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Abstract: This study investigated the interdecadal characteristics of the frequency of the winter single
station extreme cold events (SSECEs) in North China and their relationship with sea surface tempera-
ture (SST). The results showed the following: (a) The SSECEs occurred frequently before 1991, but less
thereafter, with an increase after 2018. The first two interdecadal modes of the SSECE frequency were
east–west inverse and “n” patterns. (b) The interdecadal abrupt change of the “n” pattern occurred
around 1997/1998. Before 1997/1998, the synergistic effects between the positive Interdecadal Pacific
Oscillation (+IPO) and the negative North Atlantic Multidecadal Oscillation (−AMO) triggered the
“two troughs and one ridge” anomalous circulation in Eurasia. The Rossby wave energy propagated
downstream from the Atlantic, strengthening the Lake Baikal ridge. Furthermore, the Siberian High
(SH) became weaker in the north and stronger in the south. With the favorable jet conditions, the
cold air invaded North China along the northerly airflow in front of the Lake Baikal ridge, resulting
in the frequent SSECE occurrence in central North China. Afterwards, the opposite occurred. (c) The
cooperation of SST anomalies (SSTAs) led to the east–west inverse anomaly of the SSECE frequency.
Before 1991, the high SSTAs in the central North Atlantic and low SSTAs in the equatorial Indian
Ocean and the southwest Pacific triggered “+”, “−”, “+”, and “−” wave trains at mid-latitudes from
the Atlantic to the North Pacific. The Rossby wave energy propagated eastward from the Atlantic,
resulting in the SH and Urals ridge strengthening, and the Aleutian Low and East Asian trough
deepening. The northwestern airflow in front of the Urals ridge guided the cold air into North China,
leading to frequent SSECEs in central and eastern North China before 1991. The opposite occurred
between 1992 and 2018.

Keywords: winter in North China; frequency of extreme cold events; interdecadal anomaly; sea
surface temperature anomaly

1. Introduction

The IPCC AR6 points out that extreme weather and climate events are becoming more
frequent in the context of global warming [1–3]. In the mid-1980s, the winter temperature
in China exhibited a mutation signal, with particularly notable warming. Against this
backdrop of warming, extremely strong cooling events such as regional cold waves [4–6]
and national cold waves [7] have occurred frequently, with a wide range of impacts and a
long duration [8–12]. The accompanying disasters such as strong winds, rain, and snow
have caused great damage to people’s lives and property. Therefore, extreme cold wave
events have been a research focus for meteorologists in recent years.

There have been many studies on the frequency and intensity variation trends of cold
waves. Previous studies investigated [13,14] that the frequency of cold air activity was the
most in the 1970s, the least in the 1980s, followed by an increase in the 1990s; however, the
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intensity of cold air activity was the strongest in the 1980s. Kang et al. [7] pointed out that
cold wave activity showed a decreasing trend during the 1951–2006 period. Fu et al. [15]
revealed that there was also a reducing trend of cold waves in China during the winter half
year. Ma et al. [16] showed that the frequency of cold waves in China decreased during
1978–2009 compared with that during 1957–1977. In addition to a significant decrease
in cold wave events, there is also a significant weakening trend, with a reduction in the
colder climate extremes [17–19]. Wu and Du [6] believed that the frequency of strong and
moderate cold wave events has gradually decreased since the 1980s, but the frequency
of weak cold wave events has progressively increased. Xie and Lu [20] found that the
frequency and duration of mid-latitude cold wave events in Eurasia have increased in recent
years. The frequency variation trend of cold waves also has its regional characteristics,
such as a significant decrease in extreme low-temperature events in northwestern and
northeastern China [21–24]. However, the wintertime persistent low-temperature events
have increased in North China since 2000 [25]. Li et al. [26] further indicated that the winter
cold wave frequency in North China decreased significantly from 1980–2008, and increased
obviously from 2009–2016.

Previous studies have demonstrated that there are significant interdecadal variations
in China’s winter climate [27–29], and the most direct cause of this phenomenon is the
pulsation and variation of atmospheric circulation. The teleconnection patterns or wave
trains [30,31] in winter over the Northern Hemisphere exhibit distinct seasonal, interannual,
and interdecadal variations, and their propagation along the polar front and subtropical jets
has a significant impact on the Northern Hemisphere climate [32–34]. The teleconnection
wave trains were strong before the mid-1960s, weak in the mid-1970s, most active in the
mid-1980s, and then weakened again [35]. The Eurasian or Eurasia Pacific (EU or EUP)
teleconnection patterns are closely related to surface temperature and precipitation in
East Asia [36]. The large-scale baroclinic troughs/ridges at middle and high latitudes are
the key circulation systems triggering extremely strong cooling events [32,37,38]. With
the persistent development of the blocking high in the Urals and the long-term stable
maintenance of the East Asian trough, the cold air behind the trough can continuously
move southward, leading to low surface temperatures [23,39]. The strengthening and
expansion of the SH can cause cold air to move southward, resulting in extreme cold events
in Eurasia [40–42]. Atmospheric circulation systems such as the Arctic Oscillation (AO) [43]
and North Atlantic Oscillation (NAO) [44–47] also play an important role in the occurrence
and development of extreme cold events in East Asia.

