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Abstract: Reactive nitrogen (Nr) has been confirmed as an indispensable nutrient for the city ecosys-
tem, but high-intensity human activities have led to nitrogen pollution in cities, especially in coastal
cities, jeopardizing ecosystem services and human health. Despite this, the characteristics and influ-
encing factors of Nr remain unclear in coastal cities, particularly in the context of rapid urbanization.
This study used the material flow analysis method to estimate Nr emissions in Xiamen from 1995 to
2018 and evaluated the characteristics of excessive Nr emissions. The STIRPAT model was used to
identify and explore factors contributing to observed Nr levels in coastal cities. As indicated by the
results, (1) the quantity of Nr generated by human activities increased 3.5 times from 1995 to 2018.
Specifically, the total Nr entering the water environment showed a general increase with fluctuations,
exhibiting an average annual growth rate of 3.1%, increasing from 17.2 Gg to 35.1 Gg. (2) Nr loads
in the nearby sea increased notably from 8.1 Gg in 1995 to 25.4 Gg in 2018, suggesting a threefold
augmentation compared with surface waters and groundwater. (3) NOx was the gaseous Nr with the
greatest effect on the atmosphere in Xiamen, which was primarily due to fossil fuel consumption.
(4) Population and per capita GDP were major factors contributing to Nr load in the water environ-
ment, while Nr emission to the atmosphere was influenced by population and energy consumption.
These findings provide valuable insights for tailored approaches to sustainable nitrogen management
in coastal cities.

Keywords: reactive nitrogen; coastal city; Xiamen; STIRPAT model

1. Introduction

Nitrogen (N) is a fundamental component of proteins, nucleic acids, and other vital
living substances [1,2]. However, the excessive use of chemical fertilizers and fossil fuels as
well as high food consumption have resulted in the release of large amounts of reactive
nitrogen (Nr: all species of nitrogen (N) except N2) into the environment, which has
led to environmental pollution such as water eutrophication, atmospheric pollution, and
acid rain [3,4]. Research has suggested that 75% of Nr production on land arises from
human activities [5]. The 2030 Sustainable Development Goals (SDGs) formulated by the
United Nations aim to achieve various goals, including food security, protection of the
environment, and social development. The realization of many of the above-mentioned
goals is closely tied to the responsible use of nitrogen [6].

In cities, Nr emissions are influenced by a wide range of factors (e.g., population,
technology, and other socioeconomic factors). The rapid population growth, industrial-
ization, and socioeconomic development that accompany urbanization can have various
consequences for the environment. Urbanization and agglomeration have led to increased
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levels of nitrogen (Nr) emissions [7]. The anthropogenic sources of Nr in cities mainly
comes from human consumption, croplands, energy consumption, and livestock processing,
while N deposition is the main natural source. China continues to prioritize urbaniza-
tion, particularly in the highly developed, high-income eastern coastal cities. This area
encompasses 53 cities and account for almost 20% of the total Chinese population and over
40% of China’s gross regional product [8]. The increasing urbanization of coastal cities is
boosting nitrogen production and emissions; thus, these cities have already become the
largest anthropogenic nitrogen source worldwide [9,10]. It is essential to investigate the
characteristics of Nr emission as well as its control mechanisms and influencing factors and
change trends in coastal cities to address the increasingly serious problem of Nr pollution in
coastal cities. This investigation is of critical significance both theoretically and practically
to managing nitrogen emissions and protecting the environment.

To address the rising pollution caused by Nr, research has been conducted worldwide
to explore the characteristics of Nr emissions in various cities. It has focused on several
aspects such as the characteristics of Nr emissions, the effect of Nr emissions, and Nr
management [11–13]. For example, a study conducted in Paris suggested that emissions
from food consumption had tripled between 1801 and 1914 [14]. In a study on Nr emis-
sions in Phoenix, Arizona, researchers considered the residential consumption system
and specific industries in the city (e.g., the dairy and livestock sectors) [15]. In addition,
domestic scholars have also conducted several studies on Nr emissions in cities such as
Beijing, Shanghai, Hangzhou, and Guangzhou, analyzing Nr emissions and their driving
factors [16–19]. Nevertheless, the above-mentioned studies have typically quantified Nr
emissions from food consumption, while the environmental effects of Nr on air, water, and
soil have not been fully determined. Therefore, further research is necessary to determine
the extent of the impact of Nr emissions on the environment and to develop effective
measures for Nr management.

