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Abstract: The impact of elevated air temperature and heat stress on human health is a global concern.
It not only affects our well-being directly, but also reduces our physical work capacity, leading to
negative effects on society and economic productivity. Climate change has already affected the
climate in Luxembourg and, based on the results of regional climate models, extreme heat events
will become more frequent and intense in the future. To assess historical conditions, the micro-
scaleRayManPro 3.1 model was used to simulate the thermal stress levels for different genders and
age classes based on hourly input data spanning the last two decades. For the assessment of future
conditions, with a special emphasis on heat waves, a multi-model ensemble of regional climate
models for different emission scenarios taken from the Coordinated Regional Climate Downscaling
Experiment (CORDEX) was used. For both, the past and future conditions in Luxemburg, an increase
in the heat stress levels was observed. Small differences for different age groups and genders became
obvious. In addition to the increase in the absolute number of heat waves, an intensification of higher
temperatures and longer durations were also detected. Although some indications of the adaptation
to rising air temperatures can be observed for high-income countries, our results underscore the
likelihood of escalating heat-related adverse effects on human health and economic productivity
unless more investments are made in research and risk management strategies.

Keywords: EU-CORDEX; PET; heat stress; regional climate model; multi-model ensemble; bias
correction; Luxembourg

1. Introduction

Global change poses serious risks to the health, safety, and well-being of people and
ecosystems worldwide, and rising heat stress levels due to climate change are considered
a major element of those risks. According to the latest Lancet report, in 2023, the world
experienced record-breaking global temperatures, surpassing those recorded in the past
100,000 years [1]. The last eight years have been the warmest ever and, in 2022, many
temperature records were broken on every continent. In addition, July 2023 is the hottest
month that has been recorded since the present day [1]. These temperature records have
major negative impacts on human health and, based on current greenhouse gas emissions
plans, air temperatures will rise by 2.7 ◦C until the end of the century [2]. This continuous
increase in the average air temperature also affects the frequency and intensity of extreme
events, such as prolonged periods with consecutive days where conditions are hotter than
normal. Even minor variations in the yearly average air temperature can have a significant
impact on the intensity of extreme weather occurrences [3].

For the evaluation of historical thermal stress levels in Luxembourg, we calculated
the physiologically equivalent temperature (PET) with the RayMan Pro model Ver. 3.1
based on the measurements from the WMO (World Meteorological Organization) station at
Findel Airport (ID 06590) [4]. The suitability of the PET for the assessment of the potential
health impacts of different thermal stress levels was recently investigated [5–8]. According
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to the 2022 Europe report of the Lancet Countdown on health and climate change, the
global population’s exposure to heat stress increased by an average of 57% between the
period from 2010 to 2019 compared to the period from 2000 to 2009. Especially older
people and people with underlying chronic health conditions are facing higher risks of
heat-related morbidity and mortality [9,10]. The heat-related mortality of people older than
65 years increased by 85% compared to the period of 1990–2000 [1]. A recent study based
on the Eurostat mortality database estimated over 61,672 heat-related deaths in Europe
during the heat wave of 2022, occurring between 30 May and 4 September [11]. Women
throughout all age groups are, with 56% of heat-related deaths, more severely affected than
men. An analysis of heat-related deaths in Slovenia between 2003 and 2015 for different
age groups and genders showed that the +75 age group was the most severely affected [12].
Extreme heat not only contributes to negative health impacts, but also results in frequent
disruptions to outdoor work and negative consequences for both natural and managed
ecosystems [13,14].

The absence of a universally, internationally accepted definition for heat waves poses
a significant challenge when studying their impact on society [15]. Various sectors, such
as human health, agriculture, and energy, are affected differently by these events, which
contribute to the lack of a consensus [16]. In order to ensure a maximum level of com-
parability, we used the following indices related to heat waves from the Expert Team on
Sector-Specific Climate Indices (ET-SCIs) [17] of the WMO Commission for Climatology
(CCI): heat wave number, number of days that contribute to heat waves, length of the
longest heat wave, and the heat wave magnitude. The advantage of these standardized
indices is that comparisons of the temporal and spatial trends between different regions
are possible [18]. In addition, we used three more simple threshold-based indices, such as
tropical night, summer days, and consecutive warm days.

Developing effective strategies to adapt and mitigate the health and economic impacts
of future heat waves requires a thorough understanding of these events. To achieve this, an
ensemble of transient regional climate change projections from the Coordinated Regional
Climate Downscaling Experiment (CORDEX) was used. To encompass the full spectrum
of potential changes, we examined three Representative Concentration Pathways (RCPs);
RCP26, RCP46, and RCP85. A time series spanning from January 1971 to December
2099, encompassing daily minimum and maximum air temperatures, was constructed.
Comparable studies were recently published for Romania [19], Portugal with the same set
of RCPs [20], Asia and China [21,22], five Swedish cities [23], as well as the Mediterranean
area [24].

