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Abstract: Using the China National Knowledge Infrastructure (CNKI) and Web of Science (WoS)
databases, 487 articles that used remote sensing methods to study the intensity of surface urban
heat islands (SUHIs) over the past 20 years were obtained using keyword searches. A multidimen-
sional analysis was conducted on these articles from the perspectives of the research methods used,
spatiotemporal distribution characteristics of the research area, research development trends, and
main challenges. The research found that (1) the growth trend of the various SUHI research methods
over the years was similar to the overall trend in the number of publications, which has rapidly
increased since 2009. (2) Among the SUHI research methods, temperature dichotomy is the most
widely used worldwide; however, defining urban and rural areas is a main challenge. The Gaussian
surface and local climate zoning methods have gradually emerged in recent years; however, owing to
the limitations of the different urban development levels and scales, these methods require further
improvement. (3) There are certain differences in the application of SUHI research methods between
China and other countries.

Keywords: surface urban heat island; heat island intensity; land surface temperature; remote sensing;
calculation method; spatiotemporal patterns

1. Introduction

Since the reform and opening up, the social economy has rapidly developed and
urbanization has accelerated. The level of urbanization in China rose from 17.9% in
1978 to 52.6% in 2012. By 2020, it far exceeded the average standards of developing
countries, reaching 63.89%. According to a United Nations estimate, the urbanization rate
of developed countries will reach 86% by 2050 and China will reach 71.2% at that time.
An increase in urbanization promotes economic development, improves living standards,
and enhances human well-being. However, it also causes a series of urban diseases and
exacerbates global warming and the urban heat island (UHI) effect. The UHI effect is a
phenomenon characterized by higher urban temperatures than rural temperatures, which
has serious implications of ecological problems; for example, extreme weather endangers
human health at mid and low latitudes. To maintain sustainable development worldwide,
it is important to investigate the UHI effect and measures to mitigate it.

An early study on the UHI effect at Howard noted that temperatures were higher in
central London than in the suburbs in the early 19th century [1]. Since then, many studies
have been conducted on urban heat island intensity (UHII) [2–4], drivers of the UHI effect [5,6],
spatiotemporal evolution characteristics [7,8], and mitigation measures [9,10]. Currently, UHIs
are divided into three categories: boundary layer heat islands (BLHIs), canopy layer heat islands
(CLHIs), and surface urban heat islands (SUHIs). The BLHI and CLHI are components of
atmospheric heat island research, which is primarily based on meteorological data and employs
ground observations and numerical simulations [11]. A SUHI is the heat island expressed by
the land surface temperature (LST), which is measured using thermal infrared (TIR) remote
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sensing, and the thermal radiation information of an urban surface and its features can be timely
and accurately obtained using satellite remote sensing technology, which has the advantages
of a short cycle of data acquisition, wide coverage, and low acquisition cost. In 1972, Rao [12]
first discovered the SUHI phenomenon in the eastern United States using satellites. Later,
several academics conducted in-depth discussions on SUHIs and established many methods to
study SUHI intensity (SUHII) [13–15]. This research compared and analyzed articles on SUHIIs
based on remote sensing methods over the past 20 years, aimed to understand the status of
past research on SUHIIs, and provides a reference for future research, which is of far-reaching
significance to global sustainable development, research on climate change, and the mitigation
of UHI effects.

2. Data Sources and Method

The China National Knowledge Infrastructure (CNKI) and Web of Science (WoS) were
used as article search platforms. Conducting an advanced search in the CNKI database,
the search topics were “urban heat island” and “heat island intensity”, the period was
2002–2021, and the journal sources were SCI, EI, core journals, and CSSCI. Thus, 649 articles
were identified. According to WoS (Core Collection database), we searched “surface urban
heat island” and “heat island intensity”, with the article type “Article” or “Review Article”
and the period 2002–2021, and 945 articles were retrieved. The search results were screened
manually to exclude conferences, newspapers, and irrelevant articles. Articles that did not
use SUHII as the main research topic and remote sensing as the main research technique
were excluded. Finally, 487 valuable articles were retrieved, of which 181 were retrieved
from CNKI and 306 from WoS (Core Collection database). Further, we extracted the titles,
posting times, research ranges, and topics of the articles.