Most researchers have focused on identifying the factors that stimulate carbon emis-
sions using the STIRPAT model, whereas limited research has been conducted on the trend
of Nr emissions. Liu and Nie [20] analyzed China’s per capita food nitrogen footprint and
the effect of a wide range of socioeconomic factors on the footprint using the STIRPAT
model. Furthermore, Cui et al. [21] employed the STIRPAT model to investigate the factors
stimulating agricultural carbon emissions in China’s Hebei province. The STIRPAT model
is effective in analyzing the driving forces behind environmental effects [22] and can help
comprehensively evaluate the dynamic interplay of contributing factors and highlight
the characteristic features of the macrosocial “complex coupling system” with respect to
environmental effects. Previous studies on Nr emissions and their factors have generally
considered urbanization, population size, per capita GDP, production structure, energy
efficiency, as well as technological improvements [23–27]. However, the geographic and
socioeconomic conditions of different cities can lead to significant variations in the factors
driving Nr emissions. Understanding the changes in Nr emissions and their influencing
factors is crucial, and further research is needed to account for city-specific factors.

Xiamen, a typical coastal city, is facing increasingly serious air pollution, particu-
larly regarding Nr emissions, whose environmental effects and influencing factors remain
unclear. This study aimed to achieve several objectives. First, the characteristics of Nr
emission in Xiamen were analyzed. Second, we discussed the variation characteristics of
Nr loads in the atmosphere and water bodies. Third, this study attempted to gain insights
into the critical socioeconomic factors of Nr emissions to provide decision-makers with a
more scientific basis for formulating N management policies. Furthermore, this study can
contribute to sustainable city development.

2. Materials and Methods
2.1. Study Area

Xiamen (117◦53′–118◦26′ E, 24◦23′–24◦54′ N) is located in the southeast of China,
covering a total area of 1699.39 km2. The altitude is 63.2 m (Figure 1). Xiamen has a subtrop-
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ical maritime monsoon climate with concentrated precipitation and warm temperatures.
The resident population of Xiamen has increased from 1.89 million in 1995 to 4.29 million
in 2020. Xiamen is characterized by a high degree of intensive human activities that con-
sume considerable amounts of food and energy. With excessive nitrogen inputs, nitrogen
pollution has grown more serious. Xiamen’s booming economy and rapid urbanization
have changed its land use distribution. In 2020, the urban residential land, industrial land,
and transportation land accounted for 37.2% and were concentrated on the island; the most
of forest land, agricultural land, and other land took up 62.8% of Xiamen, and these lands
were extensively distributed in the surrounding areas. With the continuous acceleration of
urbanization in Xiamen, the urbanization rate was elevated from 62.7% in 2005 to 89.4%
in 2020. According to the results of monitoring surface water nitrogen concentration from
2004 to 2016, provided by the monitoring station of the Xiamen Environmental Protection
Bureau, it was found that major rivers in the area had excessive levels of nitrite and ammo-
nia nitrogen. Furthermore, from 1995 to 2015, the concentration of inorganic nitrogen in the
nearby sea of Xiamen increased from 0.35 mg L−1 to 1.34 mg L−1 [28].
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2.2. Data Sources

In this study, socioeconomic data on Xiamen from 1995 to 2018 were collected from
several published government sources (e.g., the Yearbook of the Xiamen Special Economic
Zone (1997–2019) and the Xiamen Ecological Environmental Quality Bulletin). The pa-
rameters of Nr emission primarily originated from the published literature, government
departments, and experiments. The detailed parameters of this study are elucidated in the
Supplementary Materials (Tables S1–S30).

2.3. Reactive Nitrogen (Nr) Calculations

Different systems can generate varying levels of nitrogen that affect the environment
in different ways. The systems that primarily affect water bodies include croplands, live-
stock, aquaculture, greenbelts, industry, sewage treatment, and garbage disposal (Figure 2).
Moreover, Nr emissions from the above-mentioned systems also have a certain negative
effect on the atmospheric environment. Nitrogen oxide emissions are increasing, notably in
economically developed areas. In this study, NOx, NH3, and N2O emissions were considered
the main gaseous Nr forms in the atmosphere. In general, systems that exerted a certain effect
on the atmosphere comprised croplands, livestock, aquaculture, greenbelts, sewage treatment,
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and garbage disposal. The calculation formulas for the nitrogen flow and Nr emissions of
each system are detailed in the Supplementary Materials (Equations (S1.1)–(S11.2)).
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Figure 2. Framework of Nr emissions to the environment (blue arrows represent Nr emission to
water environments; red arrows represent Nr emission to the atmosphere; black arrows represent
nitrogen flow between different systems; BNF: Biological nitrogen fixation).

