
Citation: Zhou, Y.; Li, B.; Huang, Y.;

Zhao, Y.; Yang, H.; Qin, J. Pollution

Characteristics and Sources of

Ambient Air Dustfall in Urban Area

of Beijing. Atmosphere 2024, 15, 544.

https://doi.org/10.3390/

atmos15050544

Academic Editors: Honglei Wang,

Lijuan Shen and Xugeng Cheng

Received: 20 March 2024

Revised: 16 April 2024

Accepted: 25 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Pollution Characteristics and Sources of Ambient Air Dustfall in
Urban Area of Beijing
Yin Zhou 1,2, Beibei Li 2,*, Yuhu Huang 2,*, Yu Zhao 2,3, Hongling Yang 2 and Jianping Qin 2

1 Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology,
Beijing 100124, China; daisy123@emails.bjut.edu.cn

2 National Engineering Research Center of Urban Environmental Pollution Control, Beijing Municipal Research
Institute of Eco-Environmental Protection, Beijing 100037, China

3 Department of Environmental Engineering, Beijing Institute of Petrochemical Technology,
Beijing 102627, China

* Correspondence: libeibei@cee.cn (B.L.); huangyuhu@cee.cn (Y.H.)

Abstract: Since 2016, the Ministry of Ecology and Environment and the Beijing Municipal Government
have adjusted the minimum concentration limit for ambient air dustfall several times, indicating that
they attach great importance to dustfall. To grasp the pollution characteristics and sources of dustfall,
in this work, the filtration method was used to determine the insoluble dustfall and water-soluble
dustfall in the urban area of Beijing. From our analysis, the influence of the meteorological parameters
on dustfall was found, and the chemical components of dustfall were determined. The positive
matrix factorization (PMF) model was also utilized to analyze the sources of dustfall. The results
indicated that the average amount of dustfall in 2021–2022 was 4.4 t·(km2·30 d)−1, and the proportion
of insoluble dustfall deposition was 82.4%. Dustfall was positively correlated with the average wind
speed and temperature and negatively correlated with the relative humidity and rain precipitation.
The impact of the meteorological parameters on insoluble dustfall and water-soluble dustfall was the
opposite. The average proportions of crustal material, ions, organic matter, element carbon, trace
elements, and unknown components were 48%, 16%, 14%, 1.4%, 0.20%, and 20%, respectively. The
proportions of the crustal material and ions were the highest in spring (57%) and summer (37%). The
contribution rates of fugitive dust source, secondary inorganic source, mobile source, coal combustion
source, snow melting agent source, and other sources were 42.4%, 19.3%, 8.3%, 3.0%, 2.7%, and 24.3%,
respectively. This study supported dustfall pollution control by analysing the pollutant characteristics
and sources of dustfall from the standpoint of total chemical components. In order to better control
dustfall pollution, control measures and evaluation standards for fugitive dust pollution should
be formulated.

Keywords: dustfall; meteorological parameter; chemical composition; source apportionment; urban
area of Beijing

1. Introduction

In 1994, the former State Environmental Protection Bureau first issued the China
environmental protection industry standard named the “Gravimetric method for the deter-
mination of dustfall in ambient air” [1], where dustfall refers to the particles that naturally
settle in the dust collection container due to gravity under the conditions of the air environ-
ment [1]. In December 2021, the Ministry of Ecology and Environment revised and issued
the “Gravimetric Method for Determination of Dustfall in Ambient Air”, for which the
standard number is HJ 1221—2021 [2]. China’s Environmental Status Bulletin announced
that the annual average dustfall in China from 1995 to 1997 was 16.4 t·(km2·30 d)−1 [3],
and Wang et al. [4] reported that the annual mean dustfall in China from 1991 to 2011 was
14.7 t·(km2·30 d)−1. In another interesting work, Liu et al. pointed out that the average
amount of dustfall in China from 2010 to 2019 was 8.4 (km2·30 d)−1; this amount was
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about 43% lower than that from 1991 to 2011 [5]. In recent years, the former Ministry
of Environmental Protection emphasized the accurate assessment of dustfall. In parallel,
the “Beijing–Tianjin–Hebei Air Pollution Prevention and Control Measures (2016–2017)”
proposed for the first time using “the average dustfall of 9 t·(km2·30 d)−1 as the dust-
fall index” [6]. The average dustfall in Beijing in 2020 was 5.7 t·(km2·30 d)−1, which is
lower than that in other northern Chinese cities such as Xi’an, Lanzhou, Taiyuan, and
Shijiazhuang [7–9]. However, dustfall pollution in Beijing is still worse than in southern
Chinese cities. More specifically, the average dustfall in Beijing in 2020 was 1.1 times that of
Nanchang in Jiangxi Province in 2015, 1.5 times that of Nanjing in Jiangsu Province in 2019,
and 2.1 times that of Shenzhen in Guangdong Province in 2016 [10–12]. The gap between
Beijing and cities in developed countries was even wider: the average dustfall in Beijing in
2020 was 3.6 times that of Colorado in the United States in 2017, 6.3 times that of Sydney in
Australia in 2008, 7.6 times that of the Canary Islands in Spain in 2012, and 11.4 times that
of Salkes in France in 2012 [12–16]. Compared with cities in southern China and developed
countries, Beijing has a larger population. As a result, the number of people being affected
by dustfall pollution is huge.