To date, a comprehensive assessment of the historical and future heat stress conditions
in the Grand Duchy of Luxembourg, utilizing a multi-model ensemble of bias-corrected
outputs from regional climate models forced with different emission scenarios, has not
been carried out yet. The scientific objectives of this study are: (1) to examine thermal stress
levels experienced in the past using a thermo-physiological index, (2) to assess the impact
of thermal stress on different genders and age groups, and (3) to evaluate the severity of
past and future heat waves based on bias-corrected regional climate change projections.

The paper is structured as follows. After the introduction, in Section 2, the methods,
such as observational datasets; regional climate projections, including the bias-correction
method; and the RayMan model for the thermal stress assessment are described. Section 3
presents the main findings, while Section 4 discusses these results in relation to other
international peer-reviewed studies. The paper concludes with a short summary and
recommendations for future mitigation strategies.

2. Materials and Methods
2.1. Station Data

The regional reference time series was obtained from the Findel Airport SYNOP
(synoptic observation) station (WMO station ID = 06590). This station, situated southeast of
the City of Luxembourg (49◦37′57.547′′ N/6◦13′58.543′′ E), is the sole official WMO station
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in the country. To evaluate thermal stress using the PET, we utilized continuous hourly
data for air temperature, humidity, windspeed, and global radiation for the period between
January 2006 and December 2020. For the bias correction of the regional climate models’
daily values, the air temperature and precipitation covering the period from 1 January 1971
to 31 December 2000 were used.

2.2. Regional Climate Projections

For the assessment of the regional climate change signal, we used time series derived
from a multi-model ensemble of climate change projections from the Coordinated Regional
Climate Downscaling Experiment (EURO-CORDEX) project of the World Climate Research
Programme (WCRP). The data were retrieved from the data nodes of the Earth System Grid
Federation (ESGF) model data dissemination system [25] for three Representative Concen-
tration Pathways (RCPs), namely, RCP26, RCP45, and RCP85 [26]. The data consisted of
transient model simulations from 1950 to 2100. Table 1 lists the models used in our study.

Table 1. Regional climate change projection datasets used in this study. Given are the model
abbreviations in the text, the driving Global Climate Model (GCM), the Regional Climate Model
(RCM) used for the downscaling, the Representative Concentration Pathway (RCP), as well as the
covered time span. RCM data spatial resolution: 25 km × 25 km; temporal resolution: daily means
and totals. X = data used for this study.

Model
Abbreviation Global Climate Model (GCM) Regional Climate Model (RCM) RCP26 RCP45 RCP85 Time Span

M1 CNRM-CERFACS-CNRM-CM5 CNRM-ALADIN53_v1 x x x 1950–2100
M2 CNRM-CERFACS-CNRM-CM5 RMIB-UGent-ALARO-0_v1 x x x 1950–2100
M3 MOHC-HadGEM2-ES KNMI-RACMO22E_v2 x x x 1950–2099
M4 MOHC-HadGEM2-ES SMHI-RCA4_v1 x x x 1970–2099
M5 MPI-M-MPI-ESM-LR MPI-CSC-REMO2009_v1 x x x 1950–2100
M6 MPI-M-MPI-ESM-LR SMHI-RCA4_v1a x x x 1970–2100
M7 NCC-NorESM1-M DMI-HIRHAM5_v2 x x 1951–2100
M8 MOHC-HadGEM2-ES CLMcom-CCLM4-8-17_v1 x x 1949–2099
M9 CNRM-CERFACS-CNRM-CM5 SMHI-RCA4_v1 x x 1970–2100

M10 IPSL-IPSL-CM5A-MR IPSL-INERIS-WRF331F_v1 x x 1951–2100
M11 CNRM-CERFACS-CNRM-CM5 CLMcom-CCLM4-8-17_v1 x x 1950–2100
M12 ICHEC-EC-EARTH KNMI-RACMO22E_v1 x x 1950–2100
M13 IPSL-IPSL-CM5A SMHI-RCA4_v1 x x 1970–2100
M14 MPI-M-MPI-ESM-LR CLMcom-CCLM4-8-17_v1 x x 1949–2100

The time-series data were obtained by the use of a bilinear resampling algorithm
(using the Climate Data Operators, CDO, v1.8.1 software, https://code.mpimet.mpg.de/
projects/cdo; accessed on 15 January 2022) from the EUR-11 RCM model grid. However,
certain inconsistencies were noted between the models. For instance, in model M13, leap
years were not taken into account, while in model M5, the first day (1 January 1971) was
missing. Gaps due to leap years were filled via a linear interpolation and the missing values
for 1 January in M5 were replaced by the values of 2 January. The time-series data of air
temperature showed no other anomalies, such as gaps, missing values, or outliers.

