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Abstract: The external environment in the transitional zone of the ecological barrier is fragile, and
economic growth has resulted in a series of land degradation issues, significantly impacting regional
economic development and the ecological environment. Therefore, monitoring, assessing, and
predicting land use changes are crucial for ecological security and sustainable development. This
study developed an integrated model comprising convolutional neural network, cellular automata,
and Markov chain to forecast the land use status of western Jilin, located in the transitional zone
of the ecological barrier, by the year 2030. Additionally, the study evaluated the role of land use
policies in the context of land use changes in western Jilin. The findings demonstrate that the coupled
modeling approach exhibits excellent predictive performance for land use prediction in western Jilin,
yielding a Kappa coefficient of 93.26%. Policy drivers play a significant role in shaping land use
patterns in western Jilin, as evidenced by the declining farmland accompanied by improved land
utilization, the sustained high levels of forest aligning with sustainable development strategies, the
ongoing restoration of waters and grassland, which are expected to show positive growth by 2030,
and the steady growth in built-up areas. This study contributes to understanding the dynamics of
land use in the transitional zone of the ecological barrier, thereby promoting sustainable development
and ecological resilience in the region.

Keywords: land use change; land use policy; land use prediction; ecological barrier; convolutional
neural network (CNN); cellular automata (CA); Markov chain (MC)

1. Introduction

Constructing ecological civilization is a crucial strategy for ensuring sustainable devel-
opment for humanity [1]. China has established the “two barriers and three belts” ecological
security strategy framework, with a focus on regional resources, environment, and econ-
omy, to facilitate the systematic and well-organized assessment of future changes in surface
ecological patterns. The primary objectives of the framework are to protect national ecolog-
ical security and accomplish key milestones in sustainable development [2,3]. However,
the transitional zones of the Northeast Forest belt and the Northern Sand prevention belt,
located in the forest–grassland–desert transition belt, exhibit unstable internal structures
and vulnerable external environments due to factors such as low precipitation and fre-
quent wind and sandstorms [4,5]. Driven by economic interests, grasslands and wetlands
have been extensively reclaimed for agricultural purposes, leading to land degradation.
Moreover, the extensive cultivation of low-yield lands is a primary cause of desertifica-
tion in the region [5]. The irrational land use patterns and lack of coordination in land
utilization have particularly severe impacts on regional economic development and the
ecological environment. Facing significant risks posed by global climate change and rapid
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economic development, as well as the multitude of complex ecological challenges, there is
notable spatiotemporal uncertainty [6,7]. These challenges have significantly impeded the
development of ecological projects and the formulation of related policies.

Located in the transitional belt of ecological barriers, the western part of Jilin Province
presents a typical case with complex land use types. With the rapid advancement of
industrialization and urbanization, the demand for various functional lands has increased,
leading to a higher utilization intensity of land resources. Consequently, conflicts and
contradictions arise among the different types of land use, resulting in an imbalanced spatial
structure, which will significantly impact both the national land spatial pattern and regional
sustainable development [8]. Resolving land use conflicts has become one of the urgent
and critical issues. To address the challenges posed by global climate change, urbanization,
and human activities, the Chinese government and local authorities have implemented a
range of policies aiming to rationalize the utilization of the limited land resources [9–13].
Considering the complex and uncertain nature of land use issues, developing a probabilistic
model that incorporates temporal and spatial factors can partially predict future trends
in western Jilin, evaluate the appropriateness of current or related policies, analyze the
synergistic relationship between land use and policies, and offer a scientific basis for future
decision-making processes. This can promote regional ecological security and sustainable
development, which is highly important and valuable for achieving green and sustainable
development in the rapidly developing, human–environment-conflicting, and ecologically
fragile western Jilin.

Several models have been developed for land use prediction, including the gray
model [14]; the conversion of land use and its effects at small regional extent model [15];
the cellular automata model (CA) [16,17]; the Markov chain model (MC) [18]; the logistic
regression model [19]; the SimWeight model [20]; the slope, land use, exclusion, urbaniza-
tion, transportation and hillshade model [21]; the support vector machine model [22]; the
land transformation model [23]; and the convolutional neural network model (CNN) [24].
The CA model can simulate the spatiotemporal evolution of various natural processes in a
flexible and simple manner, reflecting the local interactions of system evolution dynamics.
However, it heavily depends on spatial data and is constrained by the technical limitations
of a single model [25]. The MC model is effective in simulating long-term quantity trends
but does not fully consider spatial parameters, thus being unable of capturing the spatial
variability in land use [18]. To overcome these limitations, some studies have modified
and integrated the CA model into the MC model, resulting in the CA-MC model. This
integrated model monitors the spatiotemporal changes in land use types by utilizing the
transition matrix [26,27], in which the MC model controls the temporal changes [18] and
the CA model’s spatial filter controls the spatial changes [28].