Various chemical component and source analyses on dustfall have been carried out
in the literature by using PM2.5-based research methods [17–19]. Among the diverse
pollutants, the heavy metal pollution characteristics of dustfall have been extensively stud-
ied [20–27], followed by the ion pollution characteristics and source analysis [28–32], but
there are also a few works on persistent organic pollutants in dustfall [33–36]. Neverthe-
less, the characteristics and source analysis of total chemical components in dustfall have
scarcely been examined [37,38].

In 2020, the dustfall in Dongcheng district and Xicheng district in Beijing was
4.7 t·(km2·30 d)−1 and 5.3 t·(km2·30 d)−1, respectively, ranked 5th and 10th among the
16 districts [39]. However, as the most densely populated area in Beijing, it is more vulnera-
ble to the impact of dustfall pollution. Therefore, it is important to carry out a systematic
study of the pollution characteristics and sources of dustfall in Beijing. Along these lines, in
this work, the urban area of Beijing was selected as the research area, and the dustfall was
chosen as the research object to thoroughly investigate the one-year pollution characteristics
and sources of dustfall. The insoluble and water-soluble dustfall samples were obtained
by using the filtration method of the American dustfall measurement standard [40]. The
composition of insoluble and water-soluble dustfall in the dustfall was analyzed, and the
impacts of monthly, seasonal, and meteorological parameters on the dustfall, as well as the
amount of insoluble and water-soluble dustfall, were studied. In addition, the elements
and carbonaceous components of insoluble dustfall, as well as the anions and cations of
water-soluble dustfall, were determined. The composition characteristics of all chemical
components in the dustfall and the source of the dustfall were systematically analyzed.
Our work provides valuable technical support for the prevention and control of dustfall
pollution in Beijing.

2. Materials and Methods
2.1. Study Area and Sampling

Beijing (115.7◦–117.4◦ E and 39.4◦–41.6◦ N) is located on the North China Plain and
has a temperate monsoon climate, where spring and autumn are short, summer is hot
and rainy, and winter is cold and dry. Xicheng district, which is located in the urban area
of Beijing, was taken as the research area. It is densely populated, and human activities
are complicated, which intensifies the impact of dustfall pollution in the Xicheng district.
The monitoring point was set on the roof of a scientific research institution (116.355◦ N,
39.929◦ E), and the dustfall collection tank was 8 m above the ground, which meets the
point setting requirements of HJ 1221–2021. There is a main road 60 m to the south of the
monitoring site, and a secondary road 30 m to the east. The monitoring period was from
June 2021 to June 2022 for a total of one year. In September 2021, no dustfall samples were
collected due to the short-term construction of the roof.
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2.2. Materials and Instruments

Dustfall collection containers and glycol solutions, as specified in HJ 1221–2021, were
used to collect dustfall. The cylindrical dustfall collection tank with an inner diameter of
15 cm and a height of 30 cm was used, and the upper edge of the dustfall collection tank
was 1.5 m from the roof surface. Moreover, metal screens with a 1 mm aperture [2,40], sand
core filters, and filter membranes (mixed fiber and quartz filters) were utilized to filter the
dustfall sample and obtain insoluble and water-soluble dustfall [41]. The dustfall samples
collected from dustfall collection containers were filtered through the filter membrane
under the pumping action of the sand core filter (Figure 1), and the dustfall was trapped
on the filter membrane. Evaporators, ovens, dryers, and electronic balance were used to
determine the amount of insoluble dustfall.
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this research.

