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Abstract: Land cover changes (LCCs) due to urbanization cause urban heat islands (UHIs), signifi-
cantly affecting land surface temperature (LST) through spatiotemporal changes in compositions,
parameters, and patterns. Land cover and LST have been studied in various cities; however, indica-
tive research into heterogeneous LCC’s impact on LST in less-developed cities remains incomplete.
This study analyzed new Landsat images of Zhanjiang, taken from 2004 to 2022, to determine the
impact of three LCC indicators (compositions, parameters, and patterns) on LSTs. The urban thermal
field variance index (UTFVI) was used to describe the distribution and variation in LST. We also
quantified the cooling or warming benefits of various LCCs. The results indicate that the average
temperature in the land urban heat island (SUHI) area rose to 30.6 ◦C. The average temperature of
the SUHI was 3.32 ◦C higher than that of the non-SUHI area, showing the characteristic of shifting
to counties and multi-core development. The LST increases by 0.37–0.67 ◦C with an increase of
0.1 in the normalized difference building index (NDBI), which is greater than the cooling benefit of
the normalized difference of vegetation index (NDVI). The impact of landscape pattern indices on
impervious surfaces and water is higher than that on vegetation and cropland, with a rising influence
on impervious surfaces and a decreasing impact on water. The predominant cooling patches are
vegetation and water, while large areas of impervious surface and cropland aggravate UHIs for
industrial and agricultural activities. These findings are intended to guide future urban layouts and
planning in less-developed cities, with thermal climate mitigation as a guiding principle.

Keywords: urban heat island; Landsat data; land cover changes; landscape pattern; UTFVI

1. Introduction

As urbanization accelerates, artificial impermeable surfaces gradually replace perme-
able natural landscape surfaces [1], exacerbating the urban thermal environment. This is
because the use of urban elements, such as concrete, asphalt pavements [2], and building
materials, continues to rise, increasing sensible heat fluxes and affecting the degree of ab-
sorption of solar radiation by the ground surface while also altering albedo and evaporation
rate [3,4]. Due to this effect, densely populated urban areas have higher LSTs than suburban
areas [5]. Water quality, surface temperature, and environmental quality can be affected
by UHIs, as well as excess energy consumption [6]. Moreover, they can adversely affect
residents’ respiratory and cardiovascular systems and cause negative depression [7–9].
Increased natural landscape surfaces can often mitigate UHIs compared to impervious
surfaces. This is especially true for green spaces that can produce shadows capable of
covering the ground surface [10], create a cold island effect through evapotranspiration and
emissivity, and lower thermal inertia [11]. To study environmental change, it is becoming
increasingly important to analyze the impact of urban land cover changes (LCCs) on the
thermal environment [12].
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Land cover composition and parameters exert a profound effect on LST, especially
in cities characterized by urban sprawl, population expansion, and rapidly growing
economies [13]. Indeed, the difference in land cover composition affects the change in land
parameters as well. Some studies quantify the correlation between underlying surface
parameters and LST. For example, the normalized difference vegetation index (NDVI) and
the normalized difference building index (NDBI) were used to explore proper functioning
with LST at different square scales in Beijing. It was concluded that the relationships be-
tween NDVI, NDBI, and LST were significant but that their correlation was nonlinear [14].
Taking Kunming as an example, NDVI, NDBI, and the normalized difference water index
(MNDWI) were used to explore the correlation between land surface characteristics and
LST and analyze the joint cooling benefits shared between the indices. It was pointed out
that NDVI and MNDWI were linearly correlated with LST and that the combination of
the two was the best indicator of LST relative to the others [15]. Similar research methods
have been used and progress made in mega-cities such as Shanghai, Guangzhou, Wuhan,
and Nanjing, with relevant studies reaching the common conclusion that, in urban areas,
elevated NDVI promotes a decreased LST and that elevated NDBI can increase LST [16–19].
In terms of land cover composition, cities such as Shanghai, Zhengzhou, and Chengdu
have demonstrated that impervious surfaces or buildings contribute more to the heating of
houses and buildings than natural surfaces [20–22]. However, the generalizability of these
findings to China’s slower-growing cities still needs to be examined in more comprehen-
sive studies. As mentioned in the outline of the 14th Five-Year Plan, the main tasks and
initiatives to improve the new urbanization strategy include improving the spatial pattern
of urbanization and preserving a reasonable ecological safety distance between cities. To
ensure the coexistence of urban economic development and a green, livable environment,
the future land use planning of developing cities needs to be given sufficient attention.

Land cover contributes thermally to LST. This is not only because of its composition
but also because of its configuration and pattern [23]. Related studies have shown that
the cooling capacity of water bodies and green space landscapes is influenced by spatial
configuration [24,25] and that the aggregation of blue-green patches combined with the
dispersion of impervious surfaces can effectively mitigate UHIs [26,27]. Land cover config-
uration is usually quantified using landscape pattern indices, such as the Shannon diversity
index (SHDI), the contagion index (CONTAG), the landscape division index (DIVISION),
and the landscape shape index (LSI), to explore the correlation between land cover config-
uration and LST [28]. In Beijing, only suburban areas were significantly correlated with
land cover configuration and LST. At the same time, a survey in Fuzhou demonstrated that
type-level indicators—aggregation index (AI), average patch area (AREA_MN), largest
patch index (LPI), and percentage of landscape (PLAND)—of impervious surfaces were
significantly and positively correlated with LST, while the opposite was true for vegetation
and water bodies [29]. Landscape pattern indices with different categories and levels of
land cover exert varying effects on LST. Meanwhile, the influence of landscape pattern
on LST is characterized by density [30], scale [31,32], urban–rural gradient difference, etc.
LST varies across cities with different latitudes and longitudes depending on landscape
configuration [33,34]. Furthermore, past studies focused more on landscape configuration
indicators at the landscape level than at the level of type [35]. Hence, it is essential to
evaluate the spatiotemporal dynamics of the relationship between land cover types and
thermal environments in other developing cities.