While the potential of the CA-MC model has been recognized, the driving factors to
be considered in realistic simulations are highly complex. Therefore, integrating them into
other models may be one effective approach to enhance the understanding of evolutionary
patterns and improve predictive capabilities [26,29]. The CNN model, among the powerful
artificial intelligence (AI) models, can effectively handle complex nonlinear relationships
and high-dimensional data. However, it has limitations in terms of model interpretation
and generalization ability [30]. In comparison, the CNN model can address the CA model’s
deficiencies in neglecting the influence of macro-factors on the process; the CA and MC
models can address the slow convergence, susceptibility to local minima, and challenges
in determining the network structure of the CNN model [31,32]. Given the significance
of the potential of the CA, MC, and CNN models, this study aims to develop a coupled
CNN-CA-MC model for predicting the land use scenario of the western Jilin in 2030 and
validate the rationality of the current policies, explore future policy trends and directions,
and provide the support of theoretical foundation for the western Jilin land use planning
and sustainable land resource development, thus promoting the sustainable utilization of
land resources and the preservation of the ecological environment.
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The paper is structured as follows. Section 2 provides the location of the study
area, the database, the data preparation process, and the coupling method of the model.
Section 3 presents the results of the land use change prediction for 2030 and analyzes the
factors driven by policies. The discussion and conclusion are provided in Sections 4 and 5,
respectively.

2. Materials and Methods
2.1. Study Area

The western of Jilin Province, spanning 121.38◦ E–126.11◦ E and 43.59◦ N–46.18◦ N, cov-
ers an approximate total area of 48,000 km2 (Figure 1). It is located in the transitional area
between the northeast forest zone and the northern sand prevention zone, characterized by
a mosaic of low-lying, easily waterlogged saline–alkali and sandy areas, making the ecolog-
ical environment extremely fragile. The administrative region includes two prefecture-level
cities, Baicheng and Songyuan, with 10 county-level administrative divisions. The area
is higher in the east, south, and west, while the northern and central parts are relatively
lower, with elevations in the range of 96–648 m. The region is prone to risks, such as erosion
and inadequate drainage. The average annual temperature ranges from 4 to 5 ◦C, and
the annual rainfall varies between 400 and 500 mm, decreasing from the eastern to the
western plains, with precipitation being significantly lower than evaporation. The area is
located in the transitional zone between agriculture and animal husbandry in northern
China, characterized as a typical semi-arid to semi-humid region. It faces severe issues,
such as soil salinization, desertification, grassland degradation, wetland shrinkage, and
irrational land use structures [33]. With rapid industrialization and urbanization, there is
an increasing demand for different types of land and an intensification of land resource
utilization. Consequently, conflicts and contradictions arise between different land use
types, leading to an imbalanced land spatial structure. Therefore, this region is a focal point
for our study, as it stands to benefit from the findings of our research.
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Figure 1. The location of the study area.

2.2. Dataset and Preprocessing

Land use and land cover change (LUCC) is influenced by a multitude of natural,
economic, and human factors. According to the principles of scientific rigor, representative-
ness, and systematic approach, the dataset and sources used in this study are presented
in Table 1. The primary land use monitoring data for this study were obtained from the
Resource and Environmental Science Data Center, covering 3 periods (2000, 2010, and 2020).
These data were generated by the Institute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, utilizing Landsat 8 remote sensing images as
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the primary information source. The data underwent rigorous professional processing,
including radiometric and geometric corrections, with an accuracy of ≥90% [34]. Land
use types were reclassified into 6 primary categories (farmland, forest, grassland, water,
built-up area, and undeveloped land) based on the classification standard of the Chinese
Academy of Sciences Land Resource Classification System [35–37].

Table 1. A sketch of the utilized geospatial and attribute data.

Data Type Year Resolution Resource

1 Land use dataset Raster 2000, 2010, 2020 30 m https://www.resdc.cn/ (accessed on
15 December 2023)

2 GDEM V3 Raster 2000~2013 30 m https://www.earthdata.nasa.gov/
(accessed on 15 December 2023)

3 Distance to water Raster 2000, 2010, 2020 30 m Calculated from Land use dataset
4 Reservoir Raster 2000, 2010, 2020 30 m Reclass from Land use dataset
5 Slope Raster 2000~2013 30 m Calculated from GDEM V3
6 Policy constraint factors Raster 2000~2013 30 m Manual statistics