In this work, ion deposition was used to represent the water-soluble dustfall, and
the total of other components except the water-soluble dustfall represented the insoluble
dustfall. The insoluble dustfall included elemental oxides, elemental carbon (EC), and
organic matter (OM). According to HJ 657–2013 [42], inductively coupled plasma mass
spectrometry (ICP-MS) measurements were performed to determine the elements (i.e.,
Li, Be, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Tl, Pb, Bi, Th,
U, Al, Fe) of insoluble dustfall filtered using a mixed cellulose filter membrane. The
elements of insoluble dustfall from mixed cellulose filter membranes were determined
as a supplement to the results extracted via the ICP-MS method. EC and OC from the
quartz filter membrane were determined by using a DRI2001A thermos-optical organic
carbon/elemental carbon analyzer. The ion determination (i.e., Na+, K+, Mg2+, Ca2+, NH4

+,
F−, Cl−, NO3

−, SO4
2−) of water-soluble dustfall from the filter membrane was carried out

by using an ion chromatograph (IC) according to HJ 799–2016 and HJ 800–2016 [43,44].

2.3. Research Method

In accordance with HJ 1221–2021, parallel samples of two dust collecting containers
were placed. To obtain more dustfall samples for data analysis, dustfall sampling was
conducted weekly, and sampling was conducted at 10:00 am every Monday. According to
the American dustfall measurement standard [40] and the test procedure of Zhao et al. [32],
insoluble and soluble dustfall samples were obtained, wherein the dustfall sample of one
dust collecting container was filtered using a mixed cellulose filter membrane, and the
other sample was a filtered using a quartz filter membrane.
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First, the parallelism of the insoluble dustfall amount obtained using the two filtration
membranes was compared to provide a basis for the chemical mass reconstruction of
dustfall. Second, Beijing meteorological Station No. 54511 is a national basic meteorological
station, which provides meteorological information on behalf of the Beijing region to
participate in global exchange. The meteorological data of Beijing meteorological station
No. 54511 during the monitoring period were collected to analyze the impact of month,
season, and meteorological parameters on the dustfall. The meteorological data obtained in
this work include wind speed, temperature, relative humidity, and rain precipitation. Third,
the composition characteristics of all chemical components in dustfall were examined, and
the positive matrix factorization (PMF) receptor model was used to explore the source of
dustfall [45,46].

2.4. Chemical Mass Reconstruction of Dustfall

The chemical components of the dustfall, including crustal material elements, trace
elements, ions, organic carbon (OC), and elemental carbon (EC), were determined in this
work. The crustal elements include Al, Si, Ca, Fe, and Ti. ICP-MS measurements can
determine the element component, but due to the limitation of the filter membrane material
in this study, ICP-MS measurements can only determine the Al and Fe elements in five
crustal elements. The ρ(Si)/ρ(Al) = 7.27, ρ(Ca)/ρ(Al) = 5.02, and ρ(Ti)/ρ(Al) = 0.0329
were determined by the work of Li [47] in the analysis of the pollution characteristics and
component sources of dustfall in Jinan city and used to estimate the concentrations of Si,
Ca, and Ti. Taking into account the reconstruction method of PM2.5 chemical component
mass [48], the chemical component mass of dustfall was reconstructed according to the
following formula:

ρ(dustfall) = ρ(OM) + ρ(EC) + ρ(FS) + ρ(trace element) + ρ(unknown component) + ρ(water-soluble ion) (1)

ρ(OM) = 1.4ρ(OC) (2)

ρ(FS) = 2.2ρ(Al) + 2.49ρ(Si) + 1.63ρ(Ca) + 2.42ρ(Fe) + 1.94ρ(Ti) (3)

In the formula, FS denotes crustal material.

2.5. PMF Modeling

Sources contributions to dustfall were determined using the US Environmental Pro-
tection Agency’s (EPA) PMF. The PMF model offers the advantage of not necessitating a
source spectrum, emission inventory, and pollutant photochemical reaction mechanism. In
addition, it does not require high time consistency of sample data. By examining the inter-
nal correlation within the observed data, the PMF model analyzed the primary contributing
factors and their respective magnitudes in accordance with local conditions, subsequently
determining the types of sources represented by these factors based on the eigenvalues of
different components across various factors. In this study, the US EPA PMF 5.0 was used
to perform a multisite PMF analysis [22,45,46,49,50]. With a two-dimensional solution, a
matrix of sample data could be decomposed into the factor contribution matrix G (n × p)
and factor profile matrix F (p × m), in which p is the number of factors contributing to the
samples. The conventional factor analysis-based method assumes that the initial data set X
is denoted as in Equation (4):

Xij = ∑p
k=1 gik fkj + eij (4)

where X is the concentration of species, I is the numbering of samples, j is the chemical
species, f is the source profile, g is the mass contribution, and e is the residual for each
sample and species. The number of sources (p) is a user-defined value. The model found
the optimum solution based on the objective function (minimizing Q):

Q = ∑n
I =1 ∑m

j =1 (
eij

uij
)2 (5)
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where u is the uncertainty of samples and species, and the uncertainties were calculated by

If Xij ≤ MDL, uij =
5
6
× MDL (6)

If Xij ≥ MDL, uij =
√(

σj × Xij
)2

+ (MDL)2 (7)

where σj is the relative standard deviation, and MDL is the minimum detection limit. For
quality control purposes, samples and species inputs were pre-screened based on three
criteria: volatility, the signal to noise (S/N) ratio, and the number of measurements missing.