3. Historical Trends

The number of publications reflects whether a field is active. Figure 1 shows the
number of articles published on SUHI research from 2002 to 2021. It can be seen that SUHI
research showed an overall upward trend over the last 20 years. It was in the early stages of
development from 2002 to 2008 and rose sharply from 2009 to nearly five times the number
of publications a year ago. The highest number of articles was issued in 2021, when the total
number of articles reached 92. The increase in the number of publications was mainly due
to the following reasons: First, in recent years, the frequent incidences of global warming,
extreme drought, and heat waves have led scholars to focus on urban climate change and
SUHI research [16]. It has been found that most countries in the world are facing increasing
challenges in terms of livability [17]. It is critical to comprehend the drivers of SUHIs and
develop mitigation strategies. Thus, an increasing number of scholars are interested in
SUHIs, with a growing number of studies being published [18,19]. Second, the boundaries
of urban, rural, and suburban areas are constantly changing because of the expansion of
urban construction land and the interconversion of each land use type [20], necessitating
further improvement in SUHII calculation methods [21,22]. Third, with the continuous
progress in science and technology, especially the emergence of MODIS, Landsat, and
Sentinel satellites, based on which satellite remote sensing data sources are continuously
expanding and improving, the accuracy of LST retrieval has continuously improved, and
SUHI research with LST as the main data source has substantially improved the efficiency
and accuracy [23]. Several articles have reviewed and evaluated different sensors/satellites
imagery used in SUHI research [18,24].
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4. Methods for Measuring SUHII

We further analyzed and summarized the SUHI methods, based on the research of
Li [24], Budhiraja [25], and other academics [26,27], and classified the SUHI methods into
four categories: temperature dichotomy method, LST/bright temperature (BT) grading
method, Heat Island Index method, and statistical models. These four different types of
methods are listed in Table 1.

Table 1. Classification of SUHII research methods based on remote sensing.

Type Method Illustration References Application
Number

Temperature Dichotomy
Method

Urban–Rural Method

Average LST difference
between urban and rural
areas by administrative
boundaries.

Ren et al. [28]; Deng et al. [29] 59

Average LST difference
between new/old city and
nonurban areas.

Gui et al. [30]; Wang et al. [8] 3

Average LST difference
between urban built-up
areas and rural areas
according to ISA, NDVI,
OLS, LULC, SUE, etc.

Zhang et al. [31]; Chakraborty et al. [32] 58

Difference between each
pixel and the average LST
in the study areas.

Wang et al. [33] 20

Urban–Buffer Zone
Method

Average LST difference
between urban areas and
the surrounding n km
buffer. (Urban areas
determined from NDVI,
ISA, OLS, BI, etc.)

Clinton et al. [34]; Zhou et al. [6] 99
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Table 1. Cont.

Type Method Illustration References Application
Number

Average LST difference
between urban areas and
the surrounding buffer
zone that 50%, 100%, and
150% of urban areas are
based on the using urban
clustering algorithm.

Peng et al. [35] 16

Urban–Field Method
Average LST difference
between urban and field
areas.

Ye et al. [36] 33

Urban–Vegetation Method
Average LST difference
between urban and
vegetation areas.

Fang et al. [37]; Zhou et al. [38] 12

Urban–Water Body
Method

Average LST difference
between urban and water
body areas.

Gawuc et al. [39] 3

Local Climate Zones
(LCZs)

Average LST difference
between LCZs and a
particular LCZ (e.g., low
vegetation type)

Zhang et al. [40]; Budhiraja et al. [25] 16

LST/BT Grading Method ——
Grading according to
different periods of LST or
BT images

Xiong et al. [41]; Huang et al. [42] 109

Heat Island Index

Urban Heat Island Ratio
Index (URI)

Ratio of the UHI area to
built-up area and assigned
weights to characterize the
SUHII

Xu et al. [43] 40

Urban Thermal Field
Variance Index (UTFVI)

Ratio of the difference
between the LST of each
pixel and the mean LST to
the mean LST of the study
areas

Chen et al. [44] 32

Maximum Urban Heat
Island Intensity (MUI) and
Weighted Average Urban
Heat Island Intensity
(WAUI)

MUI refers to the
difference between the
maximum temperature in
the urban areas and the
minimum temperature in
the suburbs. WAUI refers
to the difference between
the average LST and the
proportion of the average
LST in each class of areas
of the city and the average
LST in the suburbs

Zhang et al. [45] 5

Statistical Models

Gaussian Surface Model
(GSM)

Fitting of the rural
temperature image to a
plane and then decreasing
the rural temperature
image from the original
surface temperature image

Hu et al. [46]; Schwarz et al. [14] 16

Kernel Convolution
Method

Difference between the
maximum and minimum
values of the LST after
processing according to
the kernel convolution
method

Weng et al. [47] 2
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Table 1. Cont.