Analysis of the spatiotemporal differences generated by changes in land cover types
and their correlation with LST is conducive to the derivation of appropriate landscape
configurations of land cover types. Therefore, this study takes Zhanjiang as the research
area and aims to: (1) investigate the spatiotemporal differences in LST; (2) determine
the land cover composition and parameters; (3) conduct a correlation analysis of the
thermal effects of different types of land cover at the parametric and pattern-related levels;
and (4) make reasonable suggestions for the future land use planning and landscape



Atmosphere 2023, 14, 1716 3 of 21

configuration of Zhanjiang, with the healthy development of the thermal environment as
the research orientation.

2. Materials and Methods
2.1. Study Area

Zhanjiang is a city in Guangdong Province, lying in the southern part of China at
latitudes of 20◦13′ N to 21◦57′ N and longitudes of 109◦40′ E to 110◦58′ E. It has a tropical
and subtropical monsoon climate regulated by the ocean climate throughout the year,
causing an annual average temperature of 23 ◦C. Most of the land consists of peninsulas
and islands, covered by plains and terraces with an average elevation of 24 m. Zhanjiang
is an essential modern port and industrial city on the southeast coast. At the end of 2021,
Zhanjiang had a permanent population of 7,030,900, including 3,266,600 people in urban
areas, representing approximately 46.46% of the population. The study area is 13,263 square
kilometers, including four municipal districts and two counties, with three county-level
cities under escrow (Figure 1).
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Figure 1. Study area: Zhanjiang and its geographical location (a–c).

2.2. Preprocessing of Spatial Data

The study used the Landsat5 data taken on 18 November 2004, Landsat8 data extracted
on 26 October 2013, and Landsat9 data captured on 11 October 2022 from the USGS
Earth Explorer user interface (https://earthexplorer.usgs.gov/). Satellite images were
time-converted into Eastern Standard Time (UTC/GMT +8:00) for atmospheric correction
(Table 1). Before processing the data, ortho grinding and calibration were performed
in ENVI 5.3 using the “Radiometric Calibration” tool, and atmospheric correction was
performed using the “FLAASH Atmospheric Correction” tool.

Table 1. Details of the temporal images.

Satellite Type Date Observation Time
(UTC/GMT+08:00) Cloud Cover

Landsat5 18 November 2004 10:49:57 0.00%
Landsat8 26 October 2013 11:06:37 2.48%
Landsat9 11 October 2022 11:05:16 0.17%

https://earthexplorer.usgs.gov/
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2.3. Spatiotemporal Analysis

The research analysis framework is shown in Figure 2. First, we selected the spa-
tiotemporal data for the supervised classification of land use compositions and used
Fragstats v4.2.1 to calculate the landscape pattern. Second, LSTs were obtained by surface–
temperature inversion when the land surface parameters NDVI and NDBI were calculated.
Finally, the data obtained were analyzed using the least-squares model in order to estab-
lish the main factors affecting the intensification of the surface thermal environment in
Zhanjiang City.
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2.3.1. Land Use Cover Classification

Combined with the characteristics of Zhanjiang, the land cover was divided into
vegetation, cropland, impervious surfaces, water, and bare land (Table 2). The maximum
likelihood method in supervised classification was used to extract information on the
land cover types from remote sensing images. Due to the severe mixing of cropland
and vegetation image elements, the image elements were manually modified after su-
pervised classification combined with visual interpretation. Finally, clump classes and
majority/minority analysis tools were used in ENVI5.3 to aggregate small patches and
reduce noise.

Table 2. Land cover classification types in the study area.

Classifications Abbreviations Description

Vegetation VEG Forest, grassland, and urban and rural tree plantation
Cropland CL Agricultural plantation

Impervious surfaces IS Built-up areas including buildings and roads
Water WA Lake, pond, river, reservoir, and part of the sea

Bare land BL Bare soil or rocks, mudflat, and other unbuilt zones
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The confusion matrix was used to classify accuracy and the kappa coefficient in ENVI
5.3. Four indicators were generated from the overall evaluation of EVVI5.3: user accuracy,
producer accuracy, overall accuracy, and the kappa coefficient. Compared to other metrics,
the kappa coefficient is a measure of consistency based on the difference between actual
and opportunity agreement in an error matrix. The kappa coefficient was defined by
Equation (1). In each image, 450 test points were used to determine accuracy.

Kappa coe f f icient =
N ∑m

k=1 Xkk −∑m
k=1(Xk+ ∗ X+k)

N2 −∑m
k=1(Xk+ ∗ X+k)

, (1)

where, N = total number of pixels; m = number of rows in matrix; Xkk = number of
observations in row k and column k; and Xk+ and X+k are the marginals for row k and
column k, respectively.

