred score is
computed from data that are not originally observed in the organism of interest but are
transferred by homology in some other organism [15].

2.2.3. Enrichment Analysis for Pathways

The Reactome database (https://reactome.org/, accessed on 6 May 2024) was utilized
to explore the participation of genes in diverse biological pathways through gene-set
analysis or quantitative pathway analysis. The gene list generated after Geneweaver
analysis served as the input for pathway analysis. The tool integrates pathway identifier
mapping, over-representation, and expression analysis. A threshold criterion of p ≤ 0.05
was applied to identify the most relevant genes associated with the comorbid diseases
under study.

2.2.4. Drugs from Library of Integrated Network-Based Cellular Signatures
(Sigcom LINCS)

The genes shared between AD and each comorbid disease under study were the input
to retrieve the interacting drugs from Sigcom LINCS, an online resource for accelerating
drug and target discovery in systems pharmacology (https://maayanlab.cloud/sigcom-
lincs/#/SignatureSearch/Set, accessed on 6 May 2024). Signature similarity searches
were conducted and Sigcom LINCS chemical perturbations were leveraged to identify the
relevant potential drugs. The approach provided insights into the mode of action for drugs,
especially whether a drug up-regulates or down-regulates a given input gene. Subsequently,
a gene–drug matrix was generated as a clustergram to visualize the expression of up-
regulated and down-regulated genes. The overall genomic pipeline is illustrated in Figure 1.
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3. Results
3.1. Comorbid Diseases for AD

Our text mining approach retrieved 321 co-occurring diseases for AD from 843 PubMed
articles. Table 1 lists the top five co-occurring diseases for AD.

Table 1. Top five diseases that co-occur with AD.

Co-Occurring
Disease

PubMed Articles
with AD and
Co-Occurring

Disease (P)

PubMed Articles
with AD and All

Co-Occurring
Diseases (T)

Sort Ratio (P/T)

Dementia 142 843 0.1684
Type 2 diabetes 95 843 0.1127
Hypertension 60 843 0.0712
Parkinson’s disease 51 843 0.0605
Down Syndrome 43 843 0.0510

Among the top five co-occurring diseases, dementia, Parkinson’s disease, and Down
syndrome are significantly associated with AD in PubMed. FET p-values lower than the
traditional significance threshold value (<5.0 × 10−8) confirm this significant association. A
manual search for at least one PubMed article validating the comorbidity between AD and
each co-occurring disease provided evidence from the literature for all five co-occurring
diseases (Table 2).

Table 2. Comorbidity among top five co-occurring diseases for AD.

Comorbid Disease
(CD)

PubMed Articles FET
p-Value

Literature
Evidence
(PMID)AD and CD CD AD Comorbidity

Dementia 142 220 1066 125,924 1.30 × 10−238 11406927
Type 2 diabetes 95 11,209 1113 125,924 0.68 28922161
Hypertension 60 6726 1148 125,924 0.59 33888050
Parkinson’s disease 51 683 1157 125,924 6.28 × 10−30 26820182
Down syndrome 43 346 1165 125,924 1.88 × 10−34 28009725

3.2. Common Genes among AD and Comorbid Diseases

Geneweaver retrieved 42 common genes for AD and dementia, five for AD and type
2 diabetes, 26 common genes for AD and hypertension, 22 common genes for AD and
Parkinson’s disease, and 33 common genes for AD and Down syndrome (Supplementary
Data S1). Dementia, being the most common comorbid disease for AD, has the maximum
number of common genes. Interestingly, our approach retrieved only five common genes
for AD and type 2 diabetes.

Table 3 shows the common genes for AD and two or more comorbid diseases. The
results validate the potential multimorbidity among the diseases under study. The network
analysis using the STRING database shows that most of the genes listed in Table 3 interact
at a moderate level of confidence. A total of seven genes, PSEN1, PSEN2, MAPT, APP,
APOE, NOTCH2, and HFE, are the most promising ones, as they were found to be involved
in multimorbidity, making them potential targets. Our study provides insight into the
genetic interplay underlying the development of AD in the presence of other comorbid
diseases and enhances the understanding of the molecular basis of the disease.
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Table 3. Genes common to AD and comorbid conditions involved in multimorbidity.