The Pacific and North Atlantic SST are closely linked to the interdecadal variations
of atmospheric circulation and climate [48,49]. The mid-latitude air–sea coupled systems
in the North Pacific have distinct interdecadal oscillations [50,51]. The North Pacific SST
experienced a significant interdecadal transition around 1976/1977, known as the Pacific
Decadal Oscillation (PDO) [52]. The PDO can cause interdecadal changes in the Pacific
and surrounding regions (including China) [53–55]. When the PDO is in a warm episode,
it favors a cooler climate in East Asia [26,56,57]. McCabe et al. [58] pointed out that the
PDO is a component of the Interdecadal Pacific Oscillation (IPO) in the North Pacific.
Chen et al. [59] suggested that the IPO is basically symmetric along the equator, and the
spatial patterns can be represented by those of the development, maturity, and decaying
phases of the ENSO cycle. Dong and Dai [60] also considered the IPO to be a quasi-
oscillation occurring in the Pacific basin region. Additionally, the interdecadal increase
in winter temperature in China shows consistency with the increase in the central North
Atlantic SST [45,61]. The cold phase of the North Atlantic Multidecadal Oscillation (AMO)
corresponds to the cold winter in most parts of China [62,63].

In summary, there have been numerous studies on the interannual anomalies and
the long-term trends of the frequency of extreme cold events such as cold waves in China.
However, the research on their interdecadal spatial and temporal characteristics, and their
potential causes are still insufficient. North China is an important area for agricultural and
economic development and an important transportation hub in China, its central part is
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one of the four major centers affected by cold waves in China [64], and experiences the
greatest impact from extreme weather and climate [65]. This paper focuses on analyzing
the interdecadal spatiotemporal characteristics of the SSECE frequency in North China in
winter from 1980 to 2021, revealing the possible synergistic effects of the SSTAs on it, and
providing a valuable reference for winter disaster prevention and reduction in North China.

The remaining paper is organized as follows. Section 2 describes the data and methods
used in this paper. Section 3.1 introduces the major spatial and temporal modes of the
SSECE frequency interdecadal anomalies. Sections 3.2 and 3.3 reveal the possible causes of
SSTAs on the SSECE frequency in North China. Finally, conclusions and a discussion are
provided in Section 4.

2. Data and Methods
2.1. Data

The datasets used in this study include (a) the daily minimum temperature at 2480
stations provided by the National Meteorological Information Center of China; (b) the
global monthly reanalysis data of the sea level pressure (SLP) field, the 850 hPa temperature
and wind fields, the 500 hPa geopotential height field, and the 200 hPa zonal wind field,
provided by the United States National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR), with a resolution of 2.5◦ × 2.5◦ [66];
(c) the global monthly SST from the National Oceanic and Atmospheric Administration
(NOAA), with a 1.0◦ × 1.0◦ horizontal resolution [67]. All datasets cover the period from
1980–2021.

In this research, North China is defined within the region of 35–42.5◦ N, 110–120◦ E,
and winter is defined from December to February of the following year. To ensure the
continuity and completeness of the data, the stations with missing values are removed, and
396 stations are finally selected. The distribution of the stations is shown in Figure 1.
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2.2. Methods
2.2.1. Definition of the SSECE

Firstly, based on the regulations of “Cold Air Level” (GB/T 20484-2017) [68] and “Cold
Wave Level” (GB/T 21987-2017) [69] published by the National Meteorological Center of
China Meteorological Administration in 2017, a single station extreme cold event (SSECE)
is defined by a daily minimum air temperature lower than and equal to 4 ◦C and either
one of three conditions: a decrease by no less than 8 ◦C within 24 h, or a decrease by no
less than 10 ◦C within 48 h, or a decrease by no less than 12 ◦C within 72 h. The frequency
of the winter SSECEs in a given year is the total number of the SSECEs occurring from
December to February of the following year.
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2.2.2. Harmonic Analysis

Using harmonic analysis [70] to separate the interdecadal components of the time
series, the sample size of the data is 42.