Type Method Illustration References Application
Number

Moran’s I (MI) and
Getis-Ord Gi* (Gi*)

Explains the spatial
aggregation patterns of
the SUHI at the overall
and local spatial scales,
respectively

Liu et al. [48]; Li et al. [49] 10

Linear Relationship
Between LST and ISA (or
HIS)

Regression slope of the
LST and ISA (or HIS) fit
function is regarded as the
SUHII

Li et al. [50]; Zhang et al. [51] 3

4.1. Temperature Dichotomy Method

The SUHII is defined as the difference in the LST between urban and nonurban areas
(Equation (1)) [28,52]. The question of how to define urban and nonurban boundaries is
a core issue for SUHIs because distinguishing between urban and nonurban areas using
different methods can affect the results of studying the SUHII [53,54]. This weighty and
difficult point has aroused intensive discussions among numerous academics, and the
temperature dichotomy method has led to various calculation methods [55,56]. Based
on the different types of land cover in a city, a series of methods are used to extract
urban, rural, and field types. Next, the SUHII is obtained by calculating the average
LST difference between urban and nonurban areas (LST of rural/field/vegetation/water
body/surrounding buffer zones).

SUHI = LSTurban − LSTnon−urban (1)

where LSTurban refers to the average LST in urban areas, and LSTnon−urban refers to the
average LST in nonurban areas.

An administrative boundary is an important unit of regional social and economic
statistics, and it is used to divide urban and nonurban areas and to highlight the impact
of human activities on the urban thermal environment. The level of urban development
and construction can also be identified using built-up intensity (BI), impervious surface
area (ISA) density, Normalized Difference Vegetation Index (NDVI), and nighttime light
intensity data (such as DMSP/OLS), which can be distinguished from other areas based on
these indicators [57,58]. Additionally, fields, vegetation, and water bodies can be used as
representative pixels of nonurban areas [36,39,59], and the SUHII is obtained according to
the LST difference between urban and nonurban areas. Although the above methods can
clearly and quickly obtain the LST difference between urban and nonurban areas, there is a
certain degree of subjectivity and a lack of uniform standards and systems in the definition
of urban extent and the selection of rural or suburban pixels. This is because even if fields
with small urban height differences, stable planting structures, and soil properties far from
an urban center are selected, they cannot fully represent the characteristics and LST of
nonurban areas. With rapid urbanization, construction land in different countries and
regions is expanding significantly, different land types are transforming, and the boundary
between urban and rural areas is gradually blurring. Consequently, defining urban and
rural areas, selecting representative rural pixels, and choosing appropriate thresholds to
make SUHIs comparable in different cities or at different stages remain hot topics for
academic discussion [13]. Currently, research on SUHIs based on the local climate zones
(LCZs) theory is gradually increasing [25,60,61]. For instance, some studies measured the
SUHII of each LCZ as the LST difference between the item and the low vegetation type [62].
The advantage of the LCZs method is that it considers the influence of 3D urban building
forms on the SUHI, which is more objective and scientific than previous studies that only
considered the 2D layout of the city.
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Peng et al. [35] defined urban areas based on a urban clustering algorithm, defined
suburban areas as all nonurban pixels (excluding water pixels) within a ring around urban
areas, and compared the heat island intensities of equal, smaller, and larger suburban
areas (as 100%, 50%, and 150% of urban areas, respectively). Additionally, NDVI, ISA, BI,
and other indicators can be used to determine urban areas, and the difference between
the determined LST of urban areas and the average LST within the surrounding n km
buffer zone was taken as the SUHII. The advantage of this type of method is that it can
make the heat island intensity of different periods horizontally comparable; therefore, it is
widely used in SUHII research, but its disadvantage is that it has not explored a universal
buffer width for the time being. The question that needs to be considered is what buffer
width should be chosen for different study areas to better analyze the SUHII. Chakraborty
et al. [32] developed a simplified urban extent (SUE) algorithm, which has the advantage of
automatically calculating the SUHII on a global scale and no need of dividing urban areas
from nonurban areas by defining buffers, as it is based on cloud computing with big data
and can minimize the differences in the SUHII due to urban–rural selection. However, this
method requires the testing of multiple remote sensing datasets to ensure the accuracy of
the algorithm.

4.2. LST/BT Grading Method

Among the 181 articles in the CNKI database, the most frequently used method was
the LST/BT grading method, which classifies the SUHI using one or more LST (or BT)
images and treats high-temperature areas as heat island areas. The division methods mainly
include the mean value and standard deviation, natural breakpoint, and equal-interval
methods [15]. Lu et al. [15] classified the urban LST in Beijing using five classification
methods and investigated the robustness of the five classification methods in terms of
defining urban heat island patches. The LST/BT grading method can accurately iden-
tify the distribution of the SUHI in the study area and visually compare the spatial and
temporal evolutionary characteristics of the SUHI during different periods using thermal
infrared images of different periods. However, it can only classify the study area into
different temperature classes using a certain classification index and can quickly identify
the distribution characteristics of heat island areas. If a comprehensive and detailed SUHII
of the study area is required, it must be combined with the Heat Island Index for calculation.
The Heat Island Index method is described in the following sections.