2.3.2. Landscape Pattern Calculation

To demonstrate the impact of various landscapes on the LST, the percentage of land-
scape (PLAND), maximum patch indices (LPI), and landscape division index (DIVISION)
were selected from the type level (Table 3). Landscape pattern indices were visualized in
Fragstats 4.2 using the moving window method. Regarding the size choice of the moving
window, some researchers opted for 240 m and 450 m [11,24]. Some studies believed that
the spatial resolution of 500 m could reflect the regional landscape composition for an
area of about 2000 km2 [36]. When the moving window is 720, all the study coefficients
that characterize the landscape components reach a maximum; conversely, at resolutions
coarser than 720 m, most coefficients are insignificant [37]. Considering the research results
and the area size of Zhanjiang, a grid of 720 m × 720 m was selected as the size of the
moving window.

Table 3. Relevant descriptions of landscape pattern indices.

Metric Formula Description Range

Percentage of landscape
(PLAND) PLAND = Pi =

∑n
j=1 aij

A (100)
The percentage of different types
of landscape in the unit window 0 < PLAND ≤ 100

Largest patch index
(LPI) LPI =

max(aij)
A (100)

The proportion of the largest
plaque in the landscape 0 < LPI ≤ 100

Landscape division index
(DIVISION) DIVISION = [1−

a
∑

j=1

(
aij
A

)2
]

Reflects the degree of separation
of patches in the landscape 0 ≤ DIVISION < 1

Note: Pi = proportion of the landscape occupied by patch type (class) i; aij = area (m2) of patch ij; A = total
landscape area (m2).

2.3.3. Calculation of Land Use Indices (NDVI and NDBI)

The normalized difference vegetation index (NDVI) was calculated using the near-
infrared band (NIR) and red-light band (RED). The normalized difference vegetation index
(NDBI) calculations were performed using the near-infrared band (NIR) and mid-infrared
band 1 (SWIR-1). NDVI and NDBI values range from [−1, +1].

NDVI = (BNIR − BRED)/(BNIR + BRED), (2)

NDBI = (BSWIR1 − BNIR)/(BSWIR1 + BNIR), (3)

2.3.4. Land Surface Temperature (LST)

The inversion calculations were performed in ENVI5.3. The radiative transfer equation
method was used for surface information acquisition [38]. The steps below can be followed
to obtain the LST (Table 4).
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Table 4. Step for Land surface temperature (LST) acquisition.

Step Process Name Formula References

1 Spectral radiance (SR) Lλ1 = 209.831 + 0.834DN − 0.00133DN2

Lλ2 = 0.0003342 × DN + 0.1
[39–41]

2 Fractional vegetation (Fv) Pv = (NDVI − NDVIs)/(NDVIv − NDVIs) [42]
3 Surface emissivity (ε) ε = 0.004 Pv + 0.986 [37,42]
4 Brightness temperature (TB) Tb = ([Lλ − Lu − t × (1 − ε) Ld])/(t × ε) [43]
5 Land surface temperature (LST) LST = K2/In(K1/Ts + 1) − 273 [43,44]

Where DN is the digital number, which represents the pixel brightness value of the remote sensing image; λ1 and
λ2 are the effective wavelength in Landsat 5 and Landsat 8 data, respectively; t is the atmospheric transmittance;
and Lu and Ld are the atmospheric upward and downward thermal radiation intensities, respectively, obtained in
NASA’s atmospheric correction parameter calculator (https://atmcorr.gsfc.nasa.gov). NDVIV stands for NDVI in
the vegetation zone, while NDVIS signifies NDVI in a completely bare area.

2.3.5. Estimation of UTFVI

To standardize the results for multi-temporal comparison, we used a standardized
equation based on LST, which presents the thermal environment scenario called urban
thermal field variance index (UTFVI), calculated using Equation (4) [45]:

UTFVI = LSTpixel/LSTmean − 1, (4)

In Equation (4), LSTmean is the mean LST of the total area, and LSTpixel is the actual
temperature value for each pixel. The results were graded to describe the land urban heat
island (SUHI) phenomenon (Table 5). For each pixel, UTFVI greater than 0 means that the
temperature is higher than the average LST of the study area, defined as a SUHI region; less
than 0 means that the LST is lower than the average LST, defined as a non-SUHI region [45].

Table 5. Urban thermal field variance index (UTFVI) classification.

UTFVI Value SUHI Degree

<0 None
0–0.005 Weak

0.005–0.010 Middle
0.010–0.015 Strong
0.015–0.020 Stronger

>0.020 Strongest

2.4. Statistical Analysis

In this study, the ordinary least-squares model (OLS) was used to evaluate the cor-
relation between LST and land indices. Depending on the normality of the data, linear
regression was used to determine the influence of each index on the change in LST.

3. Results
3.1. Spatiotemporal Change Analysis
3.1.1. LUCC Information

Maps of land use cover changes (LUCC) were spatially prepared for the years 2004,
2013, and 2022 (Figure 3A). Statistics for LUCC from 2004 to 2022 are shown in Table 6.
From 2004 to 2013, the most significant increase in the LUCC was for vegetation (VEG),
with a total increase of 437.5 km2. There was 340.4 km2 of bare land (BL) invested in the
construction. Cropland (CL) was the most significant type seeing area change except for
BL, with a total reduction of about 279 km2. Water (WA) saw an increase of 113.4 km2,
which was higher than that of the impervious surfaces (IS, 68.5 km2). From 2013 to 2022,
CL decreased by 226.4 km2, which was the most significant alteration. The increase in the
IS was second (222.3 km2) only to the change in the CL. There was a decrease of 137.2 km2

in VEG, whereas BL had an increase of 72.7 km2 as well as an increase of 68.5 km2 in WA.

https://atmcorr.gsfc.nasa.gov
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Table 6. Statistics for LUCC from 2004 to 2022.