3. Results and Discussion
3.1. Time Variation Characteristics of Dustfall

Figure 2 shows the parallelism results of the insoluble dustfall measurement. As can
be seen, the linear regression equation of insoluble dustfall measured using the quartz
filter and mixed cellulose filter membranes is y = 1.01x − 0.06 and R2 = 0.97, respectively,
which is highly correlated. This result indicates that both filter membranes can be used to
determine insoluble dustfall and can be combined to extract the chemical components of
insoluble dustfall.
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Figure 3 depicts the monthly and quarterly dustfall in 2021–2022. The annual average
dustfall during the whole monitoring period was 4.4 t·(km2·30 d)−1, which is 12% lower
than that in 2020. Compared with other cities in Table 1, the air quality of cities in northern
China during the monitoring period was better, and the dustfall during the monitoring
period was 0.52 times that of Taiyuan in Shanxi Province, 0.54 times that of Tianjin Province,
and 0.55 times that of Shijiazhuang in Hebei Province [9,51]. However, there is still a
gap between the urban area of Beijing and the southern cities. The dustfall during the
monitoring period was 1.1 times that of Nanjing in Jiangsu Province and 1.6 times that of
Shenzhen in Guangdong Province [12,13]. The dustfall in the core area was slightly higher
than that in Mentougou district in 2021 (4.3 t·km−2·30 d−1) and Tongzhou district in 2020
(3.4 t·km−2·30 d−1), indicating that the dustfall pollution in the urban area of Beijing was
more serious than that in the suburbs [52,53].
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Table 1. Dustfall/t·(km2·30 d)−1 of typical cities in China.

Location Typical City Province Sampling
Period Dustfall

North China

Taiyuan Shanxi 2019.11–2020.12 8.5
Tianjin Tianjin 2020.01–12 8.1

Shijiazhuang Hebei 2020.01–12 8.0
Beijing Beijing 2018.01–12 7.5
Beijing Beijing 2019.01–12 5.6
Beijing Beijing 2020.01–12 5.0

Beijing (this research) Beijing 2021.06–2022.06 4.4

South China
Nanjing Jiangsu 2019.01–12 3.9

Shenzhen Guangdong 2016.01–12 2.7

Table 2 presents the dustfall of foreign cities. Compared with typical cities in Europe,
Oceania, and North America, the dustfall in Beijing was still high. The dustfall in the
monitoring period was 8.8 times that of Salkes in France, 5.9 times that of the Canary
Islands in Spain, 4.9 times that of Sydney in Australia, and 2.8 times that of Colorado in
the United States [13–16]. Compared with African cities, the dustfall in the urban area of
Beijing was low, being 0.50 times that of Tizi Ouzou in Algeria and 0.63 times that of Sfax
in Tunisia [54,55]. Compared with typical Asian cities, the dustfall in Beijing was in the
middle, being higher than Selangor in Malaysia and lower than Tabriz in Iran [14,18].

Table 2. Dustfall/t·(km2·30 d)−1 of typical foreign cities.

Location Typical City Sampling Period Dustfall

Europe Salkes, France 2011.8–2012.12 0.5 ± 0.01
The Canary Islands, Spain 2009–2012 0.75 ± 0.09

Oceania Sydney, Australia 2007.6–2008.7 0.9
North America Colorado, USA 2017.11–2018.11 1.58 ± 0.01

Africa
Tizi Ouzou, Algeria 2011.5–2012.12 5.5 ± 0.1

Sfax, Tunisia 2012.11–2013.4 7

Asia
Selangor, Malaysia 2010.7–2010.10 3.9 ± 2.1

Tabriz, Iran 2017.4–9 7.4 ± 5.6
Beijing, China (this research) 2021.06–2022.06 4.4
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The annual average of insoluble dustfall was 3.68 t·(km2·30 d)−1, and the annual
average water-soluble dustfall was 0.71 t·(km2·30 d)−1. The proportion of insoluble dustfall
in Beijing was 82.4% ± 13.7%, and the proportion of insoluble dustfall in the southeast of
Spain from 2011 to 2013 was 44% ± 11% [56], which is about twice that of Spain, indicating
the higher impact of fugitive dust in Beijing. On top of that, the proportion of water-soluble
dustfall in Beijing was 17.6%, of which the proportion of water-soluble dustfall in the winter
and spring of 2021–2022 (from December of the first year to March of the next year) was
14.5%. This is similar to the proportion of water-soluble dustfall in the winter and spring
of 2020–2021 (14.2%) [32], both of which are lower than the annual average (17.6%). This
result is related to the low rainfall in autumn and winter.