4.3. Heat Island Index

The Heat Island Index method includes the URI, UTFVI, MUI, and WAUI.
Xu et al. [43] introduced the URI (Equation (2)) in a quantitative study of the UHI

changes in Xiamen City, which solved the problem of comparing the thermal infrared
images from different periods. The URI is often combined with the LST/BT grading
method, which has the advantage of reflecting changes in the SUHI in a more objective and
quantitative manner. The equation can be expressed as:

URI =
1

100m

n

∑
i=1

wi pi (2)

where m is the level of normalization, i is the LST grade of the urban area over the suburban
area, n wi is the number of grades of the urban area over the suburban area, is the weight
value of class i, and pi is the area percentage of class i.

The UTFVI [44] is used to quantitatively analyze the heat island effect, and it can
clearly determine the range and location of the high- or low-temperature heat distribution
in an image. It can be expressed as:

UTFVI =
T − Tmean

Tmean
(3)
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where T is the LST of a point in the city, and Tmean is the average LST of the urban area.
The MUI (Equation (4)) and WAUI (Equation (5)) are two important indicators for

characterizing the SUHII [45]. One is the difference between the maximum and minimum
LST values in the study area, and the other is calculated using the average temperature of
the urban area as the base and utilizing the average temperature of each class area and its
percentage. These can be expressed as:

MUI = Tmax − Tmin (4)

where Tmax is the maximum LST, and Tmin is the minimum LST.

WAUI =
(
T1avg − T0avg

)
× A1 +

(
T2avg − T0avg

)
× A2 +

(
T3avg − T0avg

)
× A3

+
(
T4avg − T0avg

)
× A4 +

(
T5avg − T0avg

)
× A5

(5)

where T1avg–T5avg are the LSTs from the high-temperature areas to the low-temperature
areas, T0avg is the average LST of the urban area, and A1–A5 are the percentages of the
built-up areas from the high- to low-temperature areas.

4.4. Statistical Models

Many statistical models have been applied in SUHI studies [46,47,63]. The Gaussian
surface model (GSM) performs well in quantifying the SUHI, and the spatial distribution
of heat islands can be described using a Gaussian surface superimposed on a flat rural
background. Compared with the traditional temperature dichotomy method, this method
can reduce the uncertainty between urban and rural boundaries; however, the GSM is not
suitable for the application of urban research in the form of multicore expansion construc-
tion and cannot adapt to the master planning requirements of polycentric development in
many cities at this stage. The kernel convolution method was applied to the LST images
and used to characterize the UHI effect [47]. Although it is efficient for characterizing
continuous surface space temperature values, it is easily affected by missing values in the
remote sensing images during processing. MI and Gi* are measures of spatial autocorre-
lation [48]. The use of these two indicators enables the identification and agglomeration
analysis of heat island ranges in the study area. However, the disadvantage is that they do
not consider the influence of natural factors, such as topography and land use type. The
kernel convolution model was applied to the LST images to characterize the UHI effect.
However, it is susceptible to missing values in remote sensing images during processing;
therefore, it is not widely used. Li et al. [50] indicated that the ISA can reflect the spatial
pattern of the SUHI, and the relationship between the LST and ISA can be a powerful tool
for quantifying the SUHII. Based on this, Li et al. proposed a method to study the slope of
the linear regression function of the LST and ISA as the SUHI, which avoids bias because
of the selection of urban and nonurban pixels and provides the possibility of a comparison
between different SUHIIs. Nevertheless, this method assumes that the LST increases with
the ISA, but it is not applicable for desert cities because the relationship between the LST
and ISA is not positively correlated, in addition to having a U-shaped structure [64].

5. Spatial and Temporal Distribution Characteristics of SUHI Research Methods
5.1. Analysis of Temporal Pattern of SUHI Research Methods

Figure 2 shows the results of the statistics on the number of new and accumulated
applications of various SUHI research methods over the years according to the number of
published articles per year.
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over the years.