2.3. Bias Correction of Model Data

We used a non-parametric quantile mapping technique to correct biases in the climate
model outputs by adjusting their distribution to match the distribution of the observed data
from the WMO station in Findel. In this approach, the Cumulative Distribution Function
(CDF) of the model output was transformed to match the CDF of the observed data through
empirical quantiles, without specifying a parametric form for the distributions [27]. In
the first step, the corresponding model output and observed data were sorted separately
in ascending order. Then, the empirical CDFs of the model output and observed data
based on their respective rankings were calculated [28]. Afterwards, the quantile mapping
function by matching the empirical quantiles of the model output with those of the observed
data was calculated. Specifically, for each quantile value (e.g., the 10th percentile), the
corresponding value of the observed data was matched with the value of the model output.

https://code.mpimet.mpg.de/projects/cdo
https://code.mpimet.mpg.de/projects/cdo
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The mapping function was achieved by interpolating between these pairs of quantiles [29].
Finally, a quantile mapping function was applied to the model output to correct the
bias. Specifically, for each value of the model output, the quantile mapping function was
used to find the corresponding quantile of the observed data, and this quantile was then
transformed into the corrected value of the model output [30]. The non-parametric quantile
mapping approach using empirical quantiles is a flexible method that can correct biases
in the entire distribution of the model output, not just at specific quantiles. However,
it requires enough observed data for an accurate estimation of the empirical CDF and
mapping function. The method was implemented in the R programming language for
statistical computing [31] by means of the R-package “qmap”, version 1.0-4 [32].

2.4. RayMan Pro 3.1 and Physiologically Equivalent Temperature

The RayMan Pro 3.1 model (radiation in the human body) was used is to calculate the
mean radiant temperature and different thermal indices for the quantification of thermal
conditions, such as thermal comfort and cold and heat stress. The micro-scale model—
developed at the Chair for Environmental Meteorology, former Chair for Meteorology and
Climatology of the Albert Ludwig University of Freiburg—was developed to calculate
radiation fluxes in simple and complex environments. RayMan is a one-dimensional model
that performs all calculations for one point. The model simulates the short- and long-wave
radiation flux densities from the three-dimensional surroundings and is freely available. A
detailed description of the model is given by Matzarakis et al. (2007, 2013) [4,33]. It requires
the air temperature, air humidity, and wind speed as meteorological input variables. The
mean radiant temperature can be calculated based on global radiation or cloud coverage.

In this study, the PET was used due to its widely known temperature unit (◦C)
as an indicator of thermal stress or thermal comfort. PET was introduced in 1987 [34]
and adjusted to Middle Western Europe, based on the human energy balance [35]. The
PET is based on the MEMI model [36] (Munich energy balance model for individuals)
and provided the possibility to assess thermal–physiological perception due to thermal
conditions. PET is defined to be equivalent to the air temperature that is required to
reproduce in a standardized setting and, for a standardized person, the core and skin
temperatures that are observed under the conditions being assessed [36]. The standardized
person is characterized by a work metabolism of 80 W of light activity, in addition to
basic metabolism, and by 0.9 clo (insulation effect of clothes, where 0.0 corresponds to a
naked person and 1.0 corresponds to the insulating value of clothing needed to maintain a
person’s comfort while sitting and at rest in a room at 21 ◦C with an air movement value of
0.1 m/s and humidity less than 50%) of heat resistance as a result of clothing. More details
for the PET are given by Matzarakis et al., 2007 [33] or VDI 1998 [37].

2.5. Climate Indices

The Expert Team on Sector-Specific Climate Indices (ET-SCIs) of the World Mete-
orological Organization (WMO) Commission for Climatology (CCI) created a globally
harmonized collection of fundamental climate indices. These indices were based on the
daily values of minimum and maximum air temperatures, as well as daily precipitation
totals. Their primary objective was to identify shifts in extreme climate conditions. They
found widespread application in the identification and attribution of climate change trends
in historical datasets [38–40], future climate change projections [27,41,42], and investiga-
tions into heat waves [43,44]. In Table 2, the indices used in this study are listed. The open
source R software package ClimPACT2 (https://github.com/ARCCSS-extremes/climpact2
(accessed on 12 January 2022)) was used to calculate the indices related to heat waves.

https://github.com/ARCCSS-extremes/climpact2
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Table 2. Short and long names, definitions, and units of extreme temperature indices according to
ClimPACT2.

Short Name Long Name Description Units

SU Summer days Days when maximum air temperature exceeds 25 ◦C days
TR Tropical nights Days when minimum air temperature exceeds 20 ◦C days

TXx Max TX Hottest day ◦C

WSDI Warm-spell duration indicator Annual number of days contributing to events where 6 or more
consecutive days experience a TX > 90th percentile days

TXge30 TX of at least 30 ◦C Days when maximum air temperature is at least 30 ◦C days
TXge35 TX of at least 35 ◦C Days when maximum air temperature is at least 35 ◦C days

TXdTNd User-defined consecutive number of hot
days and nights

Annual count of d consecutive days where both the TX > 95th
percentile and TN > 95th percentile, and where 10 ≥ d ≥ 2 Events

CDDcoldn Cooling degree days Annual sum of TM − n (where n is a user-defined
location-specific base air temperature and TM > n)

Degree-
days

TNx Max TN Hottest night ◦C
TXm Mean TX Average daily maximum air temperature ◦C

TX90p Number of hot days Percentage of days when TX > 90th percentile %
TN90p Number of warm nights Percentage of days when TN > 90th percentile %

HWN
(EHF/Tx90/Tn90)

Heat Wave Number (HWN) as defined by
either the Excess Heat Factor (EHF), 90th
percentile of TX, or the 90th percentile of TN