Multimorbid Diseases Number of Common Genes Common Gene(s)

AD, dementia, Parkinson’s disease, Down syndrome 4 MAPT, PSEN1, APP, APOE
AD, dementia, Parkinson’s disease 5 A2M, ABCA7, PLAU, PSEN2, MPO
AD, dementia, Down syndrome 2 COL18A1, SYNJ1
AD, dementia, hypertension, Parkinson’s disease 2 HFE, NOS3
AD, Parkinson’s disease, Down syndrome 1 SORL1
AD, type 2 diabetes, hypertension 1 NOTCH2
AD, dementia, hypertension 1 TGFB2
AD, dementia, type 2 diabetes 1 LAMA1

3.3. Network Analysis of Common Genes

The analysis of gene interactions using the STRING database reveals a significant
level of interdependency among the common genes, emphasizing their pivotal role in the
comorbid diseases under study. In the STRING database, each protein–protein interaction
(PPI) is annotated with one or more ‘scores’, which range between 0 and 1, indicating the
confidence level. For common genes, most of the PPIs were reported with high confidence
(scores > 0.8). This validates the comorbidity between AD and the five diseases under study
through gene interaction and co-expression (Supplementary Data S2). The depth of the color
in Supplementary Data S2 highlights the intensity of the co-expression analysis. Table 4
summarizes the common genes, pathways, and PPI enrichment for AD and each comorbid
disease under study. The nature of interactions among the genes involved in comorbid
diseases is justified with the analysis using the STRING database (Supplementary Data S3).

Table 4. Common genes, pathways, and PPI enrichment for comorbid diseases.

Comorbid Diseases Common Genes
Pathways for

Common Genes
(Reactome) (p < 0.05)

PPI Enrichment
(STRING) (p-Value)

AD, dementia 41 28 <1.0 × 10−16

AD, type 2 diabetes 5 36 3.56 × 10−5

AD, hypertension 26 33 3.33 × 10−16

AD, Parkinson’s disease 22 27 <1.0 × 10−16

AD, Down syndrome 33 92 <1.0 × 10−16

The intersection of genes across diverse disease pathways underscores the gaps in the
research focused on comprehending the triggering components in the onset of AD. Though
there are multiple factors involved, the genetic mutations and variations in the genes are
among the most significant factors. Understanding the underlying causes of these variations
will pave the way for research avenues into the regulation of AD. Pathway analysis was
conducted for 26 genes which were found to be common among the comorbid diseases, and
functional profiling was carried out using g:Profiler, a web-based tool for further analysis.
The analysis finds the ontologies from three perspectives, namely molecular function,
cellular component, and biological processes. In a further analysis, the overlapping genes
among the interpreted GO functions were established (Figure 2). This may shed light on
novel target genes and pathways that can be explored to treat comorbidity. This approach
can significantly reduce the prescription and usage of multiple drugs and their related
side effects.
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3.4. Comorbid Diseases and Drug Perturbation

We further analyzed the common genes for drug perturbation using Sigcom LINCS.
The drug perturbation signatures generated using Sigcom LINCS highlight the connections
between the drugs, dosage, and their effect on gene expression. Table 5 shows the top
10 drugs, ranked based on p-value, predicted by Sigcom LINCS for AD and each of its
comorbid diseases under study. The predicted p-value shows the significance of the drug
for AD and its comorbid disease via the common genes. Supplementary Data S4 shows
the interaction between common genes identified for AD and each comorbid disease
under study and drugs and the role of the top 10 drugs in the up-regulation or down-
regulation of genes for AD and its comorbid diseases under study. We also conducted
the perturbation analysis of genes involved in multimorbidity among AD, type 2 diabetes,
hypertension, Parkinson’s disease, and Down syndrome to find the common drugs that
can target common pathways.

Table 5. Top 10 drugs predicted by Sigcom LINCS for AD and comorbid diseases.

AD and Comorbid Disease Drug (Top 10) p-Value

AD and Dementia

axitinib 2.19 × 10−7

lamotrigine 8.11 × 10−7

ataluren 1.99 × 10−6

vandetanib 2.21 × 10−6

etofylline 2.49 × 10−6

BRD-K18100239 3.92 × 10−6

AS-605240 4.53 × 10−6

velnacrine 5.96 × 10−6

BRD-K30758067 6.15 × 10−6

quiflapon 7.10 × 10−6

AD and Type 2 Diabetes

BMS-777607 0.0021
trifluoperazine 0.0022

BRD-K18972207 0.0025
pirenperone 0.0025
lonidamine 0.0026

ARRY-334543 0.0026
BRD-K84094241 0.0027
BRD-K89952884 0.0028

CYT-997 0.0029
roflumilast 0.0030
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Table 5. Cont.

