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Abstract: Evapotranspiration (ET) is a major component of the water budget in Bottomland Hard-
wood Forests (BHFs) and is driven by a complex intertwined suite of meteorological variables. The
understanding of these interdependencies leading to seasonal variations in ET is crucial in better
informing water resource management in the region. We used structural equation modeling and
AIC modeling to analyze drivers of ET using Eddy covariance water flux data collected from a BHF
located in the Russel Sage Wildlife Management Area (RSWMA). It consists of mature closed-canopy
deciduous hardwood trees with an average canopy height of 27 m. A factor analysis was used
to characterize the shared variance among drivers, and a path analysis was used to quantify the
independent contributions of individual drivers. In our results, ET and net radiation (Rn) showed
similar variability patterns with Vapor Pressure Deficit (VPD) and temperature in the spring, summer,
and autumn seasons, while they differed in the winter season. The path analysis showed that Rn

has the strongest influence on ET variations via direct and indirect pathways. In deciduous forests
like BHFs, our results suggest that ET is more energy dependent during the growing season (spring
and summer) and early non-growing season (autumn) and more temperature dependent during the
winter season.

Keywords: bottomland hardwood forests; evapotranspiration; latent heat flux; AIC modeling; Eddy
covariance; Lower Mississippi Alluvial Valley; structural equation modeling

1. Introduction

In the central and southeastern United States, deciduous forested wetlands located in
broad floodplain areas bordering large river systems such as within the Lower Mississippi
Alluvial Valley (LMAV) are referred to as Bottomland Hardwood Forests (BHFs) [1]. Many
ecosystem services provided by BHFs, including water quality regulation, flood control,
wildlife habitat, timber production, waste treatment and disturbance regulation, and
climate moderation through carbon balance are of global importance [2,3]. Like other
wetland types, a hydrological regime of alternating wet and dry cycles driven by fluctuating
water levels of the associated rivers and groundwater level changes is characteristic of
BHFs [4,5]. The sustainability of BHFs depends primarily on the longitudinal (upstream to
downstream), lateral (river to floodplain to uplands and vice versa), vertical (surface water
to groundwater and vice versa), and temporal (seasonal and annual flooding) variability
of water availability [6]. The primary force controlling the biota in BHFs is the flooding
pulse from adjacent water sources, which deposits dissolved nutrients, organic matter,
and sediment, also contributing to the formation of young floodplains with each flooding
pulse [7]. Even small changes in the duration and frequency of water levels can result in
a distinct shift in the plant community, as many species are adapted to a certain range
of flood tolerance [8]. Therefore, a deeper understanding of the water use pattern and
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surface energy balance in these BHFs is crucial to preserving this dwindling ecosystem
along the LMAV.

The study of BHF ecology remains incomplete without the assessment of factors
that are integral to the proper functioning of these systems—evapotranspiration (ET),
flood regimes, and precipitation. ET has been reported as a major component of BHFs’
water balance in several studies, along with LE (heat energy equivalent to ET) dominating
the surface heat balance [9,10]. Several previous studies have identified biological and
climatic drivers of bottomland hardwood ET using chronosequence analyses [9], sap-
flux measurements [11], and statistical modeling approaches [12] in the southeastern US.
These studies report a strong correlation between net radiation (Rn), temperature, and
other climatic conditions consistent with the site specificities and variations in ET during
different seasonal cycles. The Vapor Pressure Deficit (VPD) has been established as one of
the primary drivers of ET and is used increasingly in global simulation studies [13]. For
example, [14] used maximum likelihood estimation methods to show a complex chain
of correlations among ET, VPD, radiation, and temperature in northern high-latitude
woodland ecosystems. The complex interrelationships among these atmospheric variables,
which are essential for an assessment of the ultimate drivers of variations in ET, can be
explored using structural equation modeling (SEM). The use of SEM approaches to diagnose
the independent contributions of atmospheric drivers in determining the ET variability
from the BHFs largely remains unexplored.

The complexity of interrelationships among multiple variables and their dependencies
makes it challenging to quantify the actual contributions of the drivers of ET. SEM, a
multivariate statistical modeling technique with factor analysis and path analysis, provides
a framework to quantitatively evaluate these interrelationships that need to be untangled to
characterize the role and independent contribution of each driver of the variations observed
in ET. An SEM analysis carried out with the data measured at multi-site high-latitude
regions showed that radiation, temperature, windspeed, and relative humidity (RH) loaded
heavily on the first factor during the warm season (May–September) [15,16]. Previous
studies have applied path analyses to diagnose the drivers of ET in temperate [17], Arctic,
and subarctic [15] regions; however, to our knowledge there is not a study reported on the
water fluxes in BHFs—where altered hydrologic cycles under global change scenarios are
critical and complex.