From 2021 to 2022, the monthly dustfall and insoluble dustfall exhibited a double-
peak and double-valley pattern, with two valley values appearing in January and October,
and two peaks appearing in April and December. In April, the construction site resumes
work, and in December, a large number of trees lose leaves, coupled with the heating
season. Furthermore, the average windspeeds in April and December were 1.9 m/s and
1.6 m/s, so the wind speed is relatively high in these two months. Wind speed is considered
an important factor affecting dustfall [29]. The water-soluble dustfall from 2021 to 2022
presents a unimodal pattern, with the peak appearing in summer, which is related to the
concentration of annual precipitation in summer. Spring dustfall, spring insoluble dustfall,
and spring water-soluble dustfall were 1.41, 2.05, and 1.98; 2.10, 2.14, and 2.14; and 0.27,
1.31, and 0.99 times those of summer, autumn, and winter, respectively. The seasonal
variation in dustfall amount, insoluble dustfall amount, and water-soluble dustfall amount
was different, which points out that the influence of meteorological parameters on the three
dustfall amounts should be further analyzed.

3.2. Influence of Meteorological Parameters on Dustfall

Figure 4 displays the temporal changes in the meteorological parameters and weekly
dustfall from 2021 to 2022. The following is a detailed analysis of the influence of meteoro-
logical parameters (precipitation, temperature, average wind speed, and relative humidity)
on dustfall.

The Spearman correlation coefficient (ρ) between various dustfall and meteorological
parameters is depicted in Table 3. As can be seen, the amount of dustfall was positively
correlated with the average wind speed, weakly positively correlated with the temperature,
weakly negatively correlated with relative humidity, and very weakly negatively correlated
with precipitation [57,58].

Table 3. The Spearman correlation coefficient (ρ) between various dustfall/t·(km2·30 d)−1 and
meteorological parameters. (* indicated that the correlation was significant when the confidence level
was 0.05; ** indicated that the correlation was significant when the confidence level was 0.01).

Types of
Dustfall

Meteorological Parameters

Precipitation
/mm

Temperature
/◦C

Average Wind
Speed
/m·s−1

Relative
Humidity

/%

Dustfall −0.049 0.281 0.491 ** −0.274
Insoluble
dustfall −0.228 0.136 0.599 ** −0.427 **

Water-soluble
dustfall 0.650 ** 0.350 * −0.367 * 0.551 **
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Figure 4. Temporal variations in meteorological parameters (a) and weekly dustfall (b) from 2021
to 2022.

To understand the connection between the dustfall and meteorological parameters,
the relationship between insoluble and water-soluble dustfall and meteorological param-
eters was further analyzed, as shown in Table 3. The average wind speed had a posi-
tive correlation (ρ = 0.599) with insoluble dustfall and a moderate negative correlation
(ρ = −0.367) with water-soluble dustfall. Moreover, the positive and negative partial can-
cellation made the dustfall have a moderate positive correlation with the average wind
speed (ρ = 0.491). A very weak positive correlation between the temperature and insoluble
dustfall (ρ = 0.136) and a weak positive correlation between the temperature and water-
soluble dustfall (ρ = 0.350) were also observed. The weighted average of the two resulted in
a weak correlation between dustfall and temperature (ρ = 0.281). The relative humidity was
moderately negatively correlated with insoluble dustfall (ρ = −0.427) and moderately posi-
tively correlated with water-soluble dustfall (ρ = 0.551). The positive and negative partial
cancellation caused a weak negative correlation between the dustfall and relative humidity
(ρ = −0.274). Precipitation exhibited a weak negative correlation with insoluble dustfall
(ρ = −0.228) and a strong positive correlation with water-soluble dustfall (ρ = 0.650), and
the positive and negative partial cancellation meant that the dustfall had a very weak
negative correlation with precipitation (ρ = −0.049). In summary, the correlation between
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dustfall and the degree of moderate or lower meteorological parameters was because
the meteorological parameters (except temperature) had completely opposite effects on
insoluble and water-soluble dustfall. Considering the high proportion of insoluble dustfall
in the dustfall in Beijing, it is suggested to pay attention to the prevention and control of
dustfall pollution under weather conditions of high temperature and high wind speed.