AD and Comorbid Disease Drug (Top 10) p-Value

AD and Hypertension

vernakalant 5.73 × 10−7

BRD-K40853697 1.38 × 10−6

marimastat 1.64 × 10−6

LXR-623 2.09 × 10−6

regorafenib 2.54 × 10−6

aclidinium 6.77 × 10−6

α-estradiol 7.31 × 10−6

BRD-K38373457 7.37 × 10−6

pidotimod 7.95 × 10−6

ifenprodil 8.46 × 10−6

AD and Parkinson’s disease

bortezomib 1.30 × 10−6

maprotiline 2.52 × 10−5

flupirtine 8.11 × 10−5

PD-0325901 8.70 × 10−5

salmeterol 9.98 × 10−5

quizartinib 0.0001
dapagliflozin 0.0001

gefitinib 0.0001
lomitapide 0.0002
SB-216763 0.0002

AD and Down syndrome

BRD-A01960364 3.77 × 10−8

MG-132 3.20 × 10−7

BRD-A06909528 6.13 × 10−7

teniposide 1.24 × 10−6

MD-049 1.64 × 10−6

BRD-A95820578 1.89 × 10−6

pravastatin 5.51 × 10−6

gatifloxacin 5.74 × 10−6

VU-0418942-1 6.26 × 10−6

marimastat 6.74 × 10−6

4. Discussion

AD is an age-related progressive disorder with a complex pathology. The disease is
histopathologically characterized by the presence of extracellular amyloid β (Aβ) plaques
and intracellular neurofibrillary tangles. Symptomatically, it manifests as gradual and
progressive memory loss that impacts the individual’s personality. Over time, numerous
research studies have contributed to the understanding of the genetic factors underlying the
disease, which involve dysfunction in various genes such as PSEN1, PSEN2, PRNP, APP,
APOE, CASP7, MAPT, ABCA1, ABCA7, SORL1, RAB10, PICALM, TREML2, and others [17].
These genes also serve as viable disease-modifying targets for AD, offering the opportunity
for modulation during and/or after pathological onset, but before cognitive impairment.
Mendelian mutations in genes like APP, PSEN1, and PSEN2 are demonstrated to directly
influence AD [18]. The current analysis corresponds to a similar examination of genes
associated with AD and their variants, as summarized in earlier studies [19]. The present
study also corroborated the association between AD and its comorbid diseases such as
dementia, Parkinson’s disease, and type 2 diabetes, as documented earlier [20–26].

4.1. Comorbid Diseases and Genetic Analysis

APP, APOC1, APOE, SORL1, and MAPT are highly relevant common genes for AD and
dementia. The combined role of APP and APOE in AD and dementia is highlighted in [27].
APOE (Apolipoprotein) is a major lipid transporter in the liver and brain, playing structural,
regulatory, and functional roles in the repair and maintenance of the central nervous system
(CNS). In humans, three allelic forms of the APOE gene are found, viz. ε2, ε3, and ε4
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alleles. Variations in the ε4 allele are associated with an increased risk of AD. This allele
is directly involved in cholesterol delivery and synthesis in the brain, regulated through
an APOE-dependent mechanism, and plays a crucial role in regulating various signaling
pathways [28]. The Homeostatic Iron Regulator (HFE) gene (the hemochromatosis gene) is
responsible for transporting and regulating iron in the brain. While variations in HFE
genes have been found to have a weak contribution to the genetic association with AD,
their significance cannot be ignored. The present analysis reveals that HFE is implicated in
multimorbidity with AD, dementia, hypertension, and Parkinson’s disease [29,30]. Many
of the genes listed in Table 3 implicated comorbidity in the analysis, which aligns with
previous research findings [19].

The gene encoding Amyloid Precursor Protein (APP) is located on Chromosome 21, and
this protein plays a key role in the secretion of Aβ. This process is regulated by PSEN1.
Elevated levels of Aβ are classic signs of AD, often resulting from mutations in the APP
gene. This study observed an overlap of more than 30 genes between AD and dementia.
An intriguing observation is that trisomy 21 also significantly contributes to an increased
dosage effect of the APP gene, leading to AD and dementia [31,32].

The APOE4 pathway influences APP signaling and recycling, leading to altered MAPK
signaling and subsequent accumulation of Aβ. Additionally, MAPT plays a cascading role
in disrupting intracellular calcium homeostasis and inhibiting IST1 expression, contributing
to cellular dysfunctions and neurodegenerative disorder [33]. Studies have demonstrated
that APOE4 can act as a signaling molecule, enhancing the activity of this cascade, and
consequently increasing the levels of APP. Presenilin-1 (PSEN-1) and Presenilin-2 (PSEN-2)
are homologous genes located on different chromosomes. Mutations in PSEN-1 are high
and have a direct effect on Aβ levels, whereas mutations in PSEN-2, although rare, still
significantly disrupt γ-secretase activity, affecting the Aβ-42 and Aβ 42/40 ratio levels.
Variants in APP, PSEN1, and PSEN2 are involved in the production of amyloid β in rare
autosomal dominant forms of early-onset AD [34]. Important sites of mutations in APP
and associated defective functions related to AD pathogenicity are discussed [27].