GDEM V3 is a high-resolution elevation data covering the global land surface, which
was derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER). The Ministry of Economy, Trade, and Industry (METI) and the National Aero-
nautics and Space Administration (NASA) collaborated on its development. The distance
to water data were derived by applying the Distance tool in IDRISI Sleva 17.0 [38–40] to
the reclassed land use monitoring data. The reservoir data were also extracted from the
reclassified land use monitoring data and used to generate and correct the suitability maps.
The slope data were derived from GDEM V3. Given that the areas in proximity to water,
characterized by lower DEM values and gentler slopes, are more conducive to plant growth
and human activities, the distance from water, DEM, and slope data were reverse normal-
ization. Moreover, the Chinese government has implemented regulations prohibiting the
cultivation of land with slopes greater than 25◦ and granting special protection for forests
with slopes greater than 25◦, which have a profound influence on changes in ecological
layout; hence, we considered it as a policy control factor. Considering that the number of
agricultural land pixels in the study area was much greater than the number of forest land
pixels and the number of pixels with slopes lower than or equal to 25◦ was much greater
than the number of pixels with slopes greater than 25◦, when reclassifying the slope data,
we set the pixel values greater than 25◦ to 0 and the pixel values lower than or equal to 25◦

to 1, serving as a constraint factor for prediction and control.
The data underwent preprocessing, including projection unification, clipping, and cali-

bration. The nearest-neighbor method was employed for resampling discrete data, whereas
bilinear interpolation was utilized for resampling the continuous data. The final spatial
resolution of all raster data was standardized to 30 m/pixel in the Krasovsky_1940_Albers
(ESPG: 7024) coordinate system.

2.3. Methods

The specific process and input data in this study are shown in Figure 2 and Table 2,
respectively. As shown in Table 2, the first 4 digits represent the year and the suffix “_11”
denotes the inclusion of a total of 11 types of datasets, encompassing 6 types of land
use (farmland, forest, grassland, water, built-up area, and undeveloped land), reservoir,
distance from water, DEM, slope, and policy factor data. The suffix “_6” indicates the
inclusion of only 6 types of land use data. Dataset A represents the data used to predict
land use in 2020, whereas dataset B represents the data used to predict land use in 2030.
During the prediction, dataset A was first fed into the model, and input 1 and input 2
served as the parameters to calculate the transfer probability matrix and suitability maps
through the spatial transfer rule module and quantity transfer rule module, respectively.
The resulting transfer probability matrix, suitability maps, and input 3 were collectively

https://www.resdc.cn/
https://www.earthdata.nasa.gov/
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employed as parameters in the CA model. The prediction results were subsequently
calibrated and compared to input 4. If the evaluation indicated that the model met the
prediction requirements, the dataset B was used to predict land use changes in 2030.
Detailed information on the specific module descriptions and computational processes are
provided in the following sections.
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Table 2. Input dataset.

Name
Input 1

Input 2 Input 3 Input 4
Input 1-1 Input 1-2

Dataset A 2000_11 and 2010_6 2010_11 2000_11 and 2010_6 2010_6 2020_6
Dataset B 2010_11 and 2020_6 2020_11 2010_11 and 2020_6 2020_6 -

In this study, the CA and MC models were implemented using IDRISI Sleva 17.0 and
the CNN model was made using PaddlePaddle 2.3.2 with the interpreter CPython 3.10.12.

2.3.1. Spatial Transfer Rule and Convolutional Neural Network

The CNN, correct, and stretch steps were performed successively to obtain the suit-
ability maps for the spatial transfer rule (Figure 2). The essence of the CNN model lies in
the utilization of convolutional operations and pooling operations to achieve end-to-end
training and classification and map the relationship from the input to the output [41].

A CNN model’s basic structure comprises an input layer, convolutional layers, ac-
tivation function layers, pooling layers, fully connected layers, and an output layer [42].
Among these components, the convolutional layers are the core of the CNN. They perform
convolution operations on input images using learnable convolution kernels, extracting
features and capturing the spatial local relationships. Activation functions introduce non-
linearity and enhance the model’s expressiveness. Rectified linear unit (ReLU (1)) and
sigmoid (2) can be applied to extract nonlinear features after each convolutional layer [43].
Pooling layers are used to reduce the spatial dimensions of feature maps, thereby reducing
the computational complexity and extracting more prominent features. The fully connected
layer transforms the feature maps into classification or regression outputs and is typically
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placed at the end of the convolutional neural network. It flattens the feature maps into a
one-dimensional vector that is subsequently utilized for classification or regression predic-
tions. The training of a CNN model commonly employs the backpropagation algorithm
to optimize the model parameters by minimizing the loss function. During training, the
CNN model can automatically learn features from the images without the need for manual
feature extractors because fully connected layers can cause the loss and confusion of spatial
information, this study did not include them.