This paper is a comprehensive assessment of the drivers of variations in bottomland
hardwood ET over hourly, daily, and weekly timescales across seasons. The main objec-
tives were (i) to characterize the interrelationships among variables driving ET over these
timescales and (ii) to characterize ET dependencies on various factors across different
seasons. This study is unique to those mentioned above in various important ways. First, it
utilizes an SEM factor analysis and a path analysis to provide a framework for quantitively
evaluating the relative importance of drivers of ET variability in this system. Second, this
is the first study of the drivers of ET in the BHF of the Russel Sage Wildlife Management
Area (RSWMA), a representative of floodplain forests in the entire LMAV. This study will
fill the knowledge gap in trying to understand the water flux dynamics of this region.

2. Methods
2.1. Study Site

This study was conducted in a BHF in the RSWMA (Figure 1) in northeast Louisiana
(32.46◦ N, −91.97◦ E; elevation 18 m ASL), managed by the Louisiana Department of
Wildlife and Fisheries (LDWF). The RSWMA is located within the Bayou Lafourche flood-
plain and is subjected to annual late winter (December–February) to early spring (March–
May) flooding. It currently covers an area of 38,213 acres with mature hardwood stands
that vary in age from 90 to 120 years (pers comm Larry Savage, LDWF).
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Figure 1. (a) Location map showing the study area, the Russel Sage Wildlife Management Area in 
northeast Louisiana, with the position of the US-ULM tower location indicated by the arrow tip, and 
(b) the study site shown flooded, as is typical during the late winter and early spring (Photo: J.B.). 

The broadleaf deciduous forest canopy consists of the co-dominant canopy species 
overcup oak (Quercus lyrate Walter) and water hickory (Carya aquatica (F. Michx.) Elliott), 
along with other canopy species such as green ash (Fraxinus pennsylvanica Marsh.) and 
sugarberry (Celtis laevigata Willd.) in poorly drained soil [5]. In the first bottoms on low 
ridges, flats, and sloughs, American elm (Ulmus americana L.), sweetgum (Liquidamber 
styraciflua), winged elm (Ulmus alata Michx.), and red maple (Acer rubrum L.) are abun-
dant. In the newly formed sandbars on river margins, black willow (Salix nigra Marshall), 
cottonwood (Populus deltoides W. Bartram ex Marshall), river birch (Betula nigra L.), and 
American sycamore (Platanus occidentalis L.) are prominent. The well-drained bottom 
ridges are dominated by sweetgum and water oak (Quercus nigra L.), characteristic species 
of the BHFs of the LMAV. The canopy is relatively flat, with a mean tree height of 27 m. 
The Leaf Area Index (LAI) of the forested area, derived from Moderate Resolution Imag-
ing Spectroradiometer (MODIS) instrument-based observations, was below 1 throughout 
the winter season, and on average reached a maximum of 6.53 in July. The soil type is 
Perry Clay, a fine-textured sediment that has low permeability and a moderate capacity 
to hold water [18]. 

2.2. Measurements of Above-Canopy Fluxes 
The Eddy covariance (EC) technique was used to measure the amount of water vapor 

that was exchanged between the atmosphere and the BHF ecosystem. The wind compo-
nents, sonic temperature, and gas concentrations were collected at a 10 Hz frequency us-
ing an open-path IRGASON (Campbell Scientific Inc., Logan, UT, USA). The EC system 
was mounted 12 m above the forest canopy and was directed towards the southwest, the 
prevailing wind direction at the site, and the fetch of the tower was 2 km. 

2.3. Measurements of Meteorological, Phenological, and Hydrological Variables 
Other measurements relevant to land–plant–atmosphere interactions were carried 

out from the tower to understand how they affect the hydrodynamics at the study site. 
The meteorological measurements include air temperature, precipitation, windspeed and 
direction, barometric pressure, and RH. The VPD was calculated as the difference between 
saturated and actual vapor pressures at the given temperature, based on the relative hu-
midity and air temperature data. A net radiometer (NR-LITE2, Campbell Scientific Inc., 
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Figure 1. (a) Location map showing the study area, the Russel Sage Wildlife Management Area in
northeast Louisiana, with the position of the US-ULM tower location indicated by the arrow tip, and
(b) the study site shown flooded, as is typical during the late winter and early spring (Photo: J.B.).