The time series of the variables at a station is represented as

x
(
ty
)
, ty = 1 ∼ 42 (1)

ty represents the annual sequence (1, 2,· · · , m), from which the 42-yr average is obtained:

x =
1

42∑42
ty=1 x

(
ty
)

(2)

The anomaly sequence for a period of 42 years is represented as

x′
(
ty
)
= x

(
ty
)
− x, ty = 1 ∼ 42 (3)

Then the complete harmonic analysis on x′
(
ty
)

is decomposed as

x′
(
ty
)
= ∑21

k=1 akcos ωkty + bksin ωkty (4)

k is the wave number, the angular frequency of wave k is ωk (ωk = 2π/Tk), and the
period is Tk (Tk = 42/k).

The k = 1~4 waves (period ≥ 10.5 years) are slow change waves (corresponding
to the interdecadal variation), consequently, x′

(
ty
)

is decomposed into an interdecadal
variation part:

x′s
(
ty
)
= ∑4

k=1 akcos ωkty + bksin ωkty (5)

Field set x′s
(
ty
)

is the object of direct analysis, and for the simple size 42, which
contains 4 sine waves and 4 cosine waves, the degree of freedom is 8.

2.2.3. Pearson Correlation Coefficient and Partial Correlation Coefficient

The Pearson correlation coefficient [71] is a statistical method to accurately measure
the correlation of the relationship between two variables. If n pairs of observations of two-
dimensional climate variables (x1,y1), (x2,y2), . . ., (xn,yn) are set, the Pearson correlation
coefficient rxy is

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(6)

where x and y are the mean values of sequence x and y, respectively. The range of
rxy is 0 ≤ |rxy| ≤ 1. rxy > 0 means positive correlation and rxy < 0 means negative corre-
lation. The Student’s t-test method is used to determine the statistical significance of the
correlation coefficients.

Partial correlation analysis [72,73] can exclude the influence of other variables and
reflect the potential correlation between the two considered variables. In multivariate corre-
lation analysis, if the interaction among variables is so complex that the Pearson correlation
coefficient cannot truly reflect the correlation between variables, partial correlation analysis
is a suitable method.

The correlation matrix between m variables and y is as follows:

m+1Rm+1 =


r11 r12 · · · r1m r1y
r21 r22 · · · r2m r2y
...

...
...

...
...

rm1 rm2 · · · rmm rmy
ry1 ry2 · · · rym ryy

 (7)
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rij(i = 1, 2, · · · , m;j = 1, 2, · · · , m) is the Pearson correlation coefficient between the
variables xi and xj, and riy (i = 1, 2, · · · , m) is the Pearson correlation coefficient between
the variables xi and y. R is referred to as the correlation matrix, which is a symmetric square
matrix of order m + 1 with diagonal elements equal to 1.

The partial correlation coefficient can be calculated in terms of the following formula:

ryi·12···m = −
R∗yi√
R∗yyR∗ii

i = 1, 2, · · · , m (8)

The quantities following the black dots in the subscripts indicate the variables whose
effects should be eliminated. R∗ii represents the algebraic cofactor obtained by removing the
i-th row and i-th column from the correlation matrix. R∗yi represents the algebraic cofactor
obtained by removing the (m + 1)-th row and i-th column from the correlation matrix. R∗yy
represents the algebraic cofactor obtained by removing the (m + 1)-th row and (m + 1)-th
column from the correlation matrix.

2.2.4. Rossby Wave Activity Flux

To explore the atmospheric teleconnections associated with SSECEs, the Rossby wave
activity flux (WAF) was calculated following the formula proposed by Takaya and Naka-
mura [74]:

W =
1

2|
–
U |

 ū
(
ψ′2x − ψ′ψxx

)
+ v̄
(

ψ′xψ′y − ψ′ψxy

)
ū
(

ψ′xψ′y − ψ′ψ′xy

)
+ v̄
(

ψ′2y − ψ′ψ′yy

) (9)

Among them, ψ and U = (u, v) represent the stream function and the horizontal wind,
respectively, and W denotes the two-dimensional Rossby WAF. The overbar and the prime
represent the climatological mean and the anomaly, respectively.

In addition, statistical analysis methods including correlation, simple linear regression,
harmonic analysis, and Empirical Orthogonal Function (EOF) Analysis and Singular Value
Decomposition (SVD) are mainly used in this paper [75–77]. The North criterion [78] is
used to test the EOF eigenvectors, and the Student’s t-test is performed on the results of the
linear regression analysis.