Landscape
Classification

2004 2013 2022

Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/%

Vegetation 5382.521 41.98% 5820.025 45.39% 5682.905 44.32%
Cropland 4381.719 34.17% 4102.721 32.00% 3876.355 30.23%

Impervious surfaces 1587.879 12.38% 1656.388 12.92% 1878.679 14.65%
Water 782.952 6.11% 896.382 6.99% 964.8711 7.53%

Bare land 686.532 5.35% 346.0887 2.70% 418.7943 3.27%
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The results of the evaluation of the computational accuracy of classified imagery in
2004, 2013, and 2022 are shown in Tables 7–9. The overall classification accuracies were
90.22%, 91.56%, and 93.11% for 2004, 2013, and 2022, respectively, and the kappa coefficient
values were 0.88, 0.89, and 0.91 for 2004, 2013, and 2022, respectively, meeting the minimum
level of accuracy for identifying land use and land cover categories from remote sensor
data [46].

Table 7. Accuracy assessment result of landscape classification—2004.

Landscape
Classification

Reference
Totals

Classified
Totals

No.
Correct

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Overall
Accuracy (%)

Kappa
Score

Vegetation 100 104 88 88.00% 84.62% 90.22% 0.88
Cropland 100 94 84 84.00% 89.36%

Impervious surfaces 100 107 95 95.00% 88.79%
Water 100 100 98 98.00% 98.00%

Bare land 50 45 41 82.00% 91.11%
Total 450 450 406

Table 8. Accuracy assessment result of landscape classification—2013.

Landscape
Classification

Reference
Totals

Classified
Totals

No.
Correct

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Overall
Accuracy (%)

Kappa
Score

Vegetation 100 109 92 92.00% 84.40% 91.56% 0.89
Cropland 100 104 88 88.00% 84.62%

Impervious surfaces 100 99 94 94.00% 94.95%
Water 100 97 97 97.00% 100.00%

Bare land 50 41 41 82.00% 100.00%
Total 450 450 412

Table 9. Accuracy assessment result of landscape classification—2022.

Landscape
Classification

Reference
Totals

Classified
Totals

No.
Correct

Producer’s
Accuracy (%)

User’s
Accuracy (%)

Overall
Accuracy (%)

Kappa
Score

Vegetation 100 103 91 91.00% 88.35% 93.11% 0.91
Cropland 100 98 90 90.00% 91.84%

Impervious surfaces 100 105 97 97.00% 92.38%
Water 100 101 99 99.00% 98.02%

Bare land 50 43 42 84.00% 97.67%
Total 450 450 406

3.1.2. NDVI and NDBI

The spatiotemporal distributions of NDVI and NDBI in Zhanjiang from 2004 to 2022
are shown in Figure 3B,C. The high-level NDVI showed a trend toward expanding the
range and increasing value. In 2004, the NDBI index had scattered high values in regions
excluding Xuwen County. However, in 2013 and 2022, the high-value areas were mainly
concentrated in the core areas of the central and county-level cities.

3.1.3. Land Surface Temperature (LST)

The distributions of surface temperature in Zhanjiang in 2004, 2013, and 2022 are
shown in Figure 4A. The average surface temperature in Zhanjiang was 26.07 ◦C in 2004,
27.36 ◦C in 2013, and 28.78 ◦C in 2022. The area of each type of temperature classification
is shown in Table 10. The area below 23 ◦C decreased by 537.61 km2 and 48.25 km2, and
similarly, the area below 23–26 ◦C decreased by 3322.34 km2 and 1880.12 km2 in 2013 and
2022, respectively. The area of the 29–32 ◦C area increased in 2013 and decreased in 2022.
For 29–32 ◦C, 32–35 ◦C, and >35 ◦C, the corresponding areas were increased significantly.
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Table 10. Distribution of LST in Zhanjiang, 2004–2022.

LST
Grade

2004 2013 2022

Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/%

<23 ◦C 608.15 47.43% 70.54 0.55% 22.29 0.17%
23–26 ◦C 5962.59 46.50% 2640.25 20.59% 760.13 5.93%
26–29 ◦C 5335.51 41.61% 7669.87 59.81% 6682.78 52.11%
29–32 ◦C 826.90 6.45% 2243.45 17.50% 4309.27 33.61%
32–35 ◦C 85.44 0.67% 185.52 1.45% 947.15 7.39%
>35 ◦C 4.50 0.04% 13.46 0.10% 101.46 0.79%

3.1.4. Urban Thermal Field Variance Index (UTFVI)

The spatial distribution of the urban thermal field variance index (UTFVI) in Zhanjiang
for 2004, 2013, and 2022 is shown in Figure 4B. Statistical data are shown in Table 11.
The area with the ‘None’ grade was 6649.85 km2 in 2004, and increased by 89.69 km2

and 128.07 km2 in 2013 and 2022, respectively. The ‘Weak’ and ‘Middle’ grades showed
downward trends year on year. The grades of ‘Strong’ and ‘Stronger’ rose in 2013 and
declined in 2022. Conversely, the grade of ‘Strongest’ dropped by 252.54 km2 in 2013 and
recovered by 65.07 km2 in 2022. For spatial distribution, the urban thermal field generally
showed a trend of expansion to the north and northwest.