The number of individual heat waves that occur each summer
(May–Sep). A heat wave is defined as 3 or more days where
either the EHF is positive, TX > 90th percentile of TX, or where
TN > 90th percentile of TN. Percentiles are calculated from the
base period

events

HWF
(EHF/Tx90/Tn90

Heat Wave Frequency (HWF) as defined by
either the Excess Heat Factor (EHF), 90th
percentile of TX, or the 90th percentile of TN

The number of days that contribute to heat waves as identified by
the HWN days

HWD
(EHF/Tx90/Tn90)

Heat Wave Duration (HWD) as defined by
either the Excess Heat Factor (EHF), 90th
percentile of TX, or the 90th percentile of TN

The length of the longest heat wave identified by the HWN days

HWM
(EHF/Tx90/Tn90)

Heat Wave Magnitude (HWM) as defined by
either the Excess Heat Factor (EHF), 90th
percentile of TX, or the 90th percentile of TN

The mean air temperature of all heat waves identified by the
HWN [45]

◦C (◦C2
for EHF)

3. Results
3.1. Thermal Stress Assessment Based on the Measured Data

For the evaluation of human thermal comfort, air temperature alone is insufficient [46].
Other atmospheric factors, such as the relative humidity, wind speed, and radiation fluxes,
significantly influence human thermal perception. Therefore, we used long-term measure-
ments of the hourly data of the official WMO station in Findel to calculate the PET with
the RayMan Pro 3.1 model for 15 years, starting in 2006. Different genders and ages were
considered to account for the different sensitivities of the human body. Figure 1 shows
the results of the PET calculation for males and females at different ages as the relative
frequency distribution (left side of the figure), as well as the differences in the tables on the
right side and below the histograms. The distribution of the PET values shows a typical
annual course for a location in Central Europe with the highest PET values in July and
August indicating moderate to strong heat stress conditions during up to 10% of the hours.
Only 48 h for females (35 years old) and 55 h for males (35 years old) with extreme heat
stress were identified for the meteorological summer seasons. The maximum number of
hours (up to 24%) with no thermal stress, indicated by PET values between 18◦ and 23◦,
also occurred in the summer months for both gender and age groups. In general, older
people, independent of their gender, were more sensitive to heat stress. This is indicated
by the positive differences (red shading) in the tables on the right side of the figure. The
positive differences varied between 0.1% and 2.7% and showed the same pattern for both
genders. The inter-gender differences showed the same pattern, but with slightly lower
values ranging up to 1.1%. Comparing the results for male and female persons, a slightly
higher vulnerability towards heat stress for female persons was observed.
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Figure 1. Relative frequency of physiological equivalent temperature (PET) calculated with RayMan
Pro 3.1, based on hourly input data from the WMO station in Findel, for male and female persons
from two different age classes. Additionally, the differences of the relative frequency contributions
are given below and on the right side of the figure (2006 to 2020).

3.2. Results of the Regional Multi-Model Ensemble

Based on the bias-corrected transient CORDEX data, the annual mean values of mean,
minimum, and maximum air temperatures for the three different RCPs were computed
and are shown in Figure 2. Depending on the RCP that reflects the future emissions of
greenhouse gases, the strength of the average air temperature increase varies. For RCP26,
the increase in the mean air temperature until the end of this century for Luxembourg
is projected to rise by 1.3 ◦C compared to the reference period (1971–2000). In that case,
Luxembourg would be able to meet the ambitious target of keeping global warming below
1.5 ◦C, as agreed in the Paris Agreement. For RCP45 and RCP85, average increases of
2.1 ◦C and 3.8 ◦C were projected, respectively. Only for RCP26 was a stabilisation of air
temperature values from the mid-century observed. While RCP45 and RCP85 showed
significant parallel warming until the middle of this century, the temperatures based on
RCP85 exhibited a more pronounced increase from 2050 to 2100. The mean annual values
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of the minimum and maximum air temperatures did not diverge from the pattern of the
mean air temperature. While the differences between the reference period and the near and
far future periods are almost constant for the mean and maximum air temperatures in all
three RCPs, the increase in the minimum air temperature in the near and far future periods
for RCP85 is 2.4 ◦C less than for the mean and maximum air temperatures for the same
RCP. All the differences between the 30-year long-term averages (comparison between the
reference period and the near and far future, as well as the near compared to the far future)
were statistically significant (p < 0.001), exept for RCP26 where the differences between the
near and far future periods for all three variables did not differ significantly from each other.
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Figure 2. Multi-model ensemble of mean, minimum, and maximum air temperature values for
Luxembourg for three different Representative Concentration Pathways (RCPs). The spread (gray)
is defined as +/− one standard deviation of the ensemble. Red (lines and numbers) represents the
30-year long-term averages for the reference (1971–2000), near (2021–2050), and far future (2070–
2099) periods.