3.3. Chemical Composition of Dustfall

Figure 5 displays the time variation in the chemical composition of dustfall from 2021
to 2022. The average proportions of crustal material, ions, OM, EC, trace elements, and
unknown components during the whole sampling period from 2021 to 2022 were 48%,
16%, 14%, 1.4%, 0.20%, and 20%, respectively. In addition to the unknown components,
the crustal material accounted for the highest proportion, followed by ions and OM, and
the proportion of them was similar. On the contrary, EC and trace elements accounted for
a relatively small proportion, which showed that the prevention and control of fugitive
dust pollution is the primary task of controlling the dustfall pollution, while controlling
the source of ions and OM is also very necessary. Compared with the dustfall components
in Mentougou district from 2018 to 2022, the proportion of crustal material in this study is
higher than that in Mentougou district (25.5%), and the proportion of OM and EC is lower
than that in Mentougou district (20.6% and 2.3%). The crustal material is mainly from soil
wind–sand dust and construction cement dust. OM and EC mainly come from combustion
emissions such as gas-fired power plants, biomass burning, and waste incineration. This
indicates that the core area of Beijing is more affected by fugitive dust than by combustion
emissions [53,54].
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substances contained in the composition are provided in Table S1 of the Supplementary Material.

Figure 6 shows the chemical compositions of dustfall corresponding to different sea-
sons, dustfalls, and average wind speeds. From the perspective of the chemical composition
of dustfall in different seasons, the proportion of crustal material in spring was the highest
(57%). The proportions of crustal material in summer, autumn, and winter were 39%, 44%,
and 43%, respectively. Ions occupied the highest proportion (37%) in summer and the low-
est proportion (7.1%) in spring, whereas in autumn and winter, the proportions were 11%
and 14%, respectively. In winter and spring (from December of the current year to March
of the next year), the proportions of anions and cations were 60.0% and 40.0%, respectively,
which is similar to the results of winter and spring in 2020–2021 [32]. NH4

+ and K+ were the
main species of cations, accounting for 37% and 44%, respectively. SO4

2−, NO3
−, and Cl−

were the main species of anions, accounting for 51%, 25%, and 23%, respectively. SO4
2−,

NO3
−, and NH4

+ were important components of secondary aerosols, which are formed by
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the secondary transformation of precursor SO2, NOx, and NH3. K+ and Cl− usually come
from the combustion process, and the proportions of K and Cl in ionic components in the
dustfall from December 2021 to March 2022 in this study (19%) were higher than that in
the same period last year (12%), indicating that the emission of combustion products in
the Beijing core area had an increasing trend [32]. OM was lowest in winter (12%), 15% in
spring, 16% in summer, and 15% in autumn. The proportion of unknown components was
the lowest in summer (6.5%) and greater than 20% in other seasons, which may be related to
the high precipitation in summer and the small average particle size of dustfall. According
to the chemical compositions of different dustfall amounts, larger dustfall amounts lead to
a bigger proportion of crustal material and a smaller proportion of OM. A smaller amount
of dustfall indicates a larger proportion of ions. From the chemical composition of dustfall
corresponding to different average wind speeds, a greater average wind speed suggests
that the proportions of crustal materials and unknown components are also bigger. On the
contrary, a lower average wind speed induces a larger proportion of ions and OM.
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3.4. Analysis of the Source of Dustfall

The amounts and uncertainty levels of 39 chemical components in the dustfall obtained
during the sampling period were input into the PMF receptor model [44], and analysis of
5~7 factors was attempted during the calculation process of the PMF receptor model. The
results showed that when the simulation output six factors, the eigenvalues and source
spectra of each factor had distinct source indications, and each of them was independent.
Figure 7 depicts the composition spectrum of the sources of dustfall pollution. In factor 1,
OM and EC are the main components of the mobile source, with contribution rates of 50.7%
and 46.3%, respectively, and can be regarded as the identifying components of the mobile
source. NH4

+ and SO4
2− are the main components in factor 2, with contribution rates of

61.3% and 38.7%, respectively, which can be identified as secondary inorganic sources. In
factor 3, the contents of Na+ and Cl− were high, and their contribution rates were 66.7% and
36.5%, respectively. Snow melting agent is used in Beijing snowfall, so it can be identified
as the source of the snow melting agent source. In factor 4, the characteristic values of
K+, SO4

2−, and OM were high, and their contribution rates were 89.8%, 26.8%, and 53.2%,
respectively. Therefore, this factor can be judged as the coal combustion source. In factor 5,
although the contribution rate of F− was 36.7%, there was no obvious corresponding
identification source. Hence, it can be classified in the other source category. In factor 6,
the contribution rates of Ca2+, Mg2+, Al, Si, and Fe were high, and their contribution rates
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were 26.8%, 32.1%, 63.7%, 62.5%, and 61.8%, respectively. Thus, factor 6 can be identified
as the fugitive dust source.
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Figure 7. Composition profiles of the various dustfall pollution sources.