3. Results
3.1. The Spatiotemporal Characteristics of the Interdecadal SSECE Frequency
3.1.1. The Basic Interdecadal Characteristics

Figure 2a shows the standardized time series of the winter regional average SSECE
frequency, and its interdecadal components in North China during 1980–2021, with a 13.2%
contribution ratio for total variances of the SSECE frequency. It can be seen that there is not
only interannual but also significant interdecadal variation in the frequency. Based on the
harmonic analysis series (curve), the period from 1980 to 1991 was characterized as frequent
SSECEs, followed by a transitional stage between 1992 and 1999; the SSECEs occurred less
from 2000 to 2017 and have shown an increasing trend since 2018. The extremely high
value of the frequency in 2008/2009 was due to large amounts of cold air traveling down
from upper levels, resulting in the significant temperature variability [79].

For each station, the difference between the minimum temperature at the start and
end days of the cooling process is defined as the cooling amplitude of the station. From the
distribution of the cooling amplitude averaged by all SSECEs during 1980–2021 (Figure 2b),
it can be seen that the largest value center of the averaged cooling amplitude is mainly
located in the northwest, i.e., the border between Shaanxi, Inner Mongolia, and Shanxi. The
northeast and southeast also show a significant cooling amplitude.
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Figure 2. (a) Standardized time series of the winter regional average SSECE frequency (histogram)
and its interdecadal components (curve) in North China from 1980 to 2021, dashed line represents 0.8.
(b) Spatial distribution of averaged cooling amplitude of all SSECEs during 1980–2021 (unit: ◦C).

In order to better distinguish the main features of these three periods, take ±0.8 as the
standard for the standardized time series of the winter regional average SSECE frequency
(Figure 2a). For the frequent period of 1980–1991, the standardized values of the SSECE
frequency series ≥+0.8 are recorded as typical frequent years (1980, 1982, 1986, 1987). The
transitional periods are still selected for all years in the 1992–1999 period. The standardized
values ≤−0.8 during the infrequent period 2000–2017 are selected as typical infrequent
years (2001, 2003, 2004, 2006, 2007, 2017). The spatial distribution of the SSECE frequency
averaged by the typical years over the three periods (Figure 3) is further given. It can be
seen that the frequency of the SSECEs decreases from the northwest to the southeast. The
range of the largest value areas (≥5) in the frequent period (Figure 3a) is the largest, mainly
located in Inner Mongolia and its neighboring provinces, the smallest in the infrequent
period (Figure 3c).
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3.1.2. The Interdecadal Spatial and Temporal Modes of the SSECE Frequency

In order to further understand the major spatial and temporal characteristics of the
SSECE frequency interdecadal anomalies, an EOF analysis is performed on standardized
interdecadal components of the frequency (Figure 4). The variance explained by the first
four EOFs is 27.01%, 19.09%, 15%, and 10.89%, respectively. Utilizing the criteria established
by North et al. [78], it is determined that all four modes are statistically significant. The
next section will focus on analyzing the first and second modes, which have larger variance
contributions, and will give physical explanations for these two modes.

The first EOF eigenvector (Figure 4a) shows an inverse dipole distribution in the
central–eastern and western regions of North China (referred to as the “east-west” inverse
dipole pattern). Combining its time coefficient series (Figure 4e), it can be seen that the
SSECE frequency in the central and eastern parts of North China was relatively more before
1991, then less until 2017, and has increased since 2018. The correlation coefficient between
the EOF temporal coefficient series and the interdecadal components of the regional average
SSECE frequency in North China (Figure 2) is 0.83, significant at the 99% confidence level.
It indicates that the first mode basically reflects the most vital interdecadal characteristics
of the SSECE frequency.
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The second eigenvector (Figure 4b) exhibits an inverse phase distribution in the central
and the other regions of North China, with a shape similar to “n”. For convenience, it is
hereinafter referred to as the “n” pattern. The temporal coefficient series (Figure 4f) shows
an interdecadal transition around 1998. This mode shows that there are more SSECEs in
central North China and fewer in other regions before 1998, but essentially the opposite
after 1999.

The third eigenvector (Figure 4c) presents a north–south inverse dipole distribution,
and the most significant interdecadal transition of the temporal coefficient (Figure 4g) is in
1990. The fourth eigenvector has a “saddle-like” distribution, and the temporal coefficient
shows an interdecadal oscillation of about 10 years.

In sum, the SSECE frequency in North China has obvious interdecadal characteristics,
with more occurrence of the SSECEs during 1980–1991, less during 1992–2017, and an
increasing trend from 2018 to the present. The frequency decreases from northwest to
southeast. The interdecadal components of the SSECE frequency mainly have the spatial
distribution of an east–west inverse dipole pattern, “n” pattern, north–south inverse dipole
pattern, and “saddle-like” pattern. The first mode, namely the east–west inverse dipole
pattern, can best reflect the overall interdecadal characteristics of the SSECE frequency. The
possible influence of SST on the interdecadal anomalies of the first and second modes of
the SSECE frequency EOF is mainly analyzed in the following sections.
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3.2. Possible Causes of the “n” Pattern in the SSECE Frequency

Climate anomalies are often closely associated with external forcing anomalies and their
triggering atmospheric circulation. In order to explore the possible causes of the interdecadal
anomalies of the SSECE frequency in North China, the interdecadal anomaly coupling relation-
ship among the winter SST, 500 hPa geopotential height field (H500), and SSECE frequency in
North China are studied by the SVD method, respectively, and the interdecadal characteristics
of the corresponding atmospheric circulation are further analyzed.