In general, the climate indices shown in Table 3 reflect the trend of increasing air
temperature already shown in Figure 2. Five out of the first six indicators describe days
above a certain temperature threshold and reflect the increase in the mean and maximum
air temperatures depending on the emission scenario. In addition to the absolute numbers
of the days in Table 3, the significance is also indicated as a p-value. If no p-value is
given, the test failed and the differences between the reference period and the near or far
future periods are not signifcant. For the assessment of potential negative health effects,
the number of tropical nights was extremely important; hence, during those nights, the
recovery function of the human body during sleep was reduced. On average, only two days
per year for RCP26 and four days for RCP45 occurred. In contrast, on average, more than
13 tropical nights per year were projected for RCP85. As an alternative, using absolute
threshold values for the defination of nights with potential heat stress, the index related to
warm nights (number of warm nights) relied on the 90th percentile of the daily maximum
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air temperatures of the reference periods from each model. These thresholds were a little
bit lower than the fixed one of 20 ◦C for the tropical nights, resulting in a higher number of
event days, but still showing the same pattern as for the tropical nights.

Table 3. Results of the different heat-related indices for three different emission scenarios (reference
period = 1971–2000, near future (NF) = 2021–2050, and far future (FF) 2070–2099). For the statistically
significant differences between the reference period and NF or RF, the p-values are given below the
index numbers.

Index Name
RCP26

Ref.
Period

RCP26
NF

RCP26
FF

RCP45
Ref.

Period
RCP45 NF RC45

FF
RCP85

Ref.
Period

RCP85
NF

RCP85
FF

Summer days, days 28 38
p < 0.001

39
p < 0.001 28 40

p < 0.001
48

p < 0.001 28 39
p < 0.001

69
p < 0.001

Tropical nights, days 0.26 0.92
p < 0.001

1.90
p < 0.001 0.34 1.66

p < 0.001
3.8

p < 0.001 0.34 1.84
p < 0.001

13.22
p < 0.001

Max TX, ◦C 31.5 33.0
p < 0.001

33.2
p < 0.001 31.5 32.9

p < 0.001
33.9

p < 0.001 31.5 33.0
p < 0.001

36.5
p < 0.001

Warm-spell duration
indicator, days 6 17

p < 0.001
21

p < 0.001 6 18
p < 0.001

32
p < 0.001 6 19

p < 0.001
65

p < 0.001

TX of at least 30 ◦C, days 4 8
p < 0.001

10
p < 0.001 4 9

p < 0.001
12

p < 0.001 4 9
p < 0.001

24
p < 0.001

TX of at least 35 ◦C, days 0.13 0.52 0.85 0.14 0.64
p < 0.001

1.25
p < 0.001 0.14 0.68

p < 0.001
4.62

p < 0.001
Consecutive hot days and
nights (d = 2) 0 2

p < 0.001
2

p < 0.001 0 2
p < 0.001

4
p < 0.001 0 2

p < 0.001
7

p < 0.00
Cooling degree days,
degree days 100 162

p < 0.001
179

p < 0.001 102 174
p < 0.001

234
p < 0.001 102 176

p < 0.001
407

p < 0.001

Max TN, ◦C 18.6 19.8
p < 0.001

20.0
p < 0.001 18.7 19.9

p < 0.001
20.9

p < 0.001 18.7 20.1
p < 0.001

23.1
p < 0.001

Mean TX, ◦C 12.7 13.9
p < 0.001

14.0
p < 0.001 12.7 13.9

p < 0.001
14.8

p < 0.001 12.7 13.9
p < 0.001

16.5
p < 0.001

Number of hot days, %
(TX90p) 10.6 16.3

p < 0.001
17.2

p < 0.001 10.6 17.2
p < 0.001

22.8
p < 0.001 10.6 17.2

p < 0.001
34.8

p < 0.001
Number of warm nights, %
(TN90p) 10.6 18.5

p < 0.001
18.9

p < 0.001 10.6 18.4
p < 0.001

26.0
p < 0.001 10.6 19.4

p < 0.001
41.9

p < 0.001

Instead of counting single days, the Warm Spell Duration Indicator (WSDI) counts the
number of days contributing to events where six or more consecutive days experience a
maximum daily air temperature above the 90th percentile. That percentile was derived
from the maximum air temperature time series of the 30-year reference period from 1971
to 2000. In the reference period, on average, one event with six consecutive days per year
occurred, and for the near future, no evident differences between the three RCPs were
observed. For the far future, the number of days contributing to such events increased to
32 for RCP45 and 65 for RCP85.

In addition to the direct impact on human health, increased heat stress can also have
significant impacts on energy consumption, e.g., for cooling with air conditioners. A simple
and widely used index for this is the cooling degree days index as an inicator of how much
heating or cooling is needed to maintain a comfortable indoor temperature. They are based
on the assumption that, when the outdoor temperature is 18 ◦C, no heating nor cooling
is needed. This index is calculated by subtracting a base temperature, set at 18 ◦C, from
daily mean air temperatures and accumulating the positive values for each year. A constant
increase in all three emission scenarios is shown in Table 3. While for RCP26 an increase by
80% is projected until the end of this century, RCP45 and RCP85 reveal a higher positive
increase of 135% and more than 300%, respectively.