Figure 8 illustrates the contributions of dustfall pollution sources based on the PMF
receptor model. As can be seen, the annual dustfall pollution sources in the urban area of
Beijing include fugitive dust sources, secondary inorganic sources, mobile sources, coal
combustion sources, snow melting agent sources, and other sources (including unknown
components). The fugitive dust source is the most important source, with a contribution
rate of 42.4%, which is more consistent with the actual situation in Beijing; the second is the
secondary inorganic source, whose contribution rate is 19.3%. Mobile and coal combustion
sources contributed 8.3% and 3.0%, respectively. The contribution of the snow melting
agent source was 2.7%, which may be related to several snowfalls such as heavy snow on
6 November 2021, light snow on 23 December, light snow on 21 January, light snow on
30 January, medium snow on 13 February, and medium snow on 18 March. Snow melting
agent is typically applied to roads during or after snowfall to facilitate rapid snowmelt
and prevent road freezing. Following water evaporation, the residual snow melting agent
particles adhere to the road surface, are stirred by vehicle movement, and re-enter the
atmosphere as a component of dustfall. The contribution rate of other sources (including
unknown components) was 24.3%. Compared with Zhang et al.’s study in Taiyuan, Shanxi
Province, the contribution rate of fugitive dust sources in this study was higher than that in
Taiyuan (14%), while the significant contributions of mobile and coal combustion sources
were lower than those in Taiyuan (29%, 35%) [52]. This effect is related to the strict emission
standards of motor vehicles and the high degree of clean energy substitution in Beijing. For
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these reasons, the contribution of fugitive dust sources to dustfall reduction in Beijing is
more prominent. In the future, Beijing should pay more attention to the control of fugitive
dust sources, implement the technical specification of vehicle-mounted monitoring and
evaluation for suspended dust load on paved roads, formulate and implement technical
specifications for urban fugitive dust pollution prevention and control, and implement
emissions standard for construction fugitive dust. In spring, the supervision of construction
dust and road dust should be strengthened. In snowy weather, snow melting agents should
be used moderately; when a large amount of snow melting agent is needed, the snow
melting agent should be pre-wet.

Atmosphere 2024, 15, x FOR PEER REVIEW 12 of 16 
 

 

melting agent particles adhere to the road surface, are stirred by vehicle movement, and 
re-enter the atmosphere as a component of dustfall. The contribution rate of other sources 
(including unknown components) was 24.3%. Compared with Zhang et al.’s study in 
Taiyuan, Shanxi Province, the contribution rate of fugitive dust sources in this study was 
higher than that in Taiyuan (14%), while the significant contributions of mobile and coal 
combustion sources were lower than those in Taiyuan (29%, 35%) [52]. This effect is related 
to the strict emission standards of motor vehicles and the high degree of clean energy 
substitution in Beijing. For these reasons, the contribution of fugitive dust sources to 
dustfall reduction in Beijing is more prominent. In the future, Beijing should pay more 
attention to the control of fugitive dust sources, implement the technical specification of 
vehicle-mounted monitoring and evaluation for suspended dust load on paved roads, 
formulate and implement technical specifications for urban fugitive dust pollution 
prevention and control, and implement emissions standard for construction fugitive dust. 
In spring, the supervision of construction dust and road dust should be strengthened. In 
snowy weather, snow melting agents should be used moderately; when a large amount 
of snow melting agent is needed, the snow melting agent should be pre-wet. 

 
Figure 8. Composition profile of dustfall pollution sources. 

4. Conclusions 
To grasp the pollution characteristics and sources of dustfall, the filtration method 

was used to determine the insoluble dustfall and water-soluble dustfall in urban areas of 
Beijing. From our analysis, the influence of the meteorological parameters on dustfall was 
found, and the chemical components of dustfall were determined. The analysis of dustfall 
pollution characteristics and sources from total chemical components was carried out to 
provide support for dustfall pollution control. 