2.4. Influencing Factor Analysis Model
2.4.1. STIRPAT Model

The effects of demographic (P), economic (A), and technological (T) factors on the
environment are mainly postulated in the IPAT model [29]. The IPAT model is reformulated
into a stochastic model (STRIPAT), so that the nonmonotonic or nonproportional effects
of driving forces on the environment can be statistically evaluated [30]. The STRIPAT
model has been successfully adopted to analyze the effects of driving forces on a variety of
environmental effects [31,32], which is expressed as:

Iit= αPb
itA

c
itT

d
itεit (1)

After taking logarithms, the model takes the following form:

Ln(lit) = a + bLn(Pit) + cLn(Ait) + dLn(Tit) + εi (2)

where suffixes i and t denote country and years, respectively; P expresses population size;
A is real GDP per capita; T represents technology; the dependent variable I denotes
pollutant emissions; εi is the error term, a is the constant term; and b, c, and d are the
coefficients of P, A, and T, respectively.

The STRIPAT model refers to a nonlinear model with multiple dependent variables.
By implementing an index, the model is capable of analyzing the nonproportional effects
of factors on the environment. Besides the three variables already covered in the model,
any other detrimental factor that affects the environment can be introduced for in-depth
examination. The coefficients of the STRIPAT model represent the elasticity relationship
between the independent and dependent variables. For instance, an environmental effect
will result in changes of a%, b%, and c%, respectively, if a 1% change exists in the driver
(PAT). a, b, and c equal to 1 indicate a proportional change in the environmental effect and
the driver (PAT) at a constant ratio. A coefficient greater than 1 reveal that an increase in
socioeconomic factors leads to a higher rate of environmental change. A coefficient over 0
and less than 1 reveals that increasing socioeconomic factors leads to a rise in the rate of
environmental change but at a slower pace than the driving force. However, a coefficient
less than 0 implies that increasing socioeconomic factors is conducive to reducing the
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environmental effect. Based on the STIRPAT model, this paper utilizes the ridge regression
analysis method to fit independent variables and dependent variables through regression.
This method is deemed more compatible and stable compared to the least-squares method
employed in previous research studies.

2.4.2. Model Indicator Selection

In this paper’s STIRPAT model, the “I” variable representing environmental factors is
the total amount of Nr emissions. The wealth factor (A) is represented by the per capita
GDP index. The variable P is further broken down into two indicators: Xiamen resi-
dents (P1), and urbanization level (P2) (the percentage of built-up areas in the entire region).
The technical indicator T is also separated into two indicators: energy consumption (T1) and
industrial structure (T2). Energy consumption is defined as the amount of standard coal
consumed per unit of GDP production, while industrial structure refers to the percentage
of secondary industry. This paper utilizes ridge regression analysis to fit the STIRPAT
model and comprehensively explores the factors affecting Nr emissions in the water and
atmospheric environment.

2.4.3. Mann–Kendall Test and Theil–Sen’s Slope Estimator

The Mann–Kendall test is typically used to detect the presence of a temporal trend
when analyzing environmental data. Thus, the test can be viewed as a nonparametric test
for zero slope of the linear regression of time-ordered data versus time. The calculation of
the Mann–Kendall test statistic can be found in previous research [33,34]. As for the results,
when the Z value is negative, a falling trend is recognized, and when the Z value is positive,
a rising trend is discerned. At a significance level of 0.05 (0.01, 0.001), Z > 1.96 (2.58) and
Z < −1.96 (−2.58) indicate significant increasing and decreasing trends, respectively [35].

Theil–Sen is a nonparametric alternative to ordinary least-squares regression. Sen’s
slope has an advantage compared to linear regression, in that the test is not affected by the
number of outliers and data errors [35]. The Sen’s slope equation is written as follows:

β = Median(
xj − xi

i− j
) (3)

where xi and xj are the data values at time i and j (i > j), respectively. When β is greater
than zero, it indicates a growth trend, while the opposite indicates a decreasing trend.