In Figure 3, the annual Heat Wave Numbers (HWNs) for the three different RCPs
are shown. In addition to the annual number for each year (blue line), the spread of the
multi-model ensemble is definied as +/− one standadard deviation (gray shaded area).
Moreover, boxplots for 10-year time slices for the references period (1971–2000), the near
(2021–2050), and far future (2070–2098) are given. The whiskers are defined as 1.5-times the
interquartile range; values beyond this threshold (outliers) are marked as red dots. The
notches are a measure of the uncertainty of the median. If the notches of two box plots
do not overlap, it is likely that the medians of the two groups are different. Based on the
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definition of a heat wave, a period of at least three years where the excess heat factor is
positive is necessary. While for RCP26 a duplication for the near and far future periods
compared to the reference period is shown, the number of heat waves constantly increases
for RCP45 and RCP85. The HWN per year alone is not a sufficient indicator because the
lengths of the individual heat waves are not considered. Therefore, in Figure 4, the number
of days that contribute to the HWF are shown. For RCP26, a pattern comparable to the
HWN can be found. For the other two RCPs, especially for RCP85, a more pronounced
increase in the number of days that contribute to heat waves is evident. By dividing the
HWF by the HWN, it is clear that the length of the heat waves increases for RCP45 and is
even more noticeable for RCP85. This is supported by the results shown in Figure 5, where
the lengths of the longest heat waves in days per year are shown. For RCP26, initially a
slight increase in the length for the near future period can be observed, which remains
at the same level as the far future. The same pattern with a more pronounced increase
is visible for RCP45. The unique, remarkable difference is the increase in the number
of outliers compared to RCP26, which can be partly attributed to the higher number of
ensemble members of RCP45. For RCP85, the outlier numbers are even higher, with an
median length of 21 days for the last decade of this century. As the last indicator in Figure 6,
the Heat Wave Magnitude (HWM) is shown. The HWM is the average daily magnitude
across all heat wave events within a year. For all RCPs, a slight increase from the reference
period to the near future can be observed, followed by a stabilisation of RCP45 and only a
marginal increase in RCP85. Also, the absolute differences between the three RCPs are less
pronounced; hence, in this index, the influence of the absolute air temperature during the
heat wave is negligible.
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(1971–2000), near (2021–2050), and far future (2070–2098) periods are given; period: 1971–2099.
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Figure 4. Annual multi-model mean values of the number of days that contribute to heat waves
(HWFs) for RCP26 (a), RCP45 (b), and RCP85 (c) (blue lines). The spread of the ensemble is defined as
+/− one standard deviation (gray shaded area), red dots = outliers. In addition, boxplots for 10-year
time slices for the reference (1971–2000), near (2021–2050), and far future (2070–2098) periods are
given; period: 1971–2099.
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Figure 5. Annual multi-model mean values of the Longest Heat Wave (HWD) length for RCP26 (a),
RCP45 (b), and RCP85 (c) (blue lines). The spread of the ensemble is defined as +/− one standard
deviation (gray shaded area), red dots = outliers. In addition, boxplots for 10-year time slices for
the reference (1971–2000), near (2021–2050), and far future (2070–2098) periods are given; period:
1971–2099.
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Figure 6. Annual multi-model mean values of the Heat Wave Magnitudes (HWMs) for RCP26 (a),
RCP45 (b), and RCP85 (c) (blue lines). The spread of the ensemble is defined as +/− one standard
deviation (gray shaded area), red dots = outliers. In addition, boxplots for 10-year time slices for
the reference (1971–2000), near (2021–2050), and far future (2070–2098) periods are given; period:
1971–2099.

4. Discussion

First, we analyzed the thermal stress level in Luxembourg based on the long-term
measurements from the WMO station at Findel Airport. In addition to the air temperature,
other atmospheric variables, such as the humidity, wind speed, and radiation fluxes, are
also essential for human thermal comfort. To assess the heat stress levels, the thermal
index PET [33] was calculated for two different age groups, 35 and 75 years old, as well as
male and female persons. The distribution of PET values throughout the year exhibited a
typical annual pattern for a location in Central Europe. Peaks occurred in July and August
and indicated moderate to strong heat stress conditions in up to 10% of the hours during
these months. This is in line with a comparable investigation of the thermal bioclimatic
conditions for Freiburg in Germany based on monthly intervals. The thermal stress levels
during the summer months of June to August were within a comparable range. This study
highlighted the importance of shade, where slight modifications of the conditions within
urban structures could lead to great modifications of the bioclimatological conditions [47].
During the meteorological summer seasons, the highest number of hours with extreme heat
stress was recorded. For females, this was up to 48 h, and for males up to 55 h. Furthermore,
the summer months exhibited the highest number of hours with no thermal stress for
both gender and age groups, indicated by the PET values between 18◦ and 23◦ (24% of
all hours). It is well known that older individuals are more vulnerable to heat-related
morbidity and mortality during summer days and especially during heat waves due to
a combination of physiological and social factors [12]. Via the RayMan Pro model, only
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the physiological changes associated with aging, such as reduced sweat production and
impaired thermoregulation, could be considered. The red shaded areas in the tables in
Figure 1 indicate that there is a positive difference in vulnerability to heat stress between
the two age groups. This difference ranges from 0.1% to 2.7%. Although the pattern is
similar for both genders, the differences are slightly less for females, with a maximum value
of 1.1%. Overall, the data show that females and older people are slightly more vulnerable
to heat-related illnesses than males [48,49]. This could be due to the lower sweating
capacity of women for a given amount of metabolic heat generation [50,51]. Additionally,
social factors not captured by the model, such as limited access to medical care, chronic
health conditions, certain medications, or a lack of air conditioning, can further exacerbate
heat-related risks [52,53]. This, in combination with the increase in the longevity of the
population, will exacerbate the problem in the future. By 2050, 21.1% of the population
in Europe is expected to be older than 60 years. According to the latest Lancet report,
the annual heat-related mortality of people +65 years old is projected to increase by 370%
for the period ranging from 2041–2060 (compared to the period ranging from 1995–2014),
under the assumption that the global air temperature increase will be limited to 2 ◦C, and
by 433% in a scenario with no mitigation and adaptation measures [1].