The broadleaf deciduous forest canopy consists of the co-dominant canopy species
overcup oak (Quercus lyrate Walter) and water hickory (Carya aquatica (F. Michx.) Elliott),
along with other canopy species such as green ash (Fraxinus pennsylvanica Marsh.) and
sugarberry (Celtis laevigata Willd.) in poorly drained soil [5]. In the first bottoms on low
ridges, flats, and sloughs, American elm (Ulmus americana L.), sweetgum (Liquidamber
styraciflua), winged elm (Ulmus alata Michx.), and red maple (Acer rubrum L.) are abun-
dant. In the newly formed sandbars on river margins, black willow (Salix nigra Marshall),
cottonwood (Populus deltoides W. Bartram ex Marshall), river birch (Betula nigra L.), and
American sycamore (Platanus occidentalis L.) are prominent. The well-drained bottom ridges
are dominated by sweetgum and water oak (Quercus nigra L.), characteristic species of the
BHFs of the LMAV. The canopy is relatively flat, with a mean tree height of 27 m. The
Leaf Area Index (LAI) of the forested area, derived from Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument-based observations, was below 1 throughout the
winter season, and on average reached a maximum of 6.53 in July. The soil type is Perry
Clay, a fine-textured sediment that has low permeability and a moderate capacity to hold
water [18].

2.2. Measurements of Above-Canopy Fluxes

The Eddy covariance (EC) technique was used to measure the amount of water vapor
that was exchanged between the atmosphere and the BHF ecosystem. The wind com-
ponents, sonic temperature, and gas concentrations were collected at a 10 Hz frequency
using an open-path IRGASON (Campbell Scientific Inc., Logan, UT, USA). The EC system
was mounted 12 m above the forest canopy and was directed towards the southwest, the
prevailing wind direction at the site, and the fetch of the tower was 2 km.

2.3. Measurements of Meteorological, Phenological, and Hydrological Variables

Other measurements relevant to land–plant–atmosphere interactions were carried
out from the tower to understand how they affect the hydrodynamics at the study site.
The meteorological measurements include air temperature, precipitation, windspeed and
direction, barometric pressure, and RH. The VPD was calculated as the difference between
saturated and actual vapor pressures at the given temperature, based on the relative
humidity and air temperature data. A net radiometer (NR-LITE2, Campbell Scientific Inc.,
USA) was used to measure the difference between the incoming and outgoing radiation at
the site. A photosynthetically active radiation (PAR) sensor (LI190SB QUANTUM SENSOR,
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Campbell Scientific Inc., USA) was used to quantify the photosynthetic photon flux density
(PPFD). Precipitation was measured by a tipping bucket rain gauge (TE525, Campbell
Scientific Inc., USA).

2.4. Data Collection, Processing, and Gap-Filling Fluxes

All data were acquired using a solid-state data logger (CR3000, Campbell Scientific
Inc., USA). The data were stored on a 2 GB CompactFlash card, which was retrieved
monthly. The raw flux data were grouped into individual 30 min files and converted into
TOA5 format before processing. These unprocessed data were screened for quality control
and gap-filled using LoggerNet, EddyPro, TOVI, and REddyProc R packages [19]. To
determine the periods of low mixing, which can lead to the underestimation of water and
heat fluxes, the frictional velocity (u*) threshold was identified using the Moving Point Test
approach in TOVI [20]. Further quality control screening was carried out to filter potential
data outside the u* threshold value (0.4 m/s).

Data recorded from 1 January 2014 to 31 December 2021 were used in this analysis.
There was a major missing data gap due to instrument failure from January 2016 to July
2016 and from November 2018 to December 2020, and these gaps were not included in the
analysis. Small gaps (<2 h) due to lower-quality data were gap-filled using the Marginal
Distribution Sampling Technique using the R package, REddyProc. Meteorological data
from a nearby meteorological station (Monroe Airport—MLU) and NASA’s Prediction of
Worldwide Energy Resources (POWER) [21] database were used for gap-filling tempera-
ture and precipitation data when necessary. The gap-filled data accounted for less than
20% of the whole EC data. The water losses associated with ET were quantified by the
conversion of LE values from (W/m2) to mm/day [15]. To compare the means and assess
the interrelationships among variables, we performed an ANOVA test and the associated
post hoc tests and an SEM analysis as required, using R (v4.1.1, R Core Team 2023) [22].

The data were aggregated into hourly, daily, and weekly datasets spanning the growing
(March–August) and non-growing (September–February) seasons. Variables with more
than 50% of their half-hourly data missing were not included in the SEM analysis. The
missing data were then adjusted as described in [23] by dividing each daily and weekly
value by the fraction of the data present for that particular unit of time. RH and soil
moisture, two of the primary drivers of ET, were not included in our analysis since RH is
redundant to the VPD, and soil moisture was not measured in our study.