ReLU : f (x) = max(0, x) (1)

Sigmoid : f (x) =
1

1 + e−x (2)

The CNN model in this study comprised 3 convolutional layers (Conv1, Conv2, and
Conv3) and an adaptive max pooling layer (Figure 3a). Conv1 had 11 input channels and
21 output channels, Conv2 had 21 input channels and 12 output channels, and Conv3 had
12 input channels and 6 output channels. The kernel size for all convolutional layers was
3 × 3, with a stride of 1, and reflection padding was applied with a padding size of 1. ReLU
was employed as the activation function after the first two convolutional layers (Conv1 and
Conv2), whereas Sigmoid was used after the third convolutional layer (Conv3). Finally, the
feature map size was adjusted to 128 × 128 through the adaptive max pooling layer.
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The input layer parameters consisted of 6 types of land use data, DEM, distance
from water, reservoir, slope, and policy control factor data. After partitioning the original
data, the image was divided into multiple sub-images of 128 × 128 size, which were
then used as input for training the constructed CNN model, which utilized 11 channels.
During the forward propagation, the input data underwent convolution and adaptive
max pooling operations, generating output data with 6 channels. Subsequently, the mean
squared error was used as the loss function to compute the loss value. During the backward
propagation, the Adam optimizer was used to compute the weights gradients and update
the weights, thereby facilitating gradient descent. By performing multiple iterations and
weight optimization, the best accuracy was achieved. Finally, the suitability maps were
obtained by stitching the processed individual input images.

Taking dataset A as an example, the input 1-1 data was cropped into a size of
128 × 128, resulting in the generation of a dataset. Subsequently, the dataset was split into a
training set and a validation set at an 8:2 ratio. Training was conducted on the training set,
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and the loss was computed by comparing the predicted results with the actual classification
results (Figure 3b). Once the loss value on the validation set no longer decreased, input 1-2
was fed into the CNN model for prediction, generating a suitability map for 2010. After
correcting the results obtained from the CNN operation, the grid values were scaled to the
range from 0 to 255 while maintaining integer values. At this stage, the spatial transfer
rule module finished its operation. The same procedure was applied to dataset B, where
the input data from the years 2010 and 2020 were utilized to generate a suitability map
for 2020.

2.3.2. Quantity Transfer Rules and Markov Chain Model

The MC model, which is a theory based on the process of the formation of Markov
random process systems for the prediction and optimal control theory method, is utilized
to calculate the quantity transfer rules, resulting in the generation of a transfer probability
matrix and a transfer area matrix [44]. It is commonly used to predict geographical charac-
teristics, especially in scenarios without an aftereffect event, making it a crucial method in
geographic research. The prediction of land use changes is calculated using the conditional
probability formula [17,45,46]:

St+1 = Pi,j × St (3)

where St and St+1 are the system status at the times of t and t + 1, respectively; and Pi,j is
the transition probability matrix in a state, which is calculated as follows:

Pi,j =

P11 . . . P1n
...

. . .
...

Pn1 . . . Pnn

, 0 ≤ Pi,j ≤ 1 and ∑n
j=1 Pi,j = 1 (i , j= 1, 2, . . . n) (4)

2.3.3. Cellular Automata Model

The CA model is a dynamic system that evolves and simulates spatial and temporal
processes based on a cell space and specific rules, which is characterized by discrete time,
discrete space, and discrete states, where each variable can only take a finite number of
states. The transition rules of the CA model are local in both time and space [47,48]. Its
primary application is to describe discrete dynamic systems in spatial contexts. The CA
model can be represented as:

A = (Ld, S, N, F) (5)

where A represents the CA model, Ld represents the cell space in a d-dimensional cellular
automaton, S represents the set of all cell states, N represents the neighborhood state of the
central cell, and F represents the transition rules.

2.3.4. CNN-CA-MC Model and Accuracy Assessment

The CNN-CA-MC model builds upon the foundation of the CA model, integrating
crucial components from the MC and CNN models. The construction of this model involves
the following elements:

1. Each grid with a spatial resolution of 30 × 30 m represents and stores the land use state,
forming the cells. These cells collectively constitute the cellular space, distributed in
spatial space.

2. Each grid has an attribute known as the state, representing the land use type.
3. The neighborhood concept employs a 5 × 5 Moore-type configuration, including the

central cell and its 24 surrounding cells. It considers the influence of the surrounding
cells on the attributes of the central cell.

4. The transition rule governs the state of the neighborhood at the subsequent time step
based on the current state of the cell and the condition of the neighborhood. It is
defined as follows:
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f : St+1
i = f

(
St

i , St
N
)

(6)

where f represents the transition rule, which comprises both quantity transition rules
(derived from the transition probability matrix computed using the MC model) and spatial
transition rules (generated by the CNN model in the form of suitability maps). St+1

i denotes
the state of cell i at time t + 1, St

i represents the state of cell i at time t, and St
N represents

the combined state of the neighborhood of cell i at time t.

5. The CA model evolves in discrete time steps. In this context, discrete time refers to the
iteration count or time interval at which the CA model progresses. For this specific
case, the iteration count aligns with the 10-year interval between the utilized basic
data, resulting in a specified iteration count corresponding to a 10-year interval.