3.2.1. Interdecadal Coupled Modes of SST, SSECE Frequency, and H500

Figure 5 shows the heterogeneous correlation fields and temporal coefficients of the
first SVD mode between the interdecadal components of SST and SSECEs, which account
for 52.14% of the total covariance. The temporal coefficient series (Figure 5c) takes a
significant interdecadal transition around 1997. Combining the first mode heterogeneous
correlation fields (Figure 5a,b), it is clear that the Pacific SST is in the warm phase of the
Interdecadal Pacific Oscillation (+IPO) and the North Atlantic SST is in the cold phase of
the Atlantic Multidecadal Oscillation (−AMO) (Figure 5a) before 1997. The synergistic
effect of +IPO and −AMO resulted in the frequent SSECEs in central North China, but less
in eastern, western, and northern parts of North China, and vice versa after 1997.
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series from 1980–2021 (c). The dotted areas are statistically significant at the 95% confidence level.

By comparing Figure 5b,c with Figure 4b,f, it is found that the spatial pattern of
the SSECE frequency coupled with SST (Figure 5b) is very similar to the EOF second
eigenvector of the SSECE frequency (Figure 4b). Additionally, the interdecadal transition
points of the temporal coefficients (Figures 4f and 5c) are both around 1997. It can be
concluded that the synergistic effect of +IPO (−IPO) and −AMO (+AMO) may be the main
reason for the “n” pattern interdecadal anomaly of the SSECE frequency.

Furthermore, the SVD heterogeneous correlations of the interdecadal components of
SST and H500 (Figure 6), and H500 and SSECE frequency (Figure 7) in winter are given,
which account for 68.39% and 53.66% of the total covariance, respectively. The temporal
coefficients (Figures 6c and 7c) exhibit an interdecadal transition around 1997 and 1998,
which is basically consistent with the interdecadal transition time of the coupled mode of
SST and SSECE frequency (Figure 5c). Comparing the same element field in Figures 5–7, it
is found that their distributions are very similar, indicating that the interdecadal anomalies
of the three elements are closely correlated.
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The interaction between +IPO and −AMO (Figures 5a and 6a) SSTAs generated a
teleconnection wave train or pattern from the tropical Pacific via the Atlantic to Eurasia
at H500 before 1997/1998, with positive Pacific North American (+PNA), positive North
Atlantic Oscillation (+NAO), and negative Eurasia Pacific (−EUP) teleconnection wave
train. The Eurasian mid-latitude meridional circulation anomaly strengthens, with the Ural
trough deeper, the East Asian trough deeper toward the west, and the Lake Baikal ridge
stronger (Figures 6b and 7a). The anomalous northerly airflow in front of the Lake Baikal
ridge and behind the East Asian trough guides the cold air from high latitudes southward
to North China, resulting in the frequent occurrence of the SSECEs in central North China
(Figures 5b and 7b), and vice versa after 1997/1998.

3.2.2. Interdecadal Characteristics of the Atmospheric Circulation in the Upper and
Lower Troposphere

To further understand the configuration characteristics of the upper and lower tro-
pospheric atmospheric circulation before and after the interdecadal transition, the SST
temporal coefficient of the SVD first mode between the interdecadal components of SST
and SSECE frequency (Figure 5c) is used to regress on the interdecadal fields of the at-
mospheric circulation variables in winter (Figure 8). It can be seen that in the SLP field
(Figure 8a), there are negative and positive anomalies in the higher and lower latitudes
of Eurasia, respectively, the SH is weaker in the north and stronger in the south, and the
southward Aleutian Low is deeper. The distribution of the H500 (Figure 8b) is similar to
that in Figures 6b and 7a. There exists a Rossby wave train from the tropical Pacific via
the Atlantic to Eurasia, which transports energy from the Atlantic along Eurasia to East
Asia, deepening the Urals trough and the East Asian trough, and strengthening the Lake
Baikal ridge. The above wave trains in SLP and H500 are similar to those found in Liess
et al. ([31] see their Figure 1a,b); further discussion can be found in Section 4.2. A cold air
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stack in the 850 hPa temperature anomalous field (T850) (Figure 8c) lies near the Barents
Sea and Novaya Zemlya, providing conditions for the southward eruption of cold air. The
850 hPa wind field (UV850) and H500 basically show a quasi-barotropic structure. North
China is controlled by the northerly flow in front of the anomalous anticyclone. In the
200 hPa zonal wind field (U200) (Figure 8d), the polar front jet is strong, which facilitates
the eastward propagation of cold air masses over high latitudes, and the subtropical jet is
weak, which is conducive to the southward movement of cold air. The cooperation of the
above circulation anomalies in the high and low troposphere is favorable for cold air from
the polar region to invade North China via the Barents Sea, West Siberia, Central Siberia,
and along the northerly flow in front of the Lake Baikal ridge, resulting in frequent SSECEs
in North China.
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Figure 8. Linear regression coefficients of the first SVD SST temporal coefficient between the inter-
decadal components of SST and SSECE frequency on the (a) SLP (unit: hPa), (b) H500 (shading, unit:
gpm) and T-N wave activity flux (vector, unit: m2/s2), (c) T850 (shading, unit: ◦C, the blank area is
the Tibetan Plateau) and UV850 (vector, unit: m/s), (d) U200 (unit: m/s) fields in winter. The red
rectangle shows the location of North China. The areas with dots represent statistical significance at
the 90% confidence level based on the Student’s t-test.