2.5. Structural Equation Modelling (SEM)

As ET is influenced by a suite of atmospheric variables, a powerful multivariate
analysis technique was required to identify those strongly driving the variation in the rate
of ET. Different empirical approaches [9,11,12,24] and machine learning algorithms [25]
have been in practice to characterize the key drivers of ET. However, due to the complexity
of a large dataset with interdependent variables, SEM emerges as a suitable multivariate
analysis technique to reduce the dimensionality and isolate common variance shared
among variables from the residual variance unique to each variable [26]. Depending on
the types of variables being modeled and their relationships with the predictor variables,
several categories of models fall under the suite of SEM. A factor analysis derives the
latent constructs from variables that share the most variance with related variables while
allowing them to be influenced by the seasonal cycles in the dataset, and a path analysis
explains the structural pathways of the interrelationships among variables while testing for
underlying causal mechanisms. Together, these analyses allow inferences to be made about
the independent contributions of interrelated variables in a dataset.

2.6. Factor Analysis

A factor analysis estimates latent variables based on the correlated variations of a
dataset (e.g., associations and causal relationships) and can reduce the dimensionality of
the dataset, standardize the scale of multiple indicators, and account for the correlations
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inherent in the dataset [26]. The covariance matrix is central to a factor analysis, as described
by the various equations in textbooks [26,27]. There are two types of factor analyses:
exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). In practice,
an EFA is often performed to select the useful underlying latent constructs for a CFA
when there is little prior knowledge about the latent construct [28]. A CFA is applied
when the indicator for each latent variable is specified according to the related theories
or prior knowledge. However, both types operate under the same basic assumption that
“for a set of observed variables there are a suite of underlying factors which explain the
interrelationships among the variables” [15]. The strongest association with ET is shown
by variables that load highly on factors in which ET loads strongly as well.

2.7. Path Analysis

A path analysis helps to quantify the direct and indirect relationships among multiple
variables while allowing them to covary with other variables in the dataset. It is very
powerful in testing and developing the structural hypothesis where variables can influence
an outcome directly and indirectly through another variable (e.g., mediation) [29]. This
specific type of SEM uses a set of exogenous variables (variance is independent of other
variables) to predict endogenous variables (variance is dependent on other variables) while
allowing the variables to predict each other in the process [15]. We used the R-Lavaan
package (v4.1.1, R Core Team 2023) to define and run the model to predict ET using Rn,
VPD, temperature, windspeed, and precipitation. The output yields regression estimates,
standard errors, z-values, and p-values for each variable for that specific analysis. The path
coefficients (regression coefficients) represent the slope of the linear relationship between
the response variable and predictor variables independent of all other variables. The model
was run on the hourly, daily, and weekly timescales for a sufficiently large sample size and
model performance confidence. Additionally, the results from the factor analysis were used
to develop latent constructs, and a structural model was run to characterize the direct and
indirect contributions of observed and latent variables in ET variability.

The statistical significance of the differences among path coefficients was tested using
ANOVA for hourly, daily, and weekly timescales. For the group of variables with signif-
icant results, a Tukey HSD post hoc test was carried out to further examine the pairwise
differences in path coefficients. Overall, using these analyses, we were able to categorize
the variables/factors having similar variability patterns and quantify the independent
contributions of each of those in influencing ET, as variables with large significant path
coefficients can be interpreted to have a large influence on ET.

2.8. Akaike’s Information Criteria (AIC) and Model Selection

An information criterion approach (AIC) was also used to evaluate how well our
models fit the data. AIC modeling was used to develop candidate models with different
combinations of potentially interacting variables that were also used in the SEM. By cal-
culating and comparing the AIC scores of several candidate models, the model with the
lowest AIC value and the highest AIC weight was selected as the best model using the
AICmodavg package in R.