Overall, the urban–water body method and MUI/WAUI were applied less, and the growth
trends of the SUHI research methods showed roughly the same trend as the overall number
of published articles. In the early stages of the study period (2002–2008), the LST/BT grading
method dominated the research method. In addition, the urban–rural, urban–field, URI, and
UTFVI methods were applied to a smaller extent. During the middle stage (2009–2018), the
application of the urban–rural, urban–buffer zone, urban–field, LST/BT grading method, URI,
and UTFVI methods gradually increased, and the application of the temperature dichotomy
method gradually matured. In 2015, Zhang et al. [45] calculated and analyzed the SUHII of
Chengdu city using the MUI/WAUI, which was an earlier application of this index. In 2012,
Stewart and Oke [65] analyzed a large number of UHI studies and proposed an LCZs system,
indicating that the method can compensate for the shortcomings of the traditional temperature
dichotomy method and clarify the correlation between urban morphology and temperature.
Initially, it was often used to study local temperatures in cities. Since 2017, it has gradually
been applied to SUHIs. In recent years (2019–2021), SUHI research has continued to increase,
with the temperature dichotomy method, especially the urban–rural dichotomy, still leading in
the frequency of application; further, the method has improved over time. It is worth noting
that while the LST/BT grading method has been used 109 times in total, it has mostly been
used for small-scale and single-city-wide research. A single LST retrieval method and heat
island classification method cannot meet the needs of diverse cities on a large scale. If all of
the cities included in the study were to choose different classification methods for heat island
identification and classification, it would certainly add a lot of extra effort, making the method
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much less useful. Therefore, as a result of the increased demand for research, the LST/BT
grading methods’ growth rates have slowed in recent years. In short, SUHI research methods
have gradually evolved from single and simple to varied and detailed.