3. Results
3.1. The Characteristics of Reactive Nitrogen (Nr) Emissions

Human activities have a considerable impact on the water and air environments of a
city, with varying effects depending on the amount of Nr produced. Analysis of time series
data reveals that the release of Nr into water bodies and the atmosphere undergoes unique
changes with the process of urbanization (Figure 3). By estimating the Mann–Kendall test
and Theil–Sen’s slope estimation at a 99% confidence level (Z > 2.58, p < 0.001) (Table 1),
we found that the total of Nr emissions from anthropogenic activities tended to increase
significantly, going from 42.6 Gg in 1995 to 149.2 Gg in 2018. Moreover, the amount of
Nr released into the atmosphere far exceeded that released into water bodies. Nr loads
released into water bodies tended to fluctuate, increasing from 17.2 Gg in 1995 to 35.1 Gg
in 2018, with an average annual increase rate of 3.1%. On the other hand, Nr loads released
into the atmosphere increased from 25.4 Gg in 1995 to 114.2 Gg in 2018, with an average
annual increase rate of 6.7%. The Nr released into the atmosphere accounts for over half of
the total Nr emissions resulting from anthropogenic activities.
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Table 1. Theil–Sen median slope estimation and Mann–Kendall trend test.

Item Sen’s Slope Mann–Kendall Statistic The Z Value of the
Mann–Kendall Test

The p-Value of the
Mann–Kendall Test

Total Nr emission 4.834 250.000 6.176 0.000
Nr emission to water bodies 0.945 178.000 4.390 0.000
Nr emission to atmosphere 3.793 252.000 6.226 0.000
Nr emission to surface water 0.033 82.000 2.009 0.045
Nr emission to groundwater 0.001 6.000 0.124 0.901
Nr emission to nearby sea 0.880 182.000 4.490 0.000
NH3 emission 0.375 244.000 6.027 0.000
NOx emission 3.436 238.000 5.879 0.000
N2O emission −0.026 −198.000 −4.886 0.000
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3.1.1. Characteristics of Nr Emission to Water Bodies

In general, the water bodies in this study comprised surface water, groundwater, and
the nearby sea. All types of water bodies were affected by Nr emissions from different
systems in the city, and the trends of Nr loads differed between the above-mentioned water
body types from 1995 to 2018 (Figure 4). During urbanization, anthropogenic nitrogen
(Nr) discharges exceeded those from natural sources, leading to severe effects on water
body quality. By estimating the Mann–Kendall test and Theil–Sen’s slope estimation at a
99% confidence level (Z > 2.58, p < 0.001) (Table 1), the total Nr loads in Xiamen’s water
bodies showed a fluctuating increasing trend between 1995 and 2018, with an average
annual growth rate of 3.2%, increasing from 17 Gg to 35 Gg. While Nr loads in surface
water bodies showed no significant changes during the period from 1995 to 2018, Nr loads
in surface water bodies increased from 6.9 Gg to 8.1 Gg during 1995–2012 and decreased
from 7.7 Gg to 7.4 Gg from 2013 to 2018. However, as Xiamen is a typical coastal city, Nr
pollution in nearby seas became more serious. As the river upstream carried considerable
Nr into Xiamen’s nearby sea, the Nr loads in nearby seas increased, from 8.1 Gg in 1995
to 25.4 Gg in 2018—three times higher than the Nr in surface waters and groundwater in
this 23 year-period. Furthermore, most Nr pollutants originated from the upstream of the
external river (Jiulong River).
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The results of this study revealed differences in the contribution ratios of various
systems to the Nr loads in water bodies in the city; different water bodies were affected
by Nr emissions from the respective systems. In addition, different characteristics and
trends were displayed from 1995 to 2018 (Figure 5). Surface water bodies in the city were
affected by various systems (Figure 5a). To be specific, the contribution of Nr emissions
to surface waters from cropland systems decreased, from 20.2% in 1995 to 6.3% in 2018,
marking a threefold decrease. Moreover, industrial systems contributed to 37.5% of Nr
loads in surface water in 1995, which declined to 1.6% in 2018, with an average annual
decrease of 4.5%. Furthermore, the contribution of livestock systems to Nr loads in surface
water showed a gradual decline, with an average annual decrease of 3.6%. However, the
contribution of N deposition to surface water progressively increased, and it emerged as a
major source of Nr pollution in surface water. From a contribution ratio of 15% in 1995,
N deposition in surface water rose to 65% in 2018, marking a 4.3-fold increase over the
following 23 years.