3. Results
3.1. Factor Analysis

As a preliminary investigation of the relationships, Figure 2 shows the correlation
matrices among all variables for all seasons at the hourly, daily, and weekly timescales.
ET was moderately (| r | > 0.2) or highly correlated (| r | > 0.5) with Rn, VPD, sensible
heat, and temperature at all timescales. Precipitation was weakly correlated with ET at
all timescales, with positively increasing coefficients at higher timescales. Interestingly,
windspeed showed a weak negative correlation at the hourly timescale, with an increasing
negative correlation at the daily and weekly timescales. The strength of the correlation
between Rn, H, and VPD was dependent on the temporal scale of the comparisons. Fur-
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ther, temperature and VPD showed a strong correlation with increasing coefficients at
larger timescales.
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Figure 2. Correlation matrices among all variables: sensible heat flux (H), evapotranspiration
(ET), pressure (Pa), relative humidity (RH), temperature of air (Ta), Vapor Pressure Deficit (VPD),
windspeed (WS), net radiation (Rn), and precipitation (P) for all seasons at the (a) hourly, (b) daily,
and (c) weekly timescales.
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As evidenced by the correlation plots above, many of these variables share similar
variability patterns and are strongly influenced by each other. This necessitated a method
to quantify the independent contributions of each variable to the variability in ET. As
described in Section 2.6, a factor analysis was carried out across all seasons and variables
shown above (excluding RH) to segregate them into groups showing similar variability
patterns. The first factor loadings for these variables across different seasons are shown in
Figure 3.

Atmosphere 2024, 15, x FOR PEER REVIEW 7 of 18 
 

 

 

Figure 2. Correlation matrices among all variables: sensible heat flux (H), evapotranspiration (ET), 
pressure (Pa), relative humidity (RH), temperature of air (Ta), Vapor Pressure Deficit (VPD), wind-
speed (WS), net radiation (Rn), and precipitation (P) for all seasons at the (a) hourly, (b) daily, and 
(c) weekly timescales. 

As evidenced by the correlation plots above, many of these variables share similar 
variability patterns and are strongly influenced by each other. This necessitated a method 
to quantify the independent contributions of each variable to the variability in ET. As de-
scribed in Section 2.6, a factor analysis was carried out across all seasons and variables 
shown above (excluding RH) to segregate them into groups showing similar variability 
patterns. The first factor loadings for these variables across different seasons are shown in 
Figure 3. 

 

Atmosphere 2024, 15, x FOR PEER REVIEW 8 of 18 
 

 

 

 

 

Figure 3. Factor loadings for evapotranspiration (ET), net radiation (Rn), sensible heat flux (H), tem-
perature of air (Ta), Vapor Pressure Deficit (VPD), windspeed (WS), precipitation (P), and pressure 
(Pa) on the first pattern of factor analysis for spring, summer, autumn, and winter seasons. 

ET, Rn, sensible heat flux, temperature, and VPD all loaded highly positive on the first 
factor for all seasons except for the winter season, where ET and Rn loaded comparatively 
lower than VPD and temperature. Also, sensible heat flux and pressure loaded highly 
negatively in winter. Windspeed and rain (precipitation) showed low factor loadings, as 
they become highly variable as the timescale increases and seasons change. 
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ET, Rn, sensible heat flux, temperature, and VPD all loaded highly positive on the first
factor for all seasons except for the winter season, where ET and Rn loaded comparatively
lower than VPD and temperature. Also, sensible heat flux and pressure loaded highly
negatively in winter. Windspeed and rain (precipitation) showed low factor loadings, as
they become highly variable as the timescale increases and seasons change.

The factor analysis yielded multiple factor loadings, with the first factor capturing
approximately 60% of the variability in the dataset. The first and second factor loadings for
all variables are shown in score plots in Figure 4 with groupings similar to that in Figure 3.
Factor loading pairs were categorized by color for seasons and markers for timescales
(hourly, daily, and weekly). Score plots revealed the spread of first and second factor
loadings across seasons and timescales.
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Figure 4. Score plots of the first and second factor loadings by various timescales across different
seasons. Variables include evapotranspiration (ET), net radiation (Rn), sensible heat flux (H), Vapor
Pressure Deficit (VPD), temperature of air (Ta), pressure (Pa), windspeed (WS), and precipitation (P).

Consistent with Figure 3, ET, Rn, temperature, and VPD loaded moderately or higher
on the first factor for spring, summer, and autumn seasons. However, in winter, all three
factors loaded moderately or higher in the second factor, while temperature loadings were
low. For sensible heat flux and pressure, factor loadings were scattered, while windspeed
and rain had loadings more clustered around the plot origin.

3.2. Path Analysis

While the factor analysis helped to identify variables with similar variability patterns,
the correlations deduced from this analysis alone do not represent the relative importance
of one variable in determining ET variability, independent of the effect of other interrelated
variables. Hence, a combination of a path analysis with a factor analysis is helpful to
demonstrate the direct dependencies of ET on one variable independent of other variables,
whereby regression coefficients represent the strength of independent contributions. The
direct and indirect dependencies and associations between different variables in terms of
physical pathways derived from the path analysis are shown in Figure 5. Sensible heat flux
and pressure were not included in the analysis due to poor model fit.
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Figure 5. The (a) path diagram and (b) SEM of all the observed variables (ET, Rn, Ta, VPD, WS, and
P) and latent constructs (dryness and wetness) within the path analysis with positive (black) and
negative (red) path coefficients for hourly timescale across all seasons. The dashed line indicates
direct contribution. The * sign indicates significance level and n.s. indicates non-significance.