The CNN-CA-MC coupled model was validated for its accuracy by comparing the
predicted land use results with the actual land use outcomes and calculating the Kappa
coefficient. A satisfactory level of accuracy is typically indicated by a Kappa coefficient
greater than 0.75 or 0.8 [49,50]. The computation of the Kappa coefficient is as follows:

Kappa =
P0 − Pc

1 − Pc
(7)

where P0 represents the proportion of correctly simulated cells and Pc denotes the expected
proportion of simulated cells.

3. Results
3.1. CNN-CA-MC Simulation

To further validate the accuracy of the model, the optimized CNN-CA-MC model was
employed to predict land use firstly for 2020. The results of the transition area (probability)
matrix indicate the likelihood of land use types transitioning to other land use types
(Table 3). It presents the probabilities of conversion between different land use types. For
example, 76.6% of farmland was expected to remain unchanged, but there was a 6.5%
probability of conversion to grassland, corresponding to an anticipated area change of 112,
233.5 hm2. The area transition matrix also documented the pixels where specific land use
and land cover changes occurred within the designated period. The comparison showed a
good overall agreement between the predicted results and the actual distribution of land
cover, with satisfactory predictions in terms of specific details (Figure 4). However, certain
localized patches exhibited simulation errors, which could be attributed to the incomplete
identification of the influencing factors or sudden impacts introduced by certain factors
during the land use change process, such as policy interventions. Overall, the validated
results of the CNN-CA-MC model show an impressive Kappa value of 93.26%, indicating
a satisfactory performance for the simulation model. Additionally, the comparison of
individual land cover areas showed a high degree of similarity.

Table 3. Transition area (probability) matrix of the period from 2010 to 2020 (hm2).

Farmland Forest Grassland Water Built-Up Area Undeveloped
Land

Farmland 1,325,715.1 (76.6%) 103,360.7 (6.0%) 112,233.5 (6.5%) 30,448.6 (1.8%) 63,766.6 (3.7%) 94,599 (5.5%)
Forest 53,769.8 (20.2%) 178,813.1 (67.3%) 17,693.0 (6.7%) 3536.3 (1.3%) 2540.9 (1%) 9290.9 (3.5%)

Grassland 111,277.9 (24.7%) 15,258.0 (3.4%) 243,024.4 (54%) 1513.6 (0.3%) 3055.1 (0.7%) 76,267.3 (16.9%)
Water 8085.2 (4.2%) 7820.8 (4.1%) 7061.5 (3.7%) 99,482.2 (52.1%) 1411.1 (0.7%) 66,974.9 (35.1%)

Built-up area 39,601.8 (23.1%) 2257.0 (1.3%) 2758.9 (1.6%) 333.9 (0.2%) 122,435.9 (71.4%) 4087.4 (2.4%)
Undeveloped

land 115,745.3 (10.9%) 8682.5 (0.8%) 121,081 (11.4%) 34,216.3 (3.2%) 11,981.4 (1.1%) 774,841.1 (72.7%)
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In general, the coupled predictions of land use for the year 2020 using the CNN, CA,
and MC models demonstrated relatively accurate simulation results, which can be utilized
for predictive research. Before predicting the land use situation in the study area for 2030,
it is necessary to adjust and modify the model parameters based on the 2020 data from
the study area (Section 2.2). Correspondingly, the corresponding calculated transition area
(probability) for each land use type from 2020 to 2030 is presented in Table 4 and the land
use forecast for 2030 is presented in Figure 5. From the predicted land use changes, it is
evident that, during the period from 2020 to 2030, farmland primarily transitions to forest,
with a transition area of 180.1 hm2. The main sources of transition for forest, grassland,
built-up area, and undeveloped land are farmland, with transition areas of 68.4 hm2,
68.2 hm2, 26.3 hm2, and 119.5 hm2, respectively. Water mainly transitions to undeveloped
land, with a transition area of 36.4 hm2. It is projected that, by 2030, farmland will cover
2,525,169 hm2, accounting for 54.12% of the total area. The next largest land use categories
are forest with 410,849.0 hm2 (8.8%), grassland with 448,993.6 hm2 (9.62%), built-up areas
with 201,487.5 hm2 (4.32%), water with 205,954.7 hm2 (4.41%), and undeveloped land with
873,667.9 hm2 (18.72%) (Figure 6a).
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Table 4. Transition area (probability) matrix of the period from 2020 to 2030 (hm2).