5.2. Analysis of the Spatial Pattern of SUHI Research Methods

The research methods for SUHII were widely applied, as shown in the 487 papers, of
which 14 papers have a global scope of study, and most of the rest have national, city, and
urban clusters as the scale of study. According to Figure 3, the distribution of SUHI studies
in Asia is very large, particularly in China, which has far outpaced the literature (65.50%).
India comes in second with 5.34%. The SUHI-related research in North America is mainly
concentrated in the United States with a share of 4.11%. Some areas in these countries
have been widely studied and discussed owing to recent high levels of urbanization or
population explosions in recent years, and the UHI problem is prominent and significant.
The correlation between the number of people (Asia > Africa > Europe > North America
> South America > Oceania > Antarctica) and the number of SUHI studies from each
continent was generally positive, with the exception of Africa. Africa has the second largest
population worldwide, but there has been little research on SUHIs, mainly in the Nile and
delta regions [66,67]. This may be due to the low rate of urbanization in Africa, where
there is no significant difference in temperature between urban and rural areas [68], and
therefore, the heat island effect is less obvious and less of a concern.
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With respect to the application of different research methods in various countries
worldwide (Figure 4), SUHI studies are mainly conducted in Asia, Europe, and North
America. The research method using the urban–rural method as the SUHII is the most
widely applied in the world [69], with a total of 137 applications. This method has been
used more frequently in the United States, India, and England [70–72]. The urban–buffer
zone method as SUHI was applied 113 times, mainly in China, the United States, European
countries, and Eastern Africa [73–75]. Most articles that used several cities around the
world as the scope of the study used the urban–buffer zone method as the main means of
calculating the SUHII [34,35,76]. This is because this method expands a certain distance
outward from the center of the city, thus, delineating the buffer zone outside the built-up
area and minimizing errors among the different cities studied. The LST/BT grading method
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is primarily used in China, Iran, and India [77,78]. The urban–field method is mainly used
in the plains of China, Korea, and Japan [79,80]. The urban–vegetation method is mainly
applied in China, Brazil, and the Philippines [37]. Most of Brazil is covered by Amazon
rainforest, and the Philippine archipelago is rich in species of vegetation, with abundant
forests and jungles, while southeastern China is also rich in vegetation resources; therefore,
the urban–vegetation method can be applied to calculate the SUHII in areas with high
vegetation cover. The urban–water body method can generally be applied to study areas
with larger lakes to measure the SUHII by comparing the differences in the LST between
urban areas and lakes, such as Taihu Lake in Suzhou and Zalew Zegrzyński Lake in Warsaw,
Poland [39]. The LCZs method is currently applied mostly to the study of temperature and
other broad aspects and less often to the study of the SUHII [81,82]. A variety of SUHI
research methods are used in Asia, including China, Iran, and India, whereas authors in
Europe and North America prefer to use the urban–rural and urban–buffer zone methods.
It is worth noting that the most significant difference between China and other countries is
that the URI and UTFVI are heavily used in China, but fewer researchers in other countries
use these methods.
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China is the most studied country in SUHI research, with a frequency of 374 studies,
mostly by Chinese academics, and the research range is mainly based in municipal areas
and urban agglomerations [83,84], mostly in the Beijing–Tianjin–Hebei (BTH), Yangtze
River Delta (YRD), and Pearl River Delta (PRD) agglomerations; Guangdong–Hong Kong–
Macao Greater Bay Area (GBA); and provincial capitals. Therefore, in this paper, the
application of different research methods in different cities in China is summarized, as
shown in Figure 5. With a vast land area, crossing several climatic zones from south to north
and complex and diverse land use types, SUHIs have always been the focus of academic
research in China. Thirty-five studies were conducted at the national scale [74,85,86].
Among the municipal-scale studies, Beijing was the most frequently researched [87,88],
with 50 articles, accounting for 10.3% of the study area. As the capital of China and center
of political, cultural, scientific, and technological innovation, Beijing has witnessed radical
changes in urban development over the past decades, and the UHI phenomenon has
become increasingly serious [8], which has been widely noticed and studied by academics.
Additionally, Wuhan and Shanghai were selected as research regions by both domestic and
foreign researchers [23,89], accounting for 5.0% and 4.3%, respectively. All these cities are
characterized by large resident populations, rapid socioeconomic development, and high
urbanization rates.
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The urban–rural method was applied 59 times, for which Beijing and Shanghai were
more frequently used in domestic studies [84,89], accounting for 25.4% and 17.0%, respec-
tively, and the remaining provincial capitals also used this method more frequently [28].
Beijing, Shanghai, and provincial capitals, where the urban core is highly developed in
terms of construction, are more prominent in contrast to the rural or suburban areas in
terms of urbanization development; thus, using this method in these cities makes it easier
to filter out a suitable sample of urban and rural pixels to calculate the SUHII. Research
using the urban–field method has mainly been conducted in areas around the middle and
lower parts of the YRD and North China Plain [79,90]. These regions have repeatedly
been reorganized according to administrative divisions in recent years, resulting in the
division of urban and rural areas being limited only to the administrative-division level.
However, these areas have smooth surfaces and more croplands around cities; thus, the
SUHII can be calculated using this method. The city with the most applied urban–buffer
zone method was Beijing, especially within its fifth ring [91], because it has a layout of
concentric circles, with the core of the city expanding outward to establish a buffer zone,
which can be better spread to all areas. The LST/BT grading method is the most common
method for describing the SUHIs in various cities because it is simpler to calculate and
more universal. This method grades the LST of a region and defines high-temperature
areas as heat island areas. It can also reflect the spatiotemporal evolution patterns of a
SUHI using the LST in different periods, which is widely used in studies conducted at the
municipal scale, particularly in Fuzhou, Wuhan, Changsha, Hangzhou, and other regions,
with high application frequency [41,92]. The URI method often follows the LST/BT grading
method [93], because it describes the proportion and intensity of each class. The larger the
index, the more serious the UHI, and this method further illustrates the SUHII based on
the LST/BT grading method. The city where the UTFVI was most applied was Chongqing,
and it was generally applied more in the southern region than in the northern region [94].
Other methods are used less frequently, and they are applied in more dispersed cities; thus,
no obvious patterns can currently be analyzed.
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Further, we selected the top 14 cities (seven megacities: Shanghai, Beijing, Shenzhen,
Chongqing, Guangzhou, Chengdu, and Tianjin; seven supercities: Wuhan, Dongguan,
Xi’an, Hangzhou, Foshan, Nanjing, and Shenyang) in terms of the latest city ratings re-
leased by the National Bureau of Statistics to conduct a correlation study between the
application of the SUHI method and the research area (Figure 6). Beijing was far ahead in
terms of the number of articles published. Although Shanghai, Guangzhou, and Shenzhen
are all first-tier cities, they are often classified as urban agglomerations for research because
they are in the YRD or PRD agglomeration. Therefore, the number of studies conducted
at the municipal scale was low [95,96]. Even though Beijing is part of the BTH agglom-
eration, its development rate is substantially faster than that of neighboring cities, and
most studies have only used Beijing as the research area [40,97]. In contrast, fewer studies
have used Foshan and Dongguan city as research areas, mainly because they belong to
the PRD agglomeration and GBA, where the integrated development of city agglomera-
tions makes many researchers choose urban agglomeration as a research scale rather than
individual cities [98,99]. The highest number of SUHI studies among the megacities was
in Wuhan [30], probably because of the high number of relevant local research institutes,
academics, and significant research achievements. In terms of research methods, the most
widely used method in Beijing is the urban–rural dichotomy method, which accounts
for approximately one-third of the total [8,100]. The urban–buffer zone, urban–field, and
statistical models were also applied more frequently [87], but the results of the SUHII vary
owing to the method, and the quantitative portrayal of the UHI effect differs somewhat
among academics. The application of this method to calculate the SUHII using croplands
as rural representative pixels is limited by the topographic conditions in hilly areas, such
as in Chongqing and Dongguan; therefore, this method has not been used in these areas.
Furthermore, the LCZs method, which emerged in recent years, can quantify the impacts
of different urban forms on the UHI effect by correlating the urban form with the UHI.
However, this method is currently only applied in Beijing and Nanjing [40] and can be
applied to other large cities with greater development in future research to explore the
complex relationship between various LCZs and UHIs and provide a reference for more
detailed urban planning.
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6. Discussion