The nearby sea environment of Xiamen, a typical coastal city located at the mouth of
the Jiulong River, is affected by Nr inputs from a wide variety of inland subsystems and Nr
inputs from external rivers, like the Jiulong River (Figure 5b). As revealed by this study,
external rivers were the primary source of Nr loads in the nearby sea, contributing to an
average annual ratio of 60% from 1995 to 2018. Sewage treatment and surface water served
as the main inland sources of Nr loads. The contribution ratio of Nr emissions from sewage
treatment systems in the nearby sea was elevated from 6.1% in 1995 to 12.7% in 2018.

The discharge of Nr from different systems in the city can substantially affect ground-
water bodies (Figure 5c). The reduction in cropland area led to a decrease in N fertilizer
leaching to groundwater over the past few years. Moreover, the percentage of N fertilizer in
groundwater declined from 88% in 1995 to just 10% in 2018, marking an overall decrease of
approximately eight times. However, the impact of sewage treatment systems on ground-
water was found to have grown. On average, there was an annual increase of 10.9% in Nr
loads. The increasing workload of the sewage treatment system and aging sewer pipes
were the primary causes of Nr leakage from the sewage treatment system into groundwater
bodies. Furthermore, there was an increase in Nr contaminants that leach into groundwater
from the greenbelt system, whose contribution to the overall Nr load was elevated from
2.7% in 1995 to 26.3% in 2018. The reason for the above result is the development of Xiamen
as an ecological city, leading to an average annual increase of 12.1% in greenbelt area, as
well as an increase in pet feces.
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3.1.2. Characteristics of Nr Emission to the Atmosphere

Anthropogenic Nr emissions change the nitrogen cycle in cities, adversely impacting
not only water bodies but also the atmosphere, and this issue is becoming more severe.
The atmospheric Nr forms primarily responsible for the damage comprised NH3, NOx,
and N2O. By estimating the Mann–Kendall test and Theil–Sen’s slope estimation at a 99%
confidence level (Table 1), we found that NOx presented a significant increasing trend, while
N2O presented a decreasing trend. NOx emissions exerted the greatest effect, accounting
for nearly 80% of the city’s overall Nr emissions (Figure 6a). The second-greatest emission
was NH3, primarily originating from ammonia volatilization in croplands and livestock
systems. Although N2O accounted for a relatively small proportion, it is the third most
critical greenhouse gas after CO2 and CH4, with a warming potential 298 times that of CO2
and contributing to 8% of greenhouse gas emissions [36].
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Additionally, there were substantial variations in gaseous Nr emissions among dif-
ferent systems (Figure 6b). From 1995 to 2018, Nr emissions from energy consumption
tended to increase, becoming the primary contributor to Nr emissions in city ecosystems.
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Furthermore, Nr emissions from human consumption, sewage treatment, and garbage disposal
systems also increased, although this increase was at a slower rate. In contrast, the aggregate
amount of Nr produced by cropland systems tended to decline over the same period.

3.2. Analysis of Influencing Factors on Nr Emission
3.2.1. Analysis of Influencing Factors on Nr Emission into Water Bodies

According to the STRIPAT model and ridge analysis, the goodness of fit (R2 value)
of the model was 0.752 and the model met the requirements. This indicated that the in-
dependent variable explained 75.2% of the variation in the dependent variable (Table 2).
Moreover, the equation’s F value was 8.6, and it was statistically significant at 0.001 level,
indicating that the ridge regression equation could withstand the 99% significance test.
This result indicated that population size, wealth, and urbanization had a positive impact
on environmental Nr load, with both linear and elastic effects. Environmental pressure
increased with the rise in population size, which was found to determine the amplitude
of the environmental Nr load. An increase in population size increased environmental
pressure. The elasticity coefficient, which ranged from 0 to 1, suggested that an increase
in these factors could lead to environmental changes worsening faster than the driving
force. Specifically, for every 1% increase in population, Nr load in water bodies increased
by 0.17%, making population explosion a potential factor for the Nr load in Xiamen’s
water bodies. Similarly, per capita GDP had a positive linear effect on water environ-
mental pressure, with a 1% increase resulting in a 0.16% increase in liquid Nr emissions.
However, in comparison to population and GDP, industrial structure showed a negative
correlation with Nr emissions. The primary reason for this result is the decline of traditional
industries and the rise of tertiary and high-tech industries. Improving industrial structure
could have a positive impact on reducing Nr emissions into the water environment.

Table 2. Ridge regression of various socioeconomic factors affecting Nr load in water bodies.