The EOF second temporal coefficient of the interdecadal components of the SSECE
frequency is used to regress on the interdecadal fields of the atmospheric circulation
variables in winter; the results (Figure omitted) are very similar to Figure 8. This further
indicates that the synergistic effect of IPO- and AMO-type SST anomalies caused the
interdecadal anomalies in the upper and lower tropospheric atmospheric circulation around
1997/1998, which led to the “n” pattern interdecadal oscillation of the SSECE frequency in
North China.

3.3. Possible Causes of the East–West Inverse Anomalous Mode in the SSECE Frequency

Section 3.2 discusses the main reasons for the EOF second mode of the interdecadal
anomaly of the SSECE frequency (i.e., “n” pattern). What are the possible reasons for the
EOF first mode anomaly of the SSECE frequency (i.e., “east-west” inverse dipole pattern)?
Previous studies have been shown that Pacific, Atlantic, and Indian Ocean [62,80,81] SSTAs
are closely related to China’s winter temperature. So, this section will still discuss this issue
by considering the impact of the SSTAs in the three oceans.

3.3.1. Definition of SST Index

In the following, the Pearson correlation coefficients and partial correlation coefficients
between the EOF first Principal Component (PC1) of the SSECE frequency and SST field
are compared and analyzed, in order to explore the potential correlation between them.
Firstly, the regression coefficients (Figure 9a) of the PC1 (Figure 4e) and the interdecadal
components of the SST field in winter are calculated. It can be seen that there are significant
negative correlation regions in the equatorial Indian Ocean (1–13◦ S, 63–94◦ E) and (1–13◦ S,
105–130◦ E), the tropical southwest Pacific (9–21◦ S, 146–180◦W) and (16–25◦ S, 110–137◦W),
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and the central North Atlantic (31–39◦ N, 38–61◦ W). The above regions are selected as SST
key areas. If two key subareas are contained in an ocean, the subareas will be combined as
one. Then, the regional average SST standardized anomaly series in the key regions are
defined as the SST index for the Indian Ocean, Pacific, and Atlantic, and noted as IInd, IPa,
and IAtl, respectively.
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3.3.2. Correlation between the SST Index and PC1

The Pearson correlation coefficients and partial correlation coefficients among the four
factors IInd, IPa, IAtl, and PC1 are calculated (Table 1). The Pearson correlation coefficients
(−0.70, −0.75) and partial correlation coefficients (−0.69, −0.75) between IInd, IPa, and PC1
are very close or equal, which indicates that there is a potential negative correlation between
SST and PC1 in the Indian Ocean and Pacific. The partial correlation coefficient between
IAtl and PC1 is 0.63, indicating that there is a potentially significant positive correlation
between Atlantic SST and PC1, but the Pearson correlation coefficient between the two is
−0.57; what is the reason for this difference? The partial correlation coefficients of three
factors between IAtl and IInd and IPa are further calculated and show significant positive
correlations of 0.83 and 0.8, respectively. However, the IInd and IPa both have a significantly
negative correlation with PC1. Therefore, under the combined influence of IInd and IPa, the
Pearson correlation coefficient of IAtl and PC1 is negative, which includes the influence of
IInd and IPa on PC1.

Table 1. Pearson correlation coefficients and partial correlation coefficients among IInd, IPa, IAtl, ISST,
and PC1 of the SSECE frequency.