The standardized solutions for the best-fit path model and structural model
[χ2 = 752 (df = 4, n = 42471), p < 0.0001], Comparative Fit Index ((CFI) = 0.98), and Tucker–
Lewis Index ((TLI) = 0.96, RMSEA = 0.06, SRMR = 0.02) are shown in Figure 5a,b. While
correlation and factor loading plots showed Rn having the strongest correlation and shared
variability pattern with ET, its direct independent influence on ET was lower. Similarly,
Rn not only had a comparable direct effect on ET but also a strong indirect effect via VPD
and temperature. VPD showed a strong positive influence on ET, while in reverse, ET had
a strong negative impact on VPD. VPD showed the largest impact on ET at the hourly
timescale. Air temperature was strongly driven by Rn, which then influenced the VPD,
ultimately affecting ET in the process. Windspeed had a negligible negative effect on ET,
while precipitation (rain) had a feeble positive impact on ET, although windspeed showed
a negative impact on temperature, thereby affecting ET indirectly as well.

In the daily and weekly timescales, these regression coefficients generally increased
for all the pathways. For example, Rn emerged as a major direct influencer of ET, while
the strengths of indirect linkages through VPD and temperature also increased at larger
timescales. The direct effect of rain on ET increased positively, while that of windspeed
decreased overall.

The combined results of the path analysis with significant regression coefficients
for different variables at hourly, daily, and weekly timescales are shown in Figure 6. Rn
stood out, with the highest median regression coefficient for all the timescales. VPD had
the second-highest independent contribution to ET variability on the hourly scale, while
rain and temperature showed the same at the daily and weekly timescales, respectively.
The windspeed showed lesser influence at the hourly timescale, while this increased for
the daily and weekly timescales. To test the significance of differences in the regression
coefficients of different variables across these timescales, an ANOVA test was performed
for all the categories. The results showed significant differences (p < 0.05) in regression
coefficients on all timescales for all variables. This was followed by a Tukey HSD post hoc
analysis to test the significance for pairwise differences in regression coefficients. Only the
regression coefficients for Rn showed significant differences from that of other variables.
Thus, it was concluded that Rn is the major direct driver of ET variability in this ecosystem
across all timescales.
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Similar to Figure 6, the path analysis results were compared for all the variables with
significant path coefficients across seasons. The distributions of path coefficients for each
variable during the spring, summer, autumn, and winter seasons are shown in Figure 7.
Rn had the highest regression coefficient for the autumn season, followed by summer
and spring. In winter, the independent contribution of Rn was the lowest in determining
the variability in ET. However, VPD showed the least contribution to ET variability in
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the autumn season, which became maximum in the summer season. This revealed the
VPD-dependent driving force in summer seasons when there is an abundant amount of
water vapor in the atmosphere. The effect of temperature was observed to be greater during
the spring and winter seasons compared to the summer and autumn seasons. Windspeed
and rain had the highest impact during the summer season. The lesser effect of rain on ET
variability during spring and autumn suggested there was sufficient water available for ET.
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3.3. AIC Results

The results from the AIC model selection suggested that the model with ET as the
dependent variable and Rn, VPD, temperature, windspeed, and precipitation independent
variables was the best-fit model, given the data. All other models with possible combi-
nations and meaningful interactions were tested and excluded based on the number of
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parameters (K > 10). The best-fit model, carrying 98% of the cumulative model weight,
included the above-mentioned variables with meaningful interaction effects (Table 1).

Table 1. Results of AIC model selection with shortlisted candidate models with the number of
parameters (K), Akaike’s Information Criteria (AIC), delta AIC, AIC weights, and log-likelihood
(LL) values.