Urban heat intensity denotes the difference in average temperature between land
urban heat islands (SUHI) and non-SUHI areas. The temperature difference between
SUHI and non-SUHI areas was high, and the average temperature differences between the
two were 2.99 ◦C, 2.91 ◦C, and 3.32 ◦C in 2004, 2013, and 2022, respectively (indicated in
Figure 5).
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Table 11. Distribution of UTFVI in Zhanjiang, 2004–2022.

UTFVI
Grade

2004 2013 2022

Area/km2 Percentage/% Area/km2 Percentage/% Area/km2 Percentage/%

None 6649.85 51.86% 6739.54 52.56% 6867.61 53.56%
Weak 474.91 3.71% 379.97 2.96% 332.12 2.59%

Middle 494.71 3.86% 367.58 2.87% 322.27 2.51%
Strong 170.84 1.33% 356.26 2.78% 306.83 2.39%

Stronger 143.01 1.11% 342.52 2.67% 291.96 2.28%
Strongest 4889.76 38.13% 4637.22 36.16% 4702.29 36.67%
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3.2. Correlation Analysis
3.2.1. NDVI, NDBI, and LST

Water bodies are cold land types, but at the same time, lack vegetation. To avoid the
interference of water bodies, we use the portion of a water body in the land cover map as
a mask to exclude this part of the NDVI (Figure 6). NDVI and NDBI for different years
passed the significance test (p < 0.01). The NDVI was negatively correlated with the LST,
while the NDBI was significantly and positively correlated with the LST. The correlation
coefficient of NDVI changed from −0.344 to −0.499, while NDBI rose from 0.399 to 0.526,
tentatively indicating that the influence of land cover parameters on LST rose from 2004 to
2022. The average of both NDVI and NDBI increased, except for the NDBI of 2004.

For every 0.1 increase in the NDVI in 2004, the overall LST fell by approximately
0.32 ◦C. Additionally, by 2022, it was reduced by about 0.47 ◦C, marking an increase of
approximately 46.9%. The overall LST increased by 0.38 ◦C for every 0.1 increase in the
NDBI in 2004 and by 0.67 ◦C for the same rises in 2022, with gains of 76.3% and 29.4%
higher than the corresponding increases in NDVI.

3.2.2. Landscape Pattern Indices and LST

The correlation analysis between the landscape pattern and LST was conducted, and
three landscape indices, corresponding to VEG, CL, IS, and WA, passed the significance
test (p < 0.01). The results are shown in Figure 7. Overall, the correlation coefficients
showed that PLAND and LPI of VEG and WA were negatively correlated with LST, while
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DIVISION showed a positive relationship. PLAND and LPI of CL and IS were positively
correlated with LST, while DIVISION revealed a negative relationship. This meant that
VEG and WA were the main contributors to UHI mitigation. However, for CL and IS, the
above effect was the opposite. Meanwhile, the correlation coefficients of both WA and IS
were higher than those of CL and VEG. The absolute values of correlation of VEG in three
indicators were all rising, while the opposite was true for WA, indicating that the role of
VEG was gradually stronger.
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Three indicators were linearly fitted to explain the influence of their changes on the
LST of different land types. For every 0.1 increase in PLAND, VEG produced cooling
rates of 0.16 ◦C, 0.20 ◦C, and 0.23 ◦C over three years, respectively. For CL, it caused a
warming of 0.15 ◦C, 0.05 ◦C, and 0.12 ◦C. The warming degrees of IS were 0.29 ◦C, 0.36 ◦C,
and 0.42 ◦C, whereas the cooling temperatures of WA were 0.42 ◦C, 0.38 ◦C, and 0.32 ◦C
(Figure 8A). LPI had a similar trend as that of PLAND (Figure 8B). For every increase of
10 in DIVISION, the temperature effects of IS and WA become more dramatic, with the



Atmosphere 2023, 14, 1716 12 of 21

former cooling by 0.38 ◦C, 0.45 ◦C, and 0.49 ◦C, respectively, in three years, and the latter
warming by 0.47 ◦C, 0.44 ◦C, and 0.36 ◦C, respectively (Figure 8C).
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In summary, the impact of landscape indicators on IS and WA is higher than that of
VEG and CL, with a rising influence in IS and a decreasing impact in WA. In addition to
DIVISION, the impact of VEG is rising as well.