Standardization Coefficient t p R2 F

Constants - 0 1

0.752
Population (P1) 0.170 5.019 0.000 ** F = 8.604

Urbanization (P2) 0.153 5.732 0.000 ** p = 0.001
Industrial structure (T2) −0.117 2.334 0.032 *

Per capita GDP (A) 0.160 6.652 0.000 **
* p < 0.05, ** p < 0.01.

3.2.2. Analysis of Influencing Factors on Nr Emission to the Atmosphere

A ridge analysis was conducted according to the STRIPAT model using population,
industrial structure, energy consumption, and GDP per capita as independent variables
and gaseous Nr emissions as the dependent variable. The results indicated an R2 value of
0.932 and the model met the requirements. This indicated that the independent variable
explained 93.2% of the variation in the dependent variable (Table 3). The primary factor
driving this increase was the growing population. Moreover, the city’s energy consump-
tion rose at a rate of 2.9% per year, which had a direct impact on gaseous Nr emissions.
In fact, for every 1% increase in energy consumption, there was a corresponding 0.91%
increase in emissions. Additionally, per capita GDP had a linear positive effect on the
environment, with a 1% increase in per capita GDP resulting in a 0.31% increase in
gaseous Nr emissions. In comparison to the aforementioned factors, Xiamen’s indus-
trial structure had a suppressing effect on gaseous Nr emissions. Over the years, the
proportion of the secondary industry in Xiamen declined by an average of 4.6% annually.
Furthermore, the secondary industry transitioned into high-tech industries, which can help
reduce the nitrogen pollution caused by heavy industries in the region.



Atmosphere 2023, 14, 1549 10 of 16

Table 3. Ridge regression of socioeconomic factors affecting Nr load in the atmosphere.

Standardization Coefficient t p R2 F

Constants - 0 1

0.932
Population (P1) 1.091 2.075 0.000 ** F (6,7) =15.897

Industrial structure (T2) −0.468 −1.201 0.027 * p = 0.001
Energy consumption (T1) 0.911 2.081 0.000 **

Per capita GDP (A) 0.310 0.993 0.035 *

* p < 0.05, ** p < 0.01.

4. Discussion

Nr emissions have increased significantly due to anthropogenic activities over the
past few decades, particularly in coastal cities, which is expected to adversely affect the
environment of the above-described cities. Accordingly, the sources of Nr emissions and
the factors that contribute to their increase in coastal areas should be explored. This study
aimed to conduct a systematic analysis of the effect of human activities on Nr emissions
and examine the environmental effects arising from such emissions to more effectively
curb and manage nitrogen pollution. The results suggested an increase in Nr emissions
from coastal cities in recent years, with gaseous Nr emissions outweighing the amount
entering the water environment, thus triggering a growing problem of Nr pollution in the
atmosphere. Most Nr emissions have originated from energy systems, cropland systems,
and human consumption systems. Moreover, socioeconomic factors (e.g., population) have
affected Nr emissions. The above-mentioned findings reveal the importance of identifying
the key systems and critical factors of Nr emission to effectively reduce nitrogen pollution in
cities. In brief, a substantial difference was found between the environmental effects of Nr
emissions from different systems in cities, and action should be taken to alleviate this issue.

In Xiamen, the level of Nr entering water bodies tended to fluctuate and increase.
This result is in good agreement with the actual change in nitrogen concentration in sur-
face water. Previous studies found that according to the results of monitoring nitrogen
concentration in surface water in Xiamen from 2004 to 2016, nitrite and ammonia nitro-
gen in major streams and surface water in the territory seriously exceeded the standard.
The average nitrogen concentration in surface water showed a fluctuating increasing trend,
and the nitrogen concentration in surface water showed a significant linear positive cor-
relation with Nr load [37]. The variation in Nr load in surface water bodies is influenced
by multiple systems. Among them, the agricultural system made the largest contribution
during the period from 1995 to 2012, resulting in an increasing trend of Nr load in surface
water bodies due to the extensive use of nitrogen fertilizers. However, from 2013 to 2018,
the urbanization process accelerated and the area of grain cultivation decreased. As a result,
there was a reduction in wastewater discharge from the agricultural system. Furthermore,
policies had an impact on the livestock and aquaculture systems in Xiamen, leading to
a continuous decrease in Nr emissions from 2013 to 2018. This ultimately resulted in a
decrease in wastewater discharge and subsequent fluctuations in Nr load in surface water
bodies. In addition, in our study, we also found severe levels of Nr pollution in the nearby
sea. The coastal city’s nearby sea is affected by outside rivers. In the upstream of the Jiulong
River, the development of industries (e.g., pig breeding and crop cultivation) led to the
elevation of pollution levels [38]. Existing research has suggested that Nr pollutants from
the Jiulong River have resulted in elevated pollution levels in the sea near Xiamen since the
1990s. Human activities (e.g., fertilizer application and pig breeding) in the upstream of the
Jiulong River have disrupted the biogeochemical processes expediting N cycling [39,40].
The above result is confirmed by the frequent occurrence of red tides in the waters of
Xiamen over the past few years. Thus, local sources of pollution should be controlled and
inter-regional cooperation should be developed in the future management of pollutants in
the nearby sea.