Pearson Correlation Coefficients Partial Correlation Coefficients

IInd −0.70 ** −0.69 **
IPa −0.75 ** −0.75 **
IAtl −0.57 * 0.63 **
ISST 0.88 ** —

* and ** represent statistical significance at the 90% or 95% confidence level using Student’s t-test, respectively.

The Pearson correlation coefficient can reflect the linear correlation between two
variables, but this relationship may contain the influence of other factors. However, the
partial correlation coefficient can remove the influence of some factors to reflect the potential
correlation between two variables. The SST index ISST is defined to comprehensively reflect
the synergistic effect of three ocean SSTAs according to the partial correlation coefficients
among IInd, IPa, IAtl, and PC1 of the SSECE frequency (Table 1). The absolute values of
the partial correlation coefficients exhibit minor differences, indicating a comparable level
of correlation between PC1 and IInd, IPa, and IAtl. Therefore, the SST composite index is
defined using the equal weighting coefficient of 1

3 :

ISST =
1
3

IAtl −
1
3

IInd −
1
3

IPa
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For the Pearson correlation coefficients between ISST and the PC1 of the SSECE fre-
quency, the interdecadal components of the SSECE frequency are 0.88 and 0.71, which
are significant at the 99% and 95% confidence level, respectively, indicating that ISST is
closely correlated with the SSECE frequency interdecadal anomaly, especially the first EOF
mode anomaly. The correlation coefficient distribution between ISST and the interdecadal
components of the SSECE frequency in North China is further calculated (Figure 9b). It
can be seen that the distribution pattern is very similar to the first EOF eigenvector of the
SSECE frequency (Figure 4a), which indicates that when the SST is high in the central North
Atlantic and low in the tropical southwest Pacific and the equatorial Indian Ocean in winter,
the SSECE frequency in North China will be more in the central and eastern parts and less
in the west.

3.3.3. Correlation between SST Index and Atmospheric Circulation Elements

The most direct cause of the interdecadal anomaly of the winter SSECE frequency
in North China is the interdecadal anomaly of the atmospheric circulation. What are
the characteristics of the interdecadal anomaly of the atmospheric circulation caused by
the synergistic effect of the three oceans? For this purpose, the regression coefficients
between ISST and the interdecadal fields of the winter atmospheric circulation elements are
calculated (Figure 10). As shown in the figure, when the SST is high in the central North
Atlantic and low in the equatorial Indian Ocean and tropical southwest Pacific, the SLP
field (Figure 10a) exhibits an anomalous distribution of “+”, “−”, “+”, and “−” from the
Atlantic to the North Pacific at mid-latitudes, with the SH and Aleutian Low being stronger
and located to the south. The corresponding H500 (Figure 10b) also presents a “+”, “−”,
“+”, and “−” anomalous circulation at mid-latitudes from the Atlantic to the North Pacific.
The Rossby wave energy propagates eastward from the Atlantic, resulting in a stronger
blocking high in the Urals and a deeper East Asian trough with a westerly position. In the
T850 and UV850 (Figure 10c), there is a cold air pile near Novaya Zemlya, which provides
conditions for cold air to erupt southward. North China is controlled by a northerly airflow
in the southern part of an anomalous cyclonic circulation. The East Asia temperate jet in the
U200 (Figure 10d) is weak, which is conducive to the invasion of cold air at high latitudes
into North China, and the strong subtropical jet is conducive to the accumulation of cold
air in North China. The northwestern airflow in front of the Urals ridge and behind the
East Asian trough guides the cold air in the lower levels into North China from the pole
regions via the Novaya Zemlya, Western Siberia, and Inner Mongolia, resulting in frequent
SSECEs in the central and eastern parts of North China in winter.
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To summarize, this section focuses on the analysis of the “n” and east–west patterns of
the SSECE frequency. The interdecadal abrupt change of the “n” pattern occurred around
1997/1998. The synergistic effects between +IPO and −AMO led to Lake Baikal ridge
strengthening and the SH being weaker in the north and stronger in the south, resulting in
the frequent SSECE occurrence in central North China. For the “east-west” inverse dipole
pattern, the synergistic effects among the higher SST in the central North Atlantic and lower
SST in the equatorial Indian Ocean and the tropical southwest Pacific triggered the Rossby
wave energy propagating eastward from the North Atlantic, which caused the stronger
Urals blocking high and deeper East Asian trough being located westward, leading to the
frequent occurrence of the SSECEs in winter in central-eastern China before 1991, with the
opposite being true between 1992 and 2018.