3.3. Analysis of the Impact of LUC Categories on LST
3.3.1. Average Temperature

The average temperatures of each land type are shown in Figure 9. Overall, the mean
temperatures of IS were 27.33 ◦C, 29.21 ◦C, and 30.83 ◦C, respectively, making it the hottest
land cover type in all years. Those of WA were 23.21 ◦C, 24.87 ◦C, and 26.52 ◦C, respectively,
making it the coolest type. The average temperatures of CL were 26.58 ◦C, 27.55 ◦C, and
29.38 ◦C, while those of the vegetation were 25.63 ◦C, 27.20 ◦C, and 28.09 ◦C, respectively.
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The average temperature of each land cover type increased remarkably during 2004–2013
and 2013–2022. From 2004 to 2013, the average temperature of the IS increased by 1.88 ◦C.
From 2013 to 2022, the average temperature of BL increased by 2.37 ◦C, replacing IS as the
type with the most substantial warming effect on land, while VEG had the least significant
warming effect due to its cooling and humidifying properties, with a rise of only 0.86 ◦C.
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3.3.2. UTFVI Distribution

The UTFVI account for each land cover is shown in Figure 10. The strongest zones in
CL, IS, and BL were relatively high, with the proportion in IS continuing to increase. The
UTFVI area of CL decreased by about 17%, and the non-SUHI area rose. The non-SUHI
was about 70%, with the strongest being about 16% of VEG. There were several SUHI in
WA, accounting for only about 2%.

Atmosphere 2023, 14, x FOR PEER REVIEW 14 of 23 
 

 

3.3.1. Average Temperature 
The average temperatures of each land type are shown in Figure 9. Overall, the mean 

temperatures of IS were 27.33 °C, 29.21 °C, and 30.83 °C, respectively, making it the hottest 
land cover type in all years. Those of WA were 23.21 °C, 24.87 °C, and 26.52 °C, respec-
tively, making it the coolest type. The average temperatures of CL were 26.58 °C, 27.55 °C, 
and 29.38 °C, while those of the vegetation were 25.63 °C, 27.20 °C, and 28.09 °C, respec-
tively. The average temperature of each land cover type increased remarkably during 
2004–2013 and 2013–2022. From 2004 to 2013, the average temperature of the IS increased 
by 1.88 °C. From 2013 to 2022, the average temperature of BL increased by 2.37 °C, replac-
ing IS as the type with the most substantial warming effect on land, while VEG had the 
least significant warming effect due to its cooling and humidifying properties, with a rise 
of only 0.86 °C. 

 
Figure 9. Average temperature of each land cover type in 2004, 2013, and 2022. 

3.3.2. UTFVI Distribution 
The UTFVI account for each land cover is shown in Figure 10. The strongest zones in 

CL, IS, and BL were relatively high, with the proportion in IS continuing to increase. The 
UTFVI area of CL decreased by about 17%, and the non-SUHI area rose. The non-SUHI 
was about 70%, with the strongest being about 16% of VEG. There were several SUHI in 
WA, accounting for only about 2%. 

 
Figure 10. UTFVI accounts for each land cover. Figure 10. UTFVI accounts for each land cover.

3.3.3. Contribution of Different Land Cover to UTFVI

The UTFVI contribution over different land covers is evident in Figure 11. VEG was
the dominant land of non-SUHI zones for all three years. UTFVI zone increased in IS
from 9.33% in 2004 to 14.22% in 2022, whereas it decreased in CL from 21.26% in 2004 to
11.36% in 2022. From 2004 to 2013, CL recorded the strongest UTFVI zones. However, in
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2022, IS recorded the most dominant UTFVI zones. This trend also existed in the strongest
UTFVI areas.
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4. Discussion
4.1. Land Cover and UHI Variation

During the period from 2004 to 2022, the land cover in Zhanjiang changed, primarily
due to the growth of impervious surfaces and the loss of cropland. The spatial structure of
Zhanjiang’s urban master plan (2011–2020) formed the overall spatial structure of Zhanjiang
City. Based on the principles of “one Main and four Vice-centers, two Zones and two Axes”,
which had a profound impact on the construction pattern changes in Zhanjiang. The central
area of Zhanjiang is the zone with the greatest radiating power in the city, while Wuchuan,
Leizhou, Lianjiang, and Xuwen counties are the sub-centers of Zhanjiang city that connect
with the national strategic areas, whose land use patterns effectively respond to planning
needs. Therefore, the impervious surface area of Zhanjiang has expanded outward from
the center of “one Main and four Vice-centers” in the past 18 years. By 2022, we found that
UHI zones almost entirely covered the impervious surfaces, indicating that urbanization is
one of the important factors that aggravates the thermal environment of Zhanjiang.

Typically, vegetation, cropland, and water are the main cooling patches in the non-
SUHI zones [30,47–49]. The study indicates that cropland is a thermal factor in Zhanjiang.
Though the area of SUHI zones decreased from 62% to 45%, cropland’s average temperature
rose by about 1.8 ◦C. The cause of the above phenomenon may be local volcanic soil, which
has strong heat storage. Firstly, the surface thermal characteristics of the local volcanic
soil, which has strong heat storage, are different from those of other cities [50]. A second
factor contributing to the double growth in cropland area and planting density is the fertile
soil and hydrothermal conditions that result in tropical fruits such as pineapple making
up the largest portion of the local agricultural industry. Based on the General Land Use
Plan for Zhanjiang, Guangdong (2006–2020), Zhanjiang currently faces the problems of
poor agricultural production structures and low cropland efficiency. There is a proposal
to promote intensive land transformation in Guangdong Province and establish a special
agricultural base with a focus on agricultural land protection. Thus, under the orientation
of thermal environment optimization, preserving the production value and quality of
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cropland while mitigating thermal effects becomes a concern for agriculturally based cities.
Urban planners should promote the comprehensive management of agricultural land,
accounting for quantity, quality, and ecology. The use of green areas and water patches to
meet cooling and humidification needs constitutes retrofit approaches for agricultural land
with low production capacity.