Although the average amount of dustfall in 2021–2022 was 4.4 t·(km2·30 d)−1, which 
was better than cities in northern China, it had a significant gap compared with cities in 
southern China and typical cities in developed countries. The dustfall pollution in Beijing 
still needs to be further controlled. The proportion of insoluble dustfall was 82.4%, which 
indicated that dust has a significant impact on dustfall in Beijing. The monthly dustfall 
and insoluble dustfall showed double peaks and double valleys, and the water-soluble 
dustfall showed single peaks. The three peaks occurred in April, July, and December. 

Dustfall was positively correlated with the average wind speed, weakly positively 
correlated with the temperature, weakly negatively correlated with relative humidity, and 
very weakly negatively correlated with precipitation. In addition, the Spearman 
correlation coefficients between dustfall and rain precipitation, relative humidity, 
temperature, and average wind speed were −0.049, −0.274, 0.281, and 0.491, respectively. 

Figure 8. Composition profile of dustfall pollution sources.

4. Conclusions

To grasp the pollution characteristics and sources of dustfall, the filtration method
was used to determine the insoluble dustfall and water-soluble dustfall in urban areas of
Beijing. From our analysis, the influence of the meteorological parameters on dustfall was
found, and the chemical components of dustfall were determined. The analysis of dustfall
pollution characteristics and sources from total chemical components was carried out to
provide support for dustfall pollution control.

Although the average amount of dustfall in 2021–2022 was 4.4 t·(km2·30 d)−1, which
was better than cities in northern China, it had a significant gap compared with cities in
southern China and typical cities in developed countries. The dustfall pollution in Beijing
still needs to be further controlled. The proportion of insoluble dustfall was 82.4%, which
indicated that dust has a significant impact on dustfall in Beijing. The monthly dustfall and
insoluble dustfall showed double peaks and double valleys, and the water-soluble dustfall
showed single peaks. The three peaks occurred in April, July, and December.

Dustfall was positively correlated with the average wind speed, weakly positively
correlated with the temperature, weakly negatively correlated with relative humidity, and
very weakly negatively correlated with precipitation. In addition, the Spearman correlation
coefficients between dustfall and rain precipitation, relative humidity, temperature, and
average wind speed were −0.049, −0.274, 0.281, and 0.491, respectively. The influences of
meteorological parameters (except temperature) on the amount of insoluble dustfall and
water-soluble dustfall were opposite, which could reflect the moderate and below-degree
relationship of dustfall with each meteorological parameter.

The average proportions of crustal material, ions, OM, EC, trace elements, and un-
known components were 48%, 16%, 14%, 1.4%, 0.20%, and 20%, respectively. The propor-
tion of crustal material was highest in spring (57%), the proportion of ions was highest in
summer (37%), and the proportion of OM was lowest in winter (12%). A larger amount
of dustfall led to a bigger proportion of crustal material and a smaller proportion of OM.
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In addition, a greater average wind speed induced a bigger proportion of crustal material
and unknown components. Although the proportion of crustal material in the dustfall
in Beijing city is the highest, it is still lower than that in Taiyuan City. The proportion of
crustal materials is higher than that in Mentougou district, and the proportion of OM and
EC is lower than that in Mentougou district, which indicates that the urban area of Beijing
is more affected by fugitive dust. The proportions of K+ and Cl− in ionic components
are higher than those in winter and spring of 2020–2021, indicating an increasing trend
of combustion emissions. The proportion of unknown components is higher than that of
PM2.5, indicating that the chemical components of dustfall are more difficult to test.

The PMF model was used to analyze the source of dustfall in the urban area of
Beijing in 2021–2022. The contribution rates of fugitive dust source, secondary inorganic
source, mobile source, coal combustion source, snow melting agent source, and other
sources (including unknown components) were 42.4%, 19.3%, 8.3%, 3.0%, 2.7%, and 24.3%,
respectively. Compared with Taiyuan, Shanxi Province, the contribution of fugitive dust
from the Beijing urban area is higher, and those from mobile sources and coal sources are
lower. In the future, the Beijing urban area should pay attention to the control of fugitive
dust sources and secondary inorganic sources and reduce the use of snow melting agents
in winter.

In order to achieve accurate control of dustfall, future research directions should be
combined with the changes in dustfall and particulate matter emission inventory in Beijing
from 2018 to 2023, analyze the contribution ratios of various fugitive dust source pollution
prevention measures in the three-year action plan to fight air pollution, ensure air pollution
prevention, control action plans and other policies to ensure a decrease in dustfall, and
carry out environmental and cost-benefit analyses of various measures.

Supplementary Materials: The following supporting information can be downloaded via this
link: https://www.mdpi.com/article/10.3390/atmos15050544/s1, Table S1: Chemical substances
contained in the composition.
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