Regional climate models exhibit systematic deviations from the observed data. To
overcome these discrepancies and to avoid presenting only the relative changes between
the reference period and the future climate conditions, a bias correction as a commonly
used data post-processing technique was applied [54,55]. These methods typically in-
volve adjusting the differences between predicted model values and observed values by
applying correction factors. These factors are usually derived from historical data and
then applied to the entire time series under the assumption that these differences remain
consistent over time. We applied a non-parametric quantile mapping technique to cor-
rect the biases between the measurements from the Findel station and the outputs of all
ensemble members.

To assess the future heat stress conditions in Luxembourg, we relied on a multi-
physics and multi-model ensemble of different regional climate models listed in Table 1.
The uncertainty of future anthropogenic forcing was considered by three Representative
Concentration Pathways: RCP26, RCP45, and RCP85. No weighting of the individual
model results was applied [56]. For the statistical analysis and significant tests, 30-year time
spans were calculated to (i) make our findings easily comparable with other studies and
(ii) to reduce the noise of the results [57]. The projected changes in the mean, minimum,
and maximum air temperatures are shown in Figure 2, and are in line with the results
of comparable studies for Luxembourg [15,58]. The projected increase in the mean air
temperature varied, depending on the RCP, between +1.3 ◦C (RCP26), +2.1 ◦C (RCP45),
and +3.8 ◦C (RCP85). The values of the minimum and maximum air temperatures followed
the same structure, without any extraordinary patterns. The spread, shown as gray shaded
areas in Figure 2, is more pronounced for RCP45 and RCP85. This was very likely due
to the higher number of ensemble members. Our transient climate projections generally
exhibited uncertainty levels comparable to those reported in other studies. This uncertainty
stemmed from variations in the physical principles and parameterizations across the
different climate models, leading to differing projections, even when exposed to the same
amount of anthropogenic emissions [13,59].

The bias-corrected time series for daily minimum and maximum air temperatures
were used as the input data to calculate the heat-related climate change indices presented in
Table 3 with the open source R software package ClimPACT2. Most of the indices followed
an increase in the maximum air temperatures shown in Figure 2. All the differences
between the reference period and the two future time spans were statistically significant,
except for the days above 35 ◦C for the near future in the RCP26 scenario. From a human
health perspective, the indicators that not only address a single day, such as the warm-
spell duration indicator and the number of consecutive hot days and nights, are more
important because the related heat stress during the nighttime prevents the human body
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from recovering from daytime high-heat exposure [60]. While the increase in the number
consecutive hot day and night events until the end of this century was only minor, from 0
to 2 (RCP 26), 0 to 4 (RCP45), and 0 to 7 (RCP85), the increase in the warm-spell duration
indicator was more evident. The advantage of the warm-spell duration indicator is that not
only are events during summertime identified, but also periods with extraordinarily high
air temperatures for the rest of the year. Therefore, for each calendar year of the reference
period, the 90th percentile of the maximum air temperature was calculated and used as a
threshold. The warm-spell indicator was applied on a global scale for the period ranging
from 1953 to 2003 with mostly positive trends for warm spells [61]. In Bangladesh, an
annual increase in this indicator by 14% per year was observed based on the historical
measurements (1981–2018) [62], and for the time series of weather stations in Turkey for
the past century, positive trends and slightly higher absolute values than for Luxembourg
were also identified [63].

In addition to the impacts on human health, the sector specific indices could also be
used to analyze how air temperature changes affect, e.g., energy consumption. This is of
great importance for heat waves because one of the most common adaptation strategies
in developed countries is the use of air conditioning that can worsen outdoor heat stress.
Our results for the cooling degree days inicator, which approximates how much cooling is
needed to maintain a comfortable indoor temperature, show a strong increase between 80%
(RCP26) and up to >300% (RCP85). However, in view of the urgent need for energy reduc-
tions, measures other than air conditioning, such as urban blue and green infrastructures,
as well as individual behavior are prefered [64,65]. On the other hand, it should be noted
that the demand or cooling expressed through this index does not automatically reflect the
actual energy use. Factors, such as the energy efficiency of cooling systems, better-insulated
homes, or behavior changes, were not considered.