Our analysis validates the interdependence of AD, dementia, and Parkinson’s disease
through various common genes (i.e., A2M, ABCA7, PLAU, PSEN2, and MPO). This was
also highlighted in an earlier study [23]. Both PSEN-1 and PSEN-2 are crucial in regu-
lating NOTCH signaling, which itself is significant in the context of neurodegenerative
diseases [35]. Notch proteins are vital for cell–cell signaling pathways, particularly during
embryonic cell development and cell self-renewal systems. It has been established that
dysfunctional Notch signaling pathways play a critical role in neurodegenerative diseases.
The pathway is activated by five Notch ligands encoded by JAG1, JAG2, DLL1, DLL3,
and DLL4, and four transmembrane receptors encoded by Notch genes (NOTCH14) [36].
NOTCH2 is a common gene among AD, type 2 diabetes, and hypertension. Following the
ligand–receptor interaction, the Notch molecules undergo proteolytic cleavage catalyzed
by metalloprotease and γ-secretase. Subsequently, the Notch intracellular domain fragment
is translocated to the nucleus, where it acts as a potent transcription activator, regulating
processes like cell proliferation, differentiation, and apoptosis [37]. PSEN1 variants have
been reported to have a pleiotropic effect in Parkinson’s disease, another neurodegenerative
disease that has also been demonstrated to be influenced by PSEN1 variants [37].

In the current study, only five genes were found to be in common between AD and type
2 diabetes. However, genes such as NOTCH2, LAMA1, TMEM94, TCF7L2, and CDKAL1 are
found to be involved in AD and other diseases [20,38]. Members of the transmembrane
(TMEM) protein family and their variants are also associated with Parkinson’s disease
and other neurodegenerative diseases [38]. Similarly, LAMA1 is implicated in dementia,
providing a compelling rationale to interrogate its correlation with type 2 diabetes. An
earlier study [20] reported that type 2 diabetes is correlated with AD and Parkinson’s
disease. Type 2 diabetes, AD, and Parkinson’s disease are predicted to share similar
dysregulated pathways involving TCF7L2 and CDKAL1 [20].
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Sortilin-related receptor1 (SORL1/LR11/SORLA) is a transmembrane protein involved
in the intracellular sorting and trafficking of proteins into their respective subcellular
compartments. The level of SORL1 is reduced in AD patients with elevated Aβ due to
several genetic alterations, which affects APP, APOE, and tau protein [39]. The analysis
revealed that SORL1 is associated with AD, Parkinson’s disease, and dementia. Mutations
in SORL1 have a functional role in both early-onset and late-onset AD [22]

The NOS3 (Nitric Oxide Synthase 3, Endothelial Cell) gene was identified to be involved
in AD, dementia, Parkinson’s disease, and hypertension. This highlights the role of NOS3
in both comorbidity and multimorbidity. Variations in the NOS3 gene, which regulates
vascular tone, have been linked to susceptibility to coronary spasm, a condition associated
with the onset of AD [40]. Polymorphisms in the NOS3 and nitric oxide synthase (NOS2A)
gene have been suggested to lead to an increased risk of AD. NOS3 is identified as a
comorbid gene in both AD and dementia. However, no substantial correlation was found
between APOE genotypes affecting the NOS3 genotype in AD and dementia [41].

With this analysis, it can be concluded that identifying early onset is crucial for disease
management, which can be achieved through an understanding of genes involved in
comorbidity and multimorbidity among AD, dementia, hypertension, type 2 diabetes,
Parkinson’s disease, and Down syndrome. Additionally, bootstrapping in Geneweaver
may further refine the search. By default, the condition was set as FALSE for analysis.
However, when the bootstrapping condition was set to “TRUE”, the APOE gene was
emphasized in comorbidity between AD and T2D. This finding aligns with other reports in
the literature where APOE is indicated as a disease-causing gene [42,43].

4.2. Comorbid Diseases and Pathway Analysis

The STRING database illustrates the interplay of genes involved in the comorbidity
with other genes through PPI network. The interaction and co-expression of genes are
shown in Supplementary Data S2. The associated pathways were mapped to the genes
using Reactome (https://reactome.org/, accessed on 6 May 2024). The inconsistent PPIs
from the dataset were removed by defining the confidence interaction score threshold of
≥0.4. The gene enrichment was analyzed using the Bioconductor R package, ReactomePA,
focusing on pathways with a significance threshold (p-value) of <0.05. The top scoring
pathways were identified for further study. Specifically, the Reactome results highlighted
the pathways pertaining to NOTCH (1–4) signaling, the organization and degradation of
extracellular matrix signaling, nuclear signaling by ERBB4, amyloid fiber formation, and
pathways of plasma lipoprotein.