Farmland Forest Grassland Water Built-up Area Undeveloped
Land

Farmland 1458 (81.2%) 180.1 (10.0%) 27.5 (2.5%) 12.6 (0.7%) 64.4 (3.6%) 41.5 (2.3%)
Forest 68.4 (21.4%) 238.8 (74.8%) 2.3 (0.7%) 4.3 (1.4%) 1.1 (0.3%) 4.4 (1.4%)

Grassland 68.2 (13.7%) 11.1 (2.2%) 387.3 (77.8%) 7.6 (1.5%) 3.8 (0.8%) 20.1 (4.0%)
Water 6.4 (3.0%) 3.2 (1.5%) 2.4 (1.1%) 165.5 (77.3%) 0.3 (0.1%) 36.4 (17.0%)

Built-up area 26.3 (12.9%) 2.3 (1.1%) 1.5 (0.7%) 5.8 (2.8%) 164.7 (80.9%) 2.9 (1.4%)
Undeveloped

land 119.5 (10.8%) 27.5 (2.5%) 67.3 (6.1%) 8.0 (2.5%) 11.9 (1.1%) 854.9 (77.1%)
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Furthermore, a comparison of the gains and losses in land use types (Figure 6b) and
the corresponding changes in area pixels (Figure 7) is provided to further explore the
dynamics of the various land use types. Comparing the results with the past 30 years
(Table 4 and Figures 5 and 6), clearly, farmland has remained stable and is considered the
primary land use in the study area. Clearly, in 2030, farmland will remain the predominant
land use type in the study area, while a significant portion of the land will be occupied
by undeveloped land. The main changes expected in the coming years will occur in
the conversion of farmland to forest in the southern part of the study area. Farmland
demonstrates high dynamics, with a considerable loss of farmland offset by the emergence
of new farmland, such as the conversion of large untapped areas in the southern and
eastern parts of the study area. This transformation indicates the implementation of
land reclamation and land consolidation policies, involving the conversion of a portion
of farmland into forest. This aligns with the broader goals of ecological restoration and
sustainable land management while remaining constrained by agricultural production
demands and advancements in agricultural technologies. Forest land is expected to undergo
significant growth, predominantly distributed in areas outside the central region of the
study area, particularly the southern part. The loss of forest is minimal, possibly due to
an increased focus on ecological conservation and sustainable development, as well as
the implementation of environmental protection measures, such as “reforestation” and
“afforestation”, particularly through the conversion from other land use types, notably
farmland. The expansion of forest land in the study area further contributes to biodiversity
conservation, ecosystem services, and climate change mitigation.
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Grassland is projected to experience a moderate increase and remain relatively stable.
The patterns of its transformation exhibit limited changes, primarily converted into agri-
cultural fields or built-up areas. This suggests that, despite influences from urbanization,
excessive grazing, and land degradation, protective measures and management have been
maintained to ensure its ecological functions, including providing grazing resources and
wildlife habitats and controlling soil erosion. Water is projected to expand, influenced by
factors such as land development, urbanization, and utilization, which consistently impact
water resources. The expansion can be attributed to the presence of significant saline–alkali
land and the extensive irrigation needs of farmland in the study area. This expansion
reflects a combined effort to prioritize water resource protection and implement measures
such as wetland conservation and water management within the study area. The area of
built-up land shows a steady increase, indicating stable urban expansion and land develop-
ment within the study area. However, the pace of development is not rapid, and there has
not been significant improvement in terms of intensification level. This expansion primarily
occurs at the periphery. Possible factors contributing to this slower pace of development
could include restrictions or control measures aimed at protecting agricultural land or the
natural environment. To mitigate the adverse environmental impacts of urban expansion
and promote efficient resource utilization, adequate land use planning and sustainable
urban design are necessary.
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During the forecast period, the area of undeveloped land is expected to decrease,
primarily due to the transformation of undeveloped land at the periphery of the study
area, as anticipated. The increasing demand driven by urbanization, land development,
agricultural expansion, or land reclamation projects leads to the utilization and conversion
of undeveloped land into other land use types. Although utilizing undeveloped land can
stimulate economic development, environmental sustainability and the conservation of
natural habitats are still crucial after carefully consideration.

In our research, we focused on a 10-year timeframe for the analysis, during which
national policies played a crucial role. For instance, the significant expansion of forest land
area provides evidence of the effectiveness of the “afforestation” and “reforestation” [51].
Additionally, the conversion of certain scales of built-up areas, forest, and grassland into
arable land highlights the impact of “land reclamation” and “land consolidation” [52]. It
is important to acknowledge that changes in forest land and construction land can occur
within a short span of time. In the subsequent section, we conduct a detailed analysis of
policy-driven factors to further examine the relationship between relevant policies and
land use changes in the study area, including potential synergistic or antagonistic effects.