This review compiled and analyzed SUHI research from the last 20 years; however,
for the literature search, we only used the CNKI and WOS databases, which may not be
comprehensive. Furthermore, the search keywords chosen may have resulted in some
articles not being searched, potentially resulting in inaccuraciesin the research data and
results of this article. These are the limitations of this paper. Furthermore, we discovered
that while SUHI research has made significant advances over the last 20 years, there are
still several flaws and limitations in the research methodology and data sources that need
to be addressed further.

6.1. Limitations of the Research Methods

There are currently several methods for researching the SUHII, and the results vary.
Using urban–rural indicators, Haashemi et al. [13] discovered that in semi-arid cities, such
as Tehran, with the urban-rural indicator, a surface urban cool island may be observed in
daytime while SUHI at nighttime; with other indicators (urban-field and urban-water body
method), SUHI can be observed in both day and night. Schwarz et al. [14] quantified SUHIs
in the European region using three metrics and discovered that the explanatory power of
these models varied significantly. The method of dividing urban and nonurban areas is not
clear. For large range studies involving multiple cities, each city varies in size, population
density, construction intensity, and land cover type. Therefore, a single study method Is not
necessarily applicable to all cities. Zhou et al. [101] found that when calculating the SUHII,
if the method of dividing a city and other areas is different, the results will change, and
even the opposite result of switching from the cold island effect to the heat island effect will
occur. Liu et al. [22] estimated the SUHII for 281 Chinese cities using seven methods. The
results showed that changing the nonurban references changed the SUHII and the nature of
the observed surface thermal island (heat or cold) in 74% and 8% of the cities, respectively.
Although some statistical models exist to reduce errors caused by urban–rural divides,
many uncertainties remain [50]. As a result, it is critical to carefully select the SUHI research
methods for each city. Furthermore, it would be more constructive for SUHI research if
a methods system suitable for quantifying the SUHII at various scales worldwide was
constructed with different methods selected for diverse research and comparative analyses
according to different cities.

6.2. Unbalanced Distribution in the Research Area

On the one hand, as discussed in Section 5.2, SUHI research areas are mainly focused in
Asia, especially China and India. However, research in areas such as Africa, South America,
and Oceania has been limited. According to Zhou et al. [18], Africa, South America, and
India have a high urbanization potential and/or climate sensitivity. And in this century,
urban population growth and land expansion are expected to occur primarily in Africa and
Asia. This means that SUHIs in these areas necessitate additional research and attention.
According to our data, India had the second highest number of SUHI studies, but it was
still far behind China. However, India has experienced rapid population growth in recent
years, as well as an increase in the frequency of extreme heat events [102,103]. There is no
doubt that academics in India must increase the amount of SUHI research. The complexity
and diversity of climatic conditions in Africa make studying the impact of climate change
on regional SUHI equally important. On the other hand, there are only 14 articles with
a global scale (Section 5.2). The majority of research has been conducted at the scale of
individual cities or urban agglomerations, with little research conducted at the global and
intercontinental levels. This makes obtaining a complete picture of the spatial and temporal
variation patterns of SUHIs difficult. The issue of research scope is one that needs to be
addressed in the future.
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6.3. Lack Impact of LST Data on SUHI Research