The study results show that high-UTFVI areas are gradually concentrated in the IS area.
However, due to the expansion of urban areas, the high-UTFVI areas of VEG and CL also
have high proportions. The surface temperature was analyzed for the typical change areas
of UTFVI for each type of land. (Figure 12). The Qingjianling vegetation area in Lianjiang is
shown in Figure 12a. It was mostly covered by woodland in 2004 and showed an increase
in impervious areas compared to 2022. The new cement company, garage, and funeral
home are heavy burdens for the main SUHI areas, increasing the surrounding temperature
of vegetation. Yugonglou village in Xuwen is shown in Figure 12b. Pineapple cultivation
became the leading industry, raising economic needs such as agricultural production and
transportation. Accordingly, both the area of cropland and the density of cultivation
expanded, increasing the temperature of the cropland. The Baoshan Iron and Steel Factory
in Ma Zhang District is shown in Figure 12c, which was an undeveloped coastal mudflat in
2004. Due to industrial production, it transformed almost all of it into impervious surfaces
by 2022, with the SUHI zones growing accordingly. The Dashuiqiao Reservoir in Xuwen
is shown in Figure 12d, where the water expanded between 2004 and 2012. The SUHI
zones around the water grew due to the rising area of production teams, orchard farms,
and residential land around the water. This led to the generation of SUHI areas and also
affected the temperature of water surfaces.

The above indicates that, for less-developed cities similar to Zhanjiang, the increase in
UTFVI is influenced not only by land cover type but also by population growth, the devel-
opment of agricultural production, and the advancement of industrialization. Economic
activities and resource allocation optimization have also become key social factors for the
intensification of the urban heat island effect.

Impact of Land Cover Parameters

There is a significant negative correlation between the NDVI and LST, while the
NDBI shows the opposite trend between 2004 and 2022. This indicates that conditions
of vegetation cover cause temperature drops, while those of impervious surfaces cause
temperature increases within 720 m × 720 m. The findings of this study are consistent with
those of a number of previous studies [51–53]. NDVI and NDBI correlation coefficients
increase to 0.499 and 0.526 in the study, which implies that vegetation provides greater
cooling benefits and that impervious surfaces raise LST more for the same increase [54].

Even though the correlation coefficients between land cover parameters and LST
are high, the fit R2 scores of NDVI and NDBI are only 0.25 and 0.28, respectively, which
illustrates that the number of units in the study area that could explain the correlation
is low. Since the study is of a full-coverage area of the city with various and complex
units, the south cropland influences the NDVI and NDBI fit with higher vegetation cover
and lower building density but also presents a higher temperature, closely resembling the
influence of land cover type on LST mentioned above. Compared to faster-developing
cities, the influence mechanism of the thermal environment may be more complex, and
land cover parameters cannot be considered as the single dominant factor of the thermal
environment [29].

4.2. Impact of Landscape Pattern

According to the analysis of correlation coefficients of different landscape indices
and LST, land cover parameters influence LST more than land cover patterns [34]. The
fitting results indicate that vegetation, water bodies, and impervious surfaces are the three
dominant land cover types affecting the thermal environment at the landscape pattern
configuration level, which is consistent with the findings of Wu et al. [30]. Cropland’s
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pattern configuration data have improved in both correlation coefficients, but they remain
low. Vegetation and water bodies exhibit negative correlations with PLAND, LPI, and DI-
VISION, whereas impervious surfaces exhibit positive correlations. The result is consistent
with previous studies at both landscape and type levels [55,56].
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The Pearson correlation coefficient for impervious surfaces and water is higher in
most cases. This suggests that impervious surfaces and water are the dominant types that
affect LST at the landscape pattern level. Large areas of impervious materials, such as
asphalt and concrete, can significantly increase LST [57], whereas water bodies play crucial
roles in cooling temperature through evaporation [58,59], meaning that controlling the
concentration of water and the dispersion of building surfaces is key. The landscape pattern
index of vegetation and the Pearson correlation coefficient of LST show an overall upward
trend. This means that large and concentrated green spaces will have more beneficial effects
on Zhanjiang’s thermal environment.

4.3. Suggestions for UHI Slowdown of Less-Developed Cities

The thermal environment of developing cities with relatively low levels of urban-
ization is also deteriorating [55], and it is a great challenge to balance urban economic
development and environmental comfort. Through pixel-scale analysis, we demonstrated
that changes in the types, parameters, and patterns of land cover in developing cities are
all significantly correlated with the intensification of the UHI, suggesting that the disor-
derly expansion of impervious surfaces and the reduction and fragmentation of cooling
patches will have an increasingly serious impact on the urban thermal environment in
future developments. Therefore, it is necessary to provide urban development suggestions
under the orientation of thermal environment optimization for developing cities that are
accelerating their development. On the one hand, decision-makers should improve the
quality of urban planning from the perspective of the management mode of land space
to avoid the prolonged existence of ineffective land, such as “hollow cities” and “unused
wasteland”, which will affect the cooling benefits of the planned cooling patches for the
cities. Conversely, it is necessary to implement the relevant national policies to support
integrated and coordinated development, to pay attention to the protection of green areas
and water bodies in the course of economic development, to strictly adhere to ecological
red lines, and to control pollution emissions.