4. Conclusions and Discussion
4.1. Conclusions

In this paper, the spatial and temporal characteristics of the interdecadal anomalies of
the winter SSECE frequency in North China are analyzed, and the possible influences of
the interdecadal SSTAs in the Pacific, Atlantic, and Indian Ocean on the SSECE frequency
are discussed. The main conclusions are as follows:

(a) The SSECE frequency in North China showed an interdecadal transition around 1991,
with frequent occurrence before 1991, less from 1992 to 2017, and increasing again
since 2018. The frequency of SSECEs decreases from northwest to southeast. The
interdecadal distributions of the SSECE frequency mainly include east–west inverse
dipole mode, “n” mode, north-south inverse dipole mode, and “saddle-like” mode.
The interdecadal transition point of the first mode, namely the east–west inverse
dipole mode, is consistent with that of the regional average SSECE frequency in North
China, and the transition point of the second mode is around 1997/1998.

(b) The synergistic effects of the IPO and AMO SST interdecadal anomalies may be the
main reason for the “n” mode interdecadal anomalies of the SSECE frequency. Before
1997/1998, the synergisms of +IPO and −AMO stimulated the teleconnection wave
train from the Pacific to Eurasia. The −EUP pattern circulation anomaly of “two
troughs and one ridge” in Eurasia propagated Rossby wave energy from upstream to
downstream, deepening the Urals trough and the East Asian trough, strengthening
the Lake Baikal blocking High, weakening the SH in the north and strengthening in
the south, combined with the strong temperate jet and weak subtropical jet in the
upper troposphere. As a result, the polar cold air invades North China via the Barents
Sea, West Siberia, Central Siberia, and along the northward flow in front of the Lake
Baikal ridge, resulting in frequent SSECEs in central North China in winter. The
opposite is true after 1997/1998.

(c) The synergistic effects of SSTAs among the Indian Ocean, Pacific, and North Atlantic
may be an important reason for the east–west reverse dipole interdecadal anomaly
of the SSECE frequency in North China in winter. Before 1991, the SST in the central
North Atlantic was higher, and lower in the equatorial Indian Ocean and the tropical
southwest Pacific, which caused a “+”, “−”, “+”, and “−” anomalous wave trains
at mid-latitudes from the Atlantic to the North Pacific in the middle and lower
troposphere. The Rossby wave energy propagated eastward from the North Atlantic,
resulting in the stronger SH, and deeper Aleutian Low with a southerly location,
stronger Urals blocking high, and deeper East Asian trough being located westward.
The northerly airflow in front of the Urals ridge and behind the East Asian trough
guided the polar cold air to travel southward along Novaya Zemlya, Western Siberian
Plain, Inner Mongolia, and to reach North China, leading to the frequent occurrence
of SSECEs in winter in central-eastern China before 1991, the opposite is true between
1992 and 2018.
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4.2. Discussion

Previous studies [26] have mainly explored the influences of the interannual mid-latitude
SSTAs on the winter SSECE frequency in North China. The interaction between the “El-
Niño-like” SSTAs in the North Pacific and the “reversed C” negative anomalies in the North
Atlantic in winter lead to a significant increase in the SSECE frequency in North China. This
paper further analyzes the interdecadal characteristics of the SSECE frequency, focusing on the
possible causes of the east–west inverse and “n” patterns. The interaction between IPO and
AMO may be the main reason for the “n” pattern of the SSECE frequency. The cooperation
of the SSTAs in the North Atlantic, the equatorial Indian Ocean, and the tropical southwest
Pacific lead to the east–west inverse anomaly of the SSECE frequency in North China.

Liess et al. [31] show that a circumglobal wave train originates in the subtropical Atlantic
and propagates northeastward toward the north of the West Siberian Plain, where it becomes
deflected southeastward through central Asia and southern East Asia. Two positive anomalies
in geopotential height over eastern Europe and Lake Baikal indicate the incoming and outgo-
ing ends of the deflected Rossby wave train. This wave train resembles that which is detected
in the present study (Figure 8), which causes the “n” pattern interdecadal anomaly of the
SSECE frequency. This wave train reveals the existence of the subtropical bridge between the
tropical eastern Pacific and subtropical North Atlantic [82,83]. In general, the AMO influence
on Rossby wave activity in the subtropical North Atlantic suggests a multidecadal component
in the detected wave train [31]; they find a link between AMO and the background state of
ENSO. The IPO is the interdecadal variation of ENSO [84], this present study further suggests
the interaction of IPO and AMO in triggering a similar wave train related to affect an “n”
pattern on an interdecadal scale (Figures 6 and 7).

Hu and Feng [85] suggest that the AMO causes an asymmetry in precipitation response
to El Niño and La Niña. Thereby, further research is needed to determine whether AMO
causes the asymmetry in the winter climate response to different IPO phases in North China.
In addition, this paper only analyzes the first and second modes; so, what causes the third
and fourth modes? The impact mechanism of the SST on the interdecadal SSECE frequency
in winter in North China is still needed to further explore by numerical simulation in
the future.
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