Model K AIC ∆AIC AIC Weight LL

ET ~ Rn*Ta + VPD + WS*P 9 −104,579 0 0.98 52,298.53
ET ~ Rn*Ta + VPD + WS + P 8 −104,570 8.25 0.02 52,293.40
ET ~ Rn*Ta + VPD + WS 7 −104,383 195.37 0 52,198.84
ET ~ Rn*Ta + VPD 6 −104,344 234.54 0 52,178.26
ET ~ Rn*VPD + Ta + WS*P 9 −99,185 5393.08 0 49,601.99

The results show that the best model was the interaction model (ET ~ Rn*Ta + VPD
+ WS*P), which corroborates with the findings from the SEM analysis. The ‘best’ model
carried 98% of the cumulative model weight and had the lowest AIC score. The next-best
model was more than 2 AIC units higher than the best model (8.25 units) and had only 2%
of the cumulative model weight; it was deemed unimportant since it did not meaningfully
‘add’ to the amount of information already explained by the best-fit model.

4. Discussion

The SEM approach has been used to diagnose drivers of ET using high-frequency
data collected using the EC method for forested systems. The results of this study in a
BHF in the RSWMA revealed that the variability in ET is directly influenced by Rn during
spring, summer, and autumn, primarily vegetatively active seasons. However, during
times of vegetative dormancy (i.e., in winter), the variability in ET is largely influenced
by VPD and temperature, indirect controls of Rn. These results are consistent with the
strong seasonal cycle for the variables that gradually increase from winter to summer and
gradually diminish from summer to winter. This typical seasonal cycle also suggests that
the influence of temperature and VPD on ET is indirectly driven by Rn. The greater control
of temperature and VPD as drivers of ET during winter is suggestive of temperature-
dependent ET, especially when the Rn-dependent direct control on ET is minimal. Hence,
the direct as well as indirect (through greater control of Rn on temperature and VPD)
control of Rn on ET across all seasons reinforces the role of Rn as a primary driver of ET in
this forest.

The results from the best-fit model in the AIC modeling support the inference from
SEM that there is an interaction between Rn and temperature. Furthermore, VPD showed
independent influence as a predictor of ET compared to its interaction with Rn. This
corroborates the increased influence of temperature on ET during vegetatively dormant
seasons as opposed to the higher impact of Rn on ET during vegetatively active seasons.
Although independent, the positive impact of WS on ET has been previously established
in many other studies [15,24]; the interaction of WS with other variables like temperature
and precipitation is likely to attenuate dryness (latent construct) and augment wetness,
subsequently regulating the rate of ET in this system. The best model from AIC suggested
that these interactions are highly plausible and significant in determining the dynamics of
ET in this BHF.

Consistent with the findings from the data collected in a BHF in the RSWMA from 2014
to 2021, which showed Rn as the major direct and indirect driver of ET variability across
different times of the year, research reports from most other forest types have characterized
Rn as a primary driver of ET. For example, [15] carried out an SEM analysis in various
boreal, tundra, and permafrost ecosystems of high-latitude regions to demonstrate that
Rn is the major driver of ET variability, albeit having a smaller independent contribution
due to its control on other variables. On the contrary, a similar path analysis conducted in
a mid-latitude agricultural site in northern China reported that Rn had the largest direct
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independent contribution to ET [17]. Brown [10] suggested that the increase in the amount
of Rn received by a BHF in Missouri resulted in higher ET. Its vegetation composition,
however, was silver maple (Acer saccharinum), eastern cottonwood (Populus deltoides),
boxelder (Acer negundo), and sycamore (Platanus occidentalis), which is mostly different
from that found around the US-ULM tower in the RSWMA. Mackay [30] reported Rn as a
major driver in upland hardwood growth forests and VPD as a major driver in wetland
ecosystems during the vegetatively active time of the year in northern Wisconsin. The
dominant hardwood vegetation composition at this site was sugar maple (Acer saccharum),
basswood (Tilia americana L.), and green ash (Fraxinus pennsylvanica Marsh), mostly different
from the hardwood community found in the RSWMA. However, a much higher effect of
precipitation has been reported in water-limited ecosystems such as BHFs and seasonal
cycles of canopy greenness in energy-limited ecosystems in higher latitudes using path
analyses [31]. Similarly, in humid boreal regions, VPD and Rn were characterized as major
drivers of sap flow and thus transpiration during the growing season, as well as during
drought [32].

In closed-canopy deciduous BHFs like the one in this study, Rn controls the variability
of ET through two different pathways: first is the direct pathway, in which throughout the
growing period (spring to summer) and early autumn, Rn directly promotes transpiration,
which contributes about 80–90% of the total ET, as shown by [24]; second is the indirect
pathway, in which when there are no leaves in the vegetatively dormant period, the direct
impact of Rn is somehow attenuated, and the Rn influences ET variability indirectly via
temperature and VPD. This is also supported by the consistent variability pattern shown by
Rn and ET in seasonal plots (except winter) in Figure 3, and as reported by others [33,34].