The source of Nr pollution that exerts the greatest effect on surface water has changed
from the cropland system to N deposition. Consequently, the contribution of N deposition
to Nr loads in surface water in Xiamen increased by 4.3 times over the 23 years analyzed
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in this study. The increased deposition of atmospheric nitrogen was closely correlated
with the large number of nitrogen oxides generated by energy consumption processes in
the local region, as well as the dispersion of N pollutants attributed to the socioeconomic
development of the surrounding region [41]. The above-described nitrogen oxides primar-
ily originate from fossil fuel combustion in cities while accounting for a larger share of
anthropogenic Nr emissions [42]. In addition, given that, as indicated by statistics, energy
consumption in Xiamen has increased by 2.5 times over the last decade, it is concerning that
half of the nitrogen oxide and ammonia nitrogen emissions eventually return to the land
and water bodies of the city’s ecosystems in the form of a deposition. This N deposition
has contributed to eutrophication in surface water bodies. It can break the material cycle
and energy flow of the surface water ecosystem, so that the stability of surface water
ecosystems can be seriously affected [43]. As revealed by this study, sewage treatment and
greenbelt systems in city ecosystems more notably affect groundwater. The overloading of
the sewage treatment process and the aging of sewage pipes have been confirmed as the
main reasons for the leakage of N pollutants into groundwater bodies [44]. Moreover, since
Xiamen strives to become an ecological and green city, the greenbelt area has achieved an
annual average growth of 12.1%. However, the extensive use of artificial fertilizers on the
greenbelt, coupled with the rising amount of pet waste being discarded in the area, can
trigger an escalation of N pollutants seeping into groundwater [45].

The release of significant amounts of Nr adversely affected the water bodies and the air
environment. This study suggested that Nr emissions resulting from energy consumption
tended to increase and turned out to be the most critical contributor to Xiamen’s Nr
emissions into the atmosphere from 1995 to 2018. This result is consistent with existing
research, which states that energy consumption has become the most important source
of gaseous Nr emissions in cities [46,47]. NOx has accounted for the production of most
gaseous Nr resulting from energy consumption, notably in cities. The total emissions of
NOx at the city level have been substantially greater than those at the global and national
levels [48–50]. On that basis, the regulation of sectors that emit higher NOx levels (e.g.,
transportation services) should be prioritized in the future. Cities should develop effective
NOx control mechanisms that primarily target reducing motor vehicle emissions in the
future [51].

In the atmosphere, NH3 has been reported as a critical nitrogen-containing gas and
also an alkaline gas. As revealed by previous studies, the majority of NH3 present in the
atmosphere arises as a result of the livestock system and the application of N fertilizers,
accounting for 39% and 17% of the total Nr, respectively, on the global scale [42–53]. It is
noteworthy that China is a large agricultural producer, and nitrogen fertilizer application
remains the largest contributor to NH3 emissions on the national scale [54]. Unlike on the
global or national scale, in Xiamen, a typical coastal city, NH3 emissions primarily originate
from croplands and energy consumption systems. NH3 can be employed as a catalyst for
secondary aerosols, and it takes on critical significance in atmospheric physicochemical
reactions. Additionally, it can neutralize acidic gases, so that the acidity of clouds and
aerosols can be affected [55]. Accordingly, it is imperative to adopt a more reasonable
and scientific farming method that is capable of increasing the utilization rate of nitrogen
fertilizer and the rate of straw return.