These pathways are interconnected, with few genes intersecting across them, as
illustrated in Supplementary Data S2. PSEN1 and PSEN2 are the common genes involved
in NOTCH (1–4) signaling, the organization and degradation of the extracellular matrix,
and nuclear signaling by ERBB4. On the other hand, APOE is a common gene in nuclear
signaling by ERBB4, amyloid fiber formation, and pathways of plasma lipoprotein. PSEN1,
PSEN2, and APOE are linked via nuclear signaling pathways. The combined role of PSEN
and NOTCH has been discussed earlier, and these genes are involved in signaling across all
Notch pathways, including the activation and transmission of signals to the nucleus. The
organization and degradation of the extracellular matrix pathway involves PSEN, which
is influenced by the expression of COL and MMP. It is noteworthy that the shortlisted
genes in the current analysis (Supplementary Data S1) are among the most extensively
studied genes in the AD pathway and in individual pathways of other diseases [19]. The
genes APOE, APP, and SORL1 participate in amyloid fiber formation, while A2M and APP
are associated with pathways of plasma lipoprotein. Reactome pathway analysis helps in
predicting the missing gene links contributing to comorbidity.

4.3. Comorbid Diseases and Drug Perturbation

The common genes among the pairs of comorbid diseases were identified, and their
drug perturbations were analyzed using Sigcom LINCS. The gene–drug matrix table was

https://reactome.org/
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then utilized for further analysis. In the current study, about 117 drugs were identified to
be common among AD and the comorbid diseases. MG-132, a proteasome inhibitor known
to reduce the degradation of ubiquitin-conjugated proteins in mammalian cells, is found to
be a potential drug for AD and dementia, AD and type 2 diabetes, AD and Parkinson’s
disease, and AD and Down syndrome. Interestingly, our approach did not find MG-132
as a potential drug for AD and hypertension. Masitinib, a tyrosine kinase inhibitor (TKI)
that targets the c-Kit pathway, was found to be a common drug for AD, dementia, type 2
diabetes, and Parkinson’s disease. The drug targets derived from drug perturbations were
visualized for potential exploitation, as they act on common pathways shared by two or
more diseases, thereby potentially reducing drug intake and associated side effects. GSK-
461364, Salmeterol, Vandetanib, TW-37, SJB-shh-31, NVP-BEZ235, and Velnacrine were
recognized as the common drugs for AD, dementia, and Parkinson’s disease. Drugs such as
Quizartinib, Gefitinnib, ARRY-334543, SB-216763, and Cabozantinib were identified to be
common for AD, type 2 diabetes, and Parkinson’s disease. Estramustine and Simvastatin
were found to be common for AD, hypertension, and Parkinson’s disease. Torin-1 was the
only drug found to be common for AD, Parkinson’s disease, and Down syndrome. We
also observed that most of the drugs retrieved by our approach act as inhibitors of kinases,
vascular endothelial growth factor receptor, and epidermal growth factor receptor.

Future work: Analyzing a larger set of differentially expressed genes (DEGs) from
RNAseq data could uncover new genes for AD. This approach may pave the way for new
research avenues, leveraging a hybrid model that integrates biomedical text mining and
genomics to enhance the understanding of comorbidity.

5. Conclusions

The current analysis underscores AD as a multifactorial neurodegenerative condition,
demonstrating comorbidity and multimorbidity with other diseases. The involvement of
numerous genes in various pathways, alongside their distinct expression patterns, consti-
tutes several significant factors contributing to AD onset. This insight can aid researchers
and clinicians in profiling patients via their electronic health records (EHRs), facilitating the
detection of susceptibility to AD at an early stage. Early interventions targeted at delaying
disease progression could prove beneficial in promoting the healthier living of patients.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/genes15050614/s1: Supplementary Data S1: List of common genes predicted
by Geneweaver for AD and its comorbid diseases under study. Supplementary Data S2: Gene
interaction network and co-expression profiling for AD and each comorbid disease under study.
Supplementary Data S3: Interaction of genes related to AD and each comorbid disease under study
using STRING database. Supplementary Data S4: (A) Interaction between common genes identified
for AD and each comorbid disease under study and drugs. (B) Top 10 drugs down-regulating and
up-regulating the common genes for AD and each comorbid disease under study.
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