Seasonally, WS and precipitation play a critical role during summer when the atmo-
spheric humidity is higher compared to other seasons, albeit a small one. The increase in WS
and precipitation positively influences wetness (one of the latent constructs), subsequently
affecting ET negatively in the process (path coefficients = 0.70 and −0.26 for dryness-ET and
wetness-ET, respectively). However, the negative effect of WS on ET, as seen in Figure 5a,
could be due to its significant negative impact on temperature, which in turn has a strong
influence on ET through the VPD. As observed in the structural model in Figure 5b, WS
contributes significantly as a major driver of atmospheric wetness, a latent construct with
a significant negative effect on ET. In a study by Lobos-Roco [35] in the Atacama Desert
ecosystem of Chile, it was shown that strong winds in the afternoon enhance mechanical
turbulence and increase evaporation. A similar path analysis conducted in a mid-latitude
agricultural site in China found similar results, with WS having the least direct and indirect
effects on ET [17]. On the other hand, precipitation has a minor positive impact as a driver
of ET, as seen in the correlograms (Figure 2). However, there is an increasing negative
impact of precipitation, as seen in Figure 3, and it has a significant negative contribution
to latent construct wetness; hence, over larger timescales the impact is suggestive of a
seasonal reduction in ET, as precipitation is observed for longer periods, especially during
growing season. From similar research carried out at high-latitude regions, Thunberg [15]
reported similar control of precipitation as a driver of ET and suggested it as a potentially
relevant driver of ET in mid-latitude regions such as these BHFs. These findings of seasonal
relations of ET with meteorological variables are consistent with those from similar studies
in Canadian forest ecosystems [36]. This also strengthens the conclusion that precipitation
contributes positively to short-term enhancement in ET and negatively in the long run.
These conclusions can be further strengthened by the simultaneous measurement of soil
water content and heat flux on the site, one of the limitations of this study.

Since temperature and VPD are largely controlled by Rn, the importance of these
variables as drivers of ET is more complex to understand, multifaceted, and largely de-
pendent on the direct and indirect influence of the timing, duration, and intensity of solar
energy in association with the seasonal phenological characteristics. The results from the
factor analysis suggested that their importance as drivers of ET becomes more prominent
only during vegetatively dormant seasons, when the direct control of Rn on ET remains
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lower. However, these thermal variables share communality in their variability patterns
and have a greater impact on ET by increasing the dryness (one of the latent constructs in
the structural model) of the atmosphere, as observed in Figure 5b. The ambient temperature
not only positively influences the VPD but also negatively impacts Rn. This could be due
to a lower retention of incoming radiation as the canopy becomes saturated with heat and
a higher loss of longwave radiation from the canopy as the temperature of the canopy
increases. For example, with the increase in Rn before noon, all variables, ET, temperature,
and VPD, increase consistently until the canopy becomes saturated with heat, thereafter
leading to a decrease in Rn and ET in the afternoon while the temperature and VPD increase
further. This has implications for the stomatal regulation of water loss, GPP, and canopy
temperature regulation in this forested system, as also suggested by [18]. The independent
contributions of several other phenological and hydro-meteorological variables including
temperature and VPD need to be further investigated to better understand the key role
played by these variables as drivers of ET in this forested system.

5. Conclusions

During this study, the EC method was used to measure the water fluxes from 2014
to 2021 in the BHF of the RSWMA in northeast Louisiana. The results show that Rn is a
major direct driver of ET during the vegetatively active season and an indirect driver of
ET via temperature and VPD during the vegetatively dormant season, implying a crucial
role played by phenological changes in the process. The timing and duration of WS and
precipitation play a significant role as drivers of ET in different seasons, albeit with smaller
independent contributions compared to other variables. This research needs to be expanded
further to include other types of BHFs in the LMAV region to create a holistic understanding
of water use patterns that can have implications for developing better-informed strategies
for natural resource management in the whole region. This is even important in light
of the findings of this research, which suggest that unusual changes in weather patterns
leading to unprecedented anomalies in temperature, VPD, and precipitation patterns could
alter the water use dynamics, exacerbating the deviations from the typical water cycle in
this system. The advancement of machine learning and robust data analytical methods
and their ability to process multiple variables simultaneously to disentangle the complex
relationships among variables has the potential to accomplish this goal, the results of which
have implications for more accurate modeling and forecasting of water use dynamics
for informed natural resource management in the region. In light of climate change, the
ecosystem models studying the potential impact of unusual climatic conditions on water
fluxes can help better plan and prepare various mitigating efforts for the future of these
temperate forests.
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