The SUHI method mainly depends on the LST obtained from the thermal infrared
remote sensing technology; however, it is affected by cloud cover, and the lack of image
values seriously restricts the development of SUHI research [104,105]. SUHI is characterized
by transient variations, among which diurnal, interlunar, and interannual variations are
current research hotspots [106,107]. Therefore, it was necessary to acquire LST images
of the study area over multiple periods. If cloud cover causes a lack of values in LST
images, it restricts the study of spatiotemporal patterns and trends in SUHIs. Currently,
many academics are working to develop methods to reduce the impact of cloud cover
on LST retrieval. On the one hand, homomorphic filtering [108] and wavelet transform
methods [109] eliminate the effects of thin clouds, but these methods are less effective
at eliminating thick clouds. On the other hand, integrating multisource remote sensing
datasets and replacing images of areas with cloud-covered areas by fusing multitemporal,
multispectral, and multiplatform remote sensing images can make up for the shortcomings
of single images, but the spatial resolution of the reconstructed LST is low [110]. In
summary, although there are methods to reduce the impact of cloud cover on the LST, the
computational efficiency and accuracy can be improved. LST retrieval is affected by the
satellite orbital reentry period in addition to cloud cover. Most SUHI dynamics research
has concentrated on a single time node or typical time nodes in a diurnal and/or seasonal
cycle [111]. To address this limitation, Liu et al. [111] combined the annual temperature cycle
(ATC) and diurnal temperature cycle (DTC) models to study continuous seasonal/diurnal
SUHI in over 2000 cities worldwide. Furthermore, the accuracy of the LST retrieval must be
explored. Accuracy verification can be classified into temperature-based methods (T-based),
radiation-based methods (R-based), and cross-validation; however, all of these methods
have limitations [112]. The accuracy of the LST significantly affects the accuracy of the
SUHI. This means that many challenges remain in SUHI research.

6.4. Effect of Thermal Radiation Directionality on LST

Thermal radiation directionality (TRD) is one of the difficulties in the LST retrieval
process, which limits the progress of SUHI research [113]. Voogt et al. [114] carried a
helicopter with thermal infrared sensors and conducted aerial observations of downtown
Vancouver from different viewpoints, finding maximum temperature differences of up to
9 K in an urban area. At present, as there are few satellite remote sensing images of both
high temporal and spatial resolutions, and it is difficult to obtain data from large areas
for near-ground observation; it is more difficult to observe the same scene from different
angles simultaneously. Thus, the existing satellite products cannot meet the demand for
high accuracy in LST retrieval, which affects the accuracy of UHI research. Observational
experiments and model simulations are the two major current research tools used for the
TRD [115,116]. Platform-based observations, such as drones, can generate multi-angle
datasets of different surfaces at low cost and in a short amount of time or build a series of
models for simulation studies, such as radiative transfer models (RTMs), hybrid models
(HMs), 3D models, and kernel drive models (KDMs). However, these research methods
have advantages and disadvantages [113]: RTMs require too many input parameters, the
computational processes of HMs and 3D models are complex, the development of KDMs
is not advanced enough yet, and these models’ accuracy needs further validation. The
problem of normalizing the angular effect of the LST needs to be further addressed in
future research to better promote the UHI.

7. Conclusions

This article reviewed the number of published articles, research methods, and spatial
and temporal distribution characteristics of the study area from research over the last
20 years; summarized and analyzed from multiple dimensions; and drew the following
conclusions.
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The number of studies on SUHIs began to rise rapidly in 2009, which is closely related
to global warming and rapid urbanization, and people are highly concerned about the
sustainable development of society and enhancement of human well-being; academics all
over the world have researched SUHIs from various aspects and perspectives and made
significant advancements.

SUHI has been studied using various methods. The temperature dichotomy method
is the most widely used method globally in which the urban–rural method is the most
widely applied method for the SUHII; however, obtaining accurate definitions of urban and
rural areas is one of the main challenges. The LST/BT grading method is widely used in
China, and it can be used to quickly identify the spatial and temporal distributions of heat
islands in different periods and to compare and analyze their evolutionary characteristics.
Additionally, the method is usually combined with URI to quantify the statistics of heat
island classes and the SUHII. The application of statistical models is limited by topography,
elevation, and other conditions, making it difficult to satisfy the requirements for SUHII
comparisons in different cities.

The number of applications of various SUHI research methods was similar to the
number of publications on the growth trend over the years, and the research hotspots
were concentrated in China, India, Iran, the United States, and Western Europe. Most
studies were conducted in municipal areas, mainly those with high levels of economic
development, population density, and intensity of urban development and construction.
Areas with high levels of urbanization have obvious heat island effects, which are more
conducive to the analysis of spatial and temporal patterns and evolutionary characteristics.
According to the statistics on the application of different methods in different countries and
cities, the urban–rural method is used more frequently worldwide. The urban–field method
is mainly applied to plain areas, such as the middle and lower reaches of the YR Plain and
North China Plain, as well as plain areas in Korea and Japan, where the coverage by fields is
more abundant. Fields are used as a representative pixel of nonurban areas to describe the
condition of a SUHI. The urban–vegetation method is mainly applied in regions with high
vegetation cover, such as southeastern China and Brazilian tropical rainforests. However,
the application patterns of the SUHI research methods in China differ from those in other
countries. For instance, the LST/BT grading method is widely used in China and often
further quantifies the SUHI intensity using the URI or UTFVI; however, such research
methods are rarely used in other countries.
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