N2O is a critical greenhouse gas, and although it is the least emitted compared with
other forms of gaseous nitrogen (NH3, N2O), it is still not negligible in city ecosystems.
Globally, N2O emissions from soils contribute the most to N2O in the atmosphere [56].
In contrast, this study suggested that N2O emissions from the cropland system accounted
for two-thirds of the total gaseous Nr emissions in Xiamen. Subsequently, the sewage
treatment system followed. N2O emissions in the sewage treatment system were attributed
to the biochemical actions of nitrifying and denitrifying bacteria. The above-mentioned
N2O emissions increase during the sewage treatment process [57]. Thus, in the future, the
focus should be placed on updating sewage treatment technologies to increase N removal
rates while reducing greenhouse gas emissions in Xiamen.
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The influencing factors for Nr loads in water bodies, i.e., population and urbaniza-
tion levels, are crucial in Xiamen. However, as for Nr loads in the atmosphere, popu-
lation and energy consumption are the main factors. This finding further confirms that
global population growth is one of the critical drivers of long-term changes in nutrient
cycling [58]. As revealed by existing research, population, economic development, urban-
ization, agricultural patterns, and per capita GDP are the main factors for Nr emission to
the environment [59–61]. The variations in environmental Nr loads identified in this study
were likely the result of social factors, economic development, and population changes.
In particular, as a developed coastal city, the local industries and energy consumption were
identified as crucial factors for the environmental effects of Nr emissions. As revealed by
the analyses of this study, the driving forces of increased Nr emissions due to population
growth shifted progressively from changes in energy consumption to satisfy the city’s
development needs. Consequently, there still exists a significant burden of Nr pollution in
the coastal city. Accordingly, the way energy is produced and exploited should be actively
facilitated by increasing energy efficiency and transitioning from smokestack industries to
high-tech ones. The above-described measures promise to substantially mitigate nitrogen
pollution in Xiamen.

5. Limitations

Although this study presents an expansion of our understanding of the characteris-
tics and influencing factors of Nr emissions in coastal cities, it is limited in several ways
that future research must address. (1) Future analyses should consider the nitrogen con-
centrations and chemical composition of N deposition when analyzing ecological effects.
(2) The critical impact of Nr emissions on the soil environment was not taken into account
in this study. (3) Two types of variables—activity data and N parameters—are needed to
estimate the various kinds of Nr emissions in this paper. Based on previous studies in the
field of uncertainty analysis, activity data are mainly derived from official statistics which
are widely considered as a reliable data source for analysis. Nr emissions in Xiamen are
simply assumed to have uncertainty ranges of 10% to 30% [62]. Based on previous research,
this study will further refine the analysis of uncertainty in future research. Despite these
limitations, this study provided a comprehensive analysis of Nr in coastal cities. Neverthe-
less, future research needs to address these limitations to create more sophisticated and
perfected works.

6. Conclusions

The emission of Nr in Xiamen from 1995 to 2018 was estimated using the method of
material flow analysis. In this study, an increase in Nr emissions was revealed over the 23-year
period. Moreover, a quantitative analysis of the key factors driving the above-mentioned
long-term changes was conducted. The main findings of this study are elucidated as follows:

First, as urbanization leapt forward in Xiamen, the effects of Nr emissions to water
bodies increased, particularly in surface water and the nearby sea. Nr load in the nearby
sea was notably higher than that in surface waters and groundwater, and it increased incre-
mentally from 8.1 Gg in 1995 to 25.4 Gg in 2018, marking an increase of 3.1 times in these
23 years. The majority of the Nr originated from the upstream of the external river, Jiulong
River. Second, the emission of Nr from various subsystems into the water bodies tended
to vary from 2005 to 2018. In terms of surface water, the effect of N deposition and green-
belt subsystems increased as urbanization accelerated. On the other hand, the cropland,
sewage treatment, and greenbelt subsystems had a greater impact on groundwater bodies.
Since Xiamen is a typical coastal city, the issue of Nr pollution in the nearby sea aroused
more attention. The sea near Xiamen was primarily affected by external rivers
(Jiulong River) and the direct discharge of tailwater from sewage treatment facilities. Third,
the gaseous Nr with the greatest impact on the atmosphere in Xiamen was NOx, which
mainly resulted from fossil fuel consumption. Fourth, the STRIPAT model was adopted
to analyze the socioeconomic drivers impacting Nr emissions in Xiamen. As revealed by
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the findings, population and per capita GDP were the major factors for Nr load in water
bodies, while population and energy consumption affected Nr loads in the atmosphere.
Several potential solutions were proposed (e.g., cooperation between adjacent cities and
upstream areas of the river, improvements in energy utilization technology, and appropriate
N fertilizer application). Subsequent research should emphasize analyzing N management
strategies for coastal cities in different scenarios.
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