The number of heat waves as well as the number of days that contributed to a heat
wave (Figures 3–5) were in a comparable range for the reference period as those identified
for Potsdam, Germany [66]. The strong increase in the multi-model ensemble median of
the number and duration of heat waves under far future climate conditions for RCP45
were similar to the results obtained for the A1B scenario [67]. Only the combined analysis
of these two indices can lead to satisfying results, as the number of heat waves alone
can present a wrong impression due to the significant increase in the duration of the
heat waves in the future. One extreme long heat wave will have more severe impacts
on human health than two short ones. Without adaptation measures, this can greatly
increase the incidence of heat-related illnesses, negatively impact natural ecosystems, and
reduce the outdoor working capacity. The results for the near future period for RCP45
and RCP85 do not differ considerably and reflect the air temperature increase indicated in
Figure 2. The increase in the length of heat waves (Figure 5) will not only negatively impact
human health, but also increase the probability of widespread wildfires [68]. Areas that
are fire prone will extend to the north of Europe and the Mediterranean mountains [69,70].
Lin et al. (2022) investigated trends and associated uncertainties in the GCM-RCM model
results for heat wave magnitudes for present and future climate conditions in Europe,
showing that the uncertainties associated with the driving data are of a similar magnitude
to those associated with different models, and that RCMs are reliable tools for simulating
heat wave magnitudes [71]. The heat wave magnitude has been used to study the trends
of heat wave intensity values in different parts of the world indicating increasing trends
in many regions, including Europe, North America, and Asia [71–74]. The results for
Luxembourg show that the absolute differences between the RCPs are less pronounced.
Only for RCP45 and RCP85 was a doubling trend for the end of the century compared to
the reference period found. Overall, the results for Luxemburg are comparable with those
presented by Vargas et al. (2022) showing an increase in the exposure to dangerous heat by
a factor of 3 to 10 in many regions throughout the mid-latitudes [13].

A direct comparison of the results between RCP26 and the other two RCPs was not
possible due to the different numbers of ensemble members.
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Limitations of the present study: despite the significance of the present study, there
are some limitations that should be acknowledged. For instance, a direct comparison of the
results for RCP26 and the other two RCPs was not possible due to the different numbers
of ensemble members. In contrast to other studies, we decided not to exclude the RCP26
scenario that considered fast responses to climate adaptation and mitigation technologies,
in order to cover the possible impacts of future heat exposure on Luxembourg’s population.
Despite these limitations, our study provided important information that could inform
policy- and decision-making processes in and outside Luxembourg. The findings highlight
the urgent need for effective adaptation and mitigation measures to reduce the risks of heat
exposure and protect vulnerable populations.

5. Conclusions

The intensification of heat waves, accompanied by rising air temperatures, will have
more severe health consequences for vulnerable populations, such as the elderly, poor, and
outdoor workers. In addition to the direct impact of meteorological variables on various
genders and age groups, there are also other social factors that can worsen the situation,
such as inadequate medical access, persistent health issues, or an insufficient availability
of air conditioning. This may require a reorganization of the healthcare services, even in
regions with moderate climates, due to the increasing life expectancy of the population.

To achieve this, a close collaboration between national meteorological and health
services is crucial to provide easily understandable health information to the general public.
Heat waves were already recognized as hazardous weather events, and national alerts are
issued when severe heat waves occur. All the calculated indices indicate an increase in the
future heat stress in Luxembourg. Moreover, the increase in the duration of future heat
waves will pose significant risks related to morbidity and mortality to the Luxembourgish
population. In high-income countries, like Luxembourg, technical measures, such as air
conditioning, can mitigate heat-related morbidity and mortality. However, these measures,
in most cases, contribute to increased energy consumption, exacerbating climate change,
air pollution, and the urban heat island effect. Since more than 70% of the Luxemburgish
population resides in urban areas, implementing city-level interventions, such as green
and blue infrastructures, holds great potential for preventing the negative health impacts
caused by excessive heat.

Despite decades of scientific warnings, the world has been slow to take action re-
garding climate change. Governments and industries have been reluctant to adopt strong
policies and efficient practices that can reduce greenhouse gas emissions and help to mit-
igate the impacts of global warming. Insufficient actions have been taken to date and,
therefore, the world is currently on track to warm up by 3 ◦C, while accepting the negative
health impacts on society.
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Abbreviations

CCI Commission for Climatology
CDDs Cooling Degree Days
CDF Cumulative Distribution Function
CDOs Climate Data Operators
clo Insulation effect of clothes
CORDEX Coordinated Regional Climate Downscaling Experiment
ESGF Earth System Grid Federation
ET-SCIs Expert Team on Sector-Specific Climate Indices
FF Far Future
GCM Global Climate Model
HWD Length of the longest heat wave
HWFs Days that contribute to heat waves
HWM Heat wave magnitude
HWN Heat Wave Number
MEMI model Munich energy balance model
NF Near Future
PET Physiologically Equivalent Temperature
RCM Regional Climate Model
RCPs Representative Concentration Pathways
RF Reference Period
SYNOP Synoptic Observation
WMO World Meteorological Organization
WSDI Warm-Spell Duration Indicator
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