From the results of the study, NDVI and NDBI can to some extent indicate the temper-
ature change in Zhanjiang City during the 18-year period; e.g., high-NDVI-value areas tend
to imply extensive areas of green space, while impervious surfaces dominate the heat island
in the center of the city where NDBI is higher. This implies that improving the vegetation
cover and green quality of green spaces and habitats within the city is an important way to
increase the cooling capacity of cooling patches in developing cities. For example, in future
green public spaces and urban squares, trees with high canopy covers can be selected
to increase vegetation cover and provide good shading and cooling. Additionally, the
layout and planning of blue-green spaces are crucial to the planning of developing cities.
Urban planners need to pay attention not only to increasing the landscape percentage of
the landscape (PLAND) but also to raising the size of the maximum patch index (LPI)
and decreasing the separation between patches (DIVISION) when coordinating blue-green
space. In the case of impervious surfaces, cropland, partially abandoned cropland, and
bare land, replanting trees between impervious surfaces and cropland would create a
greener system with improved cooling and reduced fragmentation. By improving lake
wind circulation [60], water surface heating promotes heat outflow within the urban canopy.
To maximize cooling benefits, vegetation should complement the perimeter of water bodies,
allowing the maximization of cooling benefits. To avoid urban sprawl sequentially, the de-
gree of separation between buildings (DIVISION) needs to be increased, implying that the
continuous expansion of impervious surfaces should be controlled and that future urban
site planning should be decentralized properly. Additionally, the degree of intensification of
construction areas should be improved, transforming idle and inefficient construction land
into urban public green space to enhance the regulation function of the urban ecosystem
on the thermal environment and create an urban living space with people-oriented and
healthy development.
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4.4. Limitations and Prospects

The present study has certain limitations. Firstly, previous research has indicated
that the correlation between landscape indices and land surface temperature (LST) can
be influenced by grid scales and seasonal variations [61,62]. In the case of Zhanjiang, the
geographical location and municipal boundaries make the rural–urban gradient method
less applicable for studying the thermal environment. Future studies could explore different
grid sizes in graded urban and rural areas to determine the most suitable study cell size for
each area.

Secondly, the utilization of open-source satellite imagery offers convenient access to
long-time series images and valuable waveform information, which can be utilized to
predict sustainable land use, ecosystem management, and climate change [17]. However,
due to the study area being situated in a humid tropical region with significant cloud
pollution, the availability of satellite images suitable for interpretation is limited. As a
result, this study could only reveal the correlation between land cover information and
LST during the daytime in the autumn for the observed years. In future studies, we should
try to collect all available images in a month or a season and integrate the LSTs of the
calculation region to enhance the convincing power of the data and conclusions.

Finally, the thermal environment of the land cover is influenced by multiple factors,
and the parameters and patterns utilized in this study exhibit lower fit and correlation
coefficients with LST compared to most existing literature. This indicates the need for
a more comprehensive evaluation system of the thermal environment in future studies,
which should incorporate natural factors such as topography and integrate more data
sources along with human factors such as economic development.

5. Conclusions

This study examines the relationship between changes in land cover and the thermal
environment in Zhanjiang from 2004 to 2022. The focus is on investigating the correlation
between spatiotemporal variations in land cover parameters, specifically NDVI (normalized
difference vegetation index) and NDBI (normalized difference built-up index), and three
landscape pattern indices—PLAND, LPI, and DIVISION. The ultimate goal is to propose
effective strategies for mitigating the thermal environment in Zhanjiang. The key findings
and conclusions of this study are as follows:

1. Over the past 18 years, the thermal conditions in Zhanjiang have become more intense.
This is reflected in a significant increase in the average temperature of the heat island
and non-heat island regions in relation to UTFVI. The urban thermal field generally
showed a trend of expansion to the north and northwest.

2. LST (land surface temperature) is strongly linked to land cover parameters, exhibiting
a negative correlation with NDVI and a positive correlation with NDBI. For every
0.1 increase in NDVI, the overall LST is reduced by approximately 0.32–0.47 ◦C.
Conversely, in the case of NDBI, this increases by about 0.37–0.67 ◦C. Correlation coef-
ficients and the analysis of the fit indicate that the warming effect of NDBI outweighs
the cooling effect of NDVI.

3. Correlation analysis reveals that the landscape pattern index at the type level is
strongly associated with land surface temperature (LST). The percentage of land cover
(PLAND) and the landscape shape index (LPI) of vegetation and water bodies are
negatively correlated with LST, meaning they contribute to cooling. On the other hand,
the DIVISION index shows a positive correlation with LST, indicating a warming
effect, which is true for cropland and impervious surfaces. Among these factors, the
DIVISION index has the most significant impact on LST.

4. Impervious surfaces and cropland play important roles in the intensification of the
thermal field in Zhanjiang, but the impact of cropland is generally decreasing, and
the impervious surfaces have gradually come to dominate the UHI. The UHI of water
accounts for only about 2% of the total. However, due to the low proportion of such
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areas, vegetation still dominates non-UHI areas. In addition, due to the wide coverage,
vegetation also makes an overall contribution of about 10% to the UHI.

This study focuses on the spatiotemporal development of the urban thermal envi-
ronment and the linkage between the changes in the land cover to provide experience
and reference for future urban landscape layout and land use planning with thermal
environment mitigation as the focus.
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