3.2. Policies-Driven Analysis

Significant work has been carried out in the fields of ecological environment protection
and natural disaster prevention and control since the initiation of China’s reform and
opening-up policy, as depicted in Figure 8. These efforts have resulted in notable ecological,
economic, and social benefits, positioning China as a successful exemplar in global ecologi-
cal governance. In November 1978, in response to the severe threat of sandstorms and soil
erosion to agricultural production, China introduced the “Three-North Protection Forest
Program (1978–2050)”, which pioneered large-scale ecological construction in the country.
In 1995, to transform the traditional development model that resulted in resource depletion
and environmental damage at a cost, and to implement sustainable development strategies,
the State Environmental Protection Agency organized the formulation and publication of
the “The Outline of National Demonstration Area Construction Planning (1996–2050)”.
Ecological demonstration zone construction was gradually carried out nationwide, aiming
to achieve a virtuous cycle of industrialization, urbanization, agricultural production, and
ecological conservation [53].
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A major flood disaster occurred in the Yangtze River in 1998, including the Nen
River and Songhua River basins. In response, the China State Council urgently issued
the “Conversion of Farmland to River (Lake) Program (1993–2016)” and the “Notice on
the National Ecological and Environmental Construction Plan” [54,55], which provided
specific plans for the protection of natural resources, such as natural forests, afforestation,
soil and water conservation, desertification control, grassland construction, and ecological
agriculture. Subsequently, the central government actively promoted the implementation
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of policies, such as the “Natural Forest Protection Program (2001–2050)” [56], the “Sloping
Land Conversion Program (1999–2019)” [57], the “National Wildlife Protection and Nature
Reserve Construction Program (2001–2050)” [58], the “Conversion of Farmland to Grass
Program (2003–2008)” [59], and the “Wetland Protection Program (2003–2030)” [60].

In 2011, to implement the scientific development concept and promote the coordinated
development of population, economy, resources, and the environment, the China State
Council issued the “National Wide Major Function Oriented Zone (2011–2021)” [61], which
provided an overall spatial layout based on the environmental carrying capacity of different
regions. The northeast region is an important part of the agricultural strategic pattern of
the “Seven Zones and Twenty-three Belts” and the ecological security strategic pattern of
the “Two Barriers and Three Belts” [3]. In 2020, the National Development and Reform
Commission and the Ministry of Natural Resources issued and implemented the “Mas-
ter Plan for Major Projects of National Important Ecosystem Protection and Restoration
(2021–2035)” [62], which further detailed the key projects in different ecological conserva-
tion areas, laying the institutional foundation for the ecological support of major national
strategies and the sustainable development of the economy and society.

National policies constrain and guide people’s land use behaviors, exerting a signifi-
cant influence on the national spatial pattern and ecological environment protection. Based
on the results, it is observed that the study area has benefited from various ecological
protection policies, such as the “Three-North Shelter Forestation Program (1978–2050)”, the
“Natural Forest Protection Program (1998–2020)” [56], and the “Sloping Land Conversion
Program (1999–2019)” [57], resulting in the protection of forest resources and a significant
increase in the forest area in recent years. In addition, the policies implemented by the state
for the protection of forests and wildlife reserves in the northeast region, such as “Forest
Closed” [63], have led to minimal changes in the area of unused land within the study
area. It can be seen that the series of ecological protection policies enacted by the state have
produced positive effects on land rational utilization and the optimization of the national
spatial layout.

Based on Figures 6 and 8, the majority of the study area is located in the interior of
the Northeast Plain, designated as the main agricultural production area in the “Seven
Zones and Twenty-three Belts” and supported by the “Hundred Billion Catties Grain
Program (2009–2020)”, and there is a tendency for some forest, grassland, built-up ar-
eas, and undeveloped land to be converted into farmland. However, the increase in
farmland and its growth rate show a pattern of diminishing returns across three periods:
1990–2000, 2000–2010, and 2010–2020. When considering policies such as the “Conversion
of Farmland to River (Lake) Program (1993–2016)”, the “Conversion of Farmland to Grass-
land Program (2003–2008)”, and the “Hundred Billion Catties Grain Program (2009–2020)”,
it indicates that, in western Jilin, the pursuit of high productivity has led to improvements
in production techniques and an increased utilization of farmland. This is projected to
further decrease by 2030. The expansion of the forest land, which has been consistently
increasing, demonstrates that the development in western Jilin largely aligns with the prin-
ciples of sustainable development. While emphasizing production, due attention has been
paid to the preservation of the ecological environment. The dynamism of the forest land
has remained at a relatively high level, consistent with policies such as “The Three-North
and Yangtze River Basin Protection Forest System Program (1978–2050)” and the “Natural
Forest Protection Program (1998–2020)”. Against this backdrop, it is expected that the
forested area will continue to increase by 2030. Under the influence of production and
human activities, grassland has experienced a continuous reduction. However, supported
by policies such as the “Conversion of Farmland to Grassland Program (2003–2008)”, the
dynamism of grasslands has gradually decreased. Furthermore, by 2030, the grassland
area is projected to exhibit a positive growth. Water, being a vulnerable component of
the ecosystem, has benefited from the “Conversion of Farmland to River (Lake) Program
(1993–2016)” and the “Wetland Protection Program (2003–2030)”. The water area in western
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Jilin has reached its minimum limit and is slowly recovering. It is predicted that, by 2030,
the water area will begin to experience accelerated growth.

Taking a comprehensive perspective, policy-driven approaches play a crucial role in
the spatiotemporal transformation of land use in western Jilin. Since 2020, several land use-
related policies have been ongoing within the study area. According to the predicted results
of this study, land use and ecological conservation in the study area still face numerous
challenges. Considering the significant influence of policies on land use, it is necessary to
develop more scientifically grounded policy measures that promote and incentivize the
coordinated development of land use and ecological conservation.

4. Discussion

The CNN model is known for its ability to extract and learn feature representations of
images effectively, making it suitable for image-processing tasks. It demonstrates a good
generalization ability, computational efficiency, and prediction accuracy. However, when
applied to land prediction, the CNN model often faces challenges, such as overfitting and
poor interpretability. The combination of the CNN, CA, and MC models serves several
purposes. Firstly, by utilizing the CNN model, we addressed the limitation of the CA
model in neglecting the influence of macro-factors. Secondly, the CA and MC models help
to overcome the drawbacks of the CNN model, such as slow convergence, susceptibility
to local minima, and difficulty in determining network structures. Additionally, they
contribute to mitigating the issues of overfitting and poor interpretability often observed
in the CNN model, resulting in a higher prediction accuracy and generalization ability.
In addition to the CNN, there are other neural network models commonly used, such as
the multilayer perceptron (MLP) [64]. However, when coupling neural network models
with the CA and MC models, the careful consideration of their network structures and
processing methods is crucial to create appropriate models. For example, the MLP treats
all features as equal when processing input data, disregarding spatial relationships and
local features. On the other hand, the CNN utilizes convolutional kernels and pooling
operations to effectively capture spatial structures and local features in the input data,
thereby improving the model’s accuracy. Therefore, compared to the MLP, the CNN has
stronger feature extraction capabilities and spatial awareness, making it more suitable for
prediction and simulation tasks. Thus, our study can be seen as a positive attempt to use
the CNN for land use prediction research.

Although we effectively predicted land use changes in western Jilin using the CNN-
CA-MC model, there is still room for the in-depth interpretation of these findings. For
example, a further understanding of the implications of the predicted land use changes for
ecosystem services, biodiversity conservation, and climate change mitigation could provide
valuable insights. However, it is important to acknowledge that land use change prediction
is a complex issue. During our prediction process, inherent errors or incompleteness in the
data sources can lead to inaccuracies in the model’s predictions. Additionally, errors may be
introduced through parameter selection and estimation in the model, such as the transition
probability matrix or the weights and biases of the neural network, which may not fully
capture the complexity of land use changes. Furthermore, static parameters set based on
simplified assumptions in the model may not fully capture the dynamic processes of actual
land use changes. Land use changes are often influenced by stochastic factors, such as
natural disasters, policy changes, or economic factors, which cannot be fully predicted or
modeled, resulting in discrepancies between the predicted results and the actual conditions.
Therefore, it is important to recognize the existence of these sources of errors in land use
change prediction and take appropriate measures to minimize their impacts.

Despite these sources of errors, the CNN-CA-MARKOV-coupled model can still
provide valuable predictions of land use changes. Linking various factors to different
land use types can provide a reference and basis for land use in the future, while also
offering insights into the changes in and dynamics of different land use types. However, it
is essential to recognize that these findings are based on model predictions, and actual land
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use changes may be influenced by various factors. In future research, it is recommended
to use higher quality map data and remote sensing images, ensuring data accuracy and
completeness. Additionally, considering more land use-driving factors and dynamic
processes as much as possible can improve the model’s performance in predicting land use
changes. Multiscale modeling can be implemented to capture the CNN-CA-MC model’s
performance at different scales. Introducing stochastic simulations or Monte Carlo methods
to consider uncertainty can also be beneficial.

5. Conclusions

In this study, we developed an effective land use prediction method by combining
the CNN model with the CA and MC models to address the limitations of each individual
model and demonstrated the advantages of their integration and to predict the land use
of the western Jilin. The results obtained from the coupled CNN-CA-MC model show
a high prediction accuracy, exceeding 90%, indicating that the model can be effectively
utilized for land use forecasting. An analysis of the policy factors related to land use was
conducted to observe the significant impact on land use transformation in the short term.
Further research is required to validate the accuracy of these factors. Additionally, we
highlighted the suitability of the CNN model for land use prediction research, considering
its strong feature extraction capabilities and spatial awareness compared to other neural
network models. Despite the advantages of the CNN-CA-MC approach, the static nature
of the parameters set for the CNN model in this study does not account for the dynamic
nature of land use changes. Future research should strive to obtain dynamic transformation
parameters to enhance the accuracy of the predictions. Furthermore, there are numerous
influencing factors and threats that affect land use transformations, and incorporating more
effective driving and threat factors could yield different results. Thus, a broader range of
threat factors should be explored in the future.
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