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Abstract: In civil aviation, severe weather conditions such as strong wind shear, crosswinds, and
thunderstorms near airport runways often compel pilots to abort landings to ensure flight safety.
While aborted landings due to wind shear are not common, they occur under specific environmental
and situational circumstances. This research aims to accurately predict aircraft aborted landings using
three advanced deep learning techniques: the conventional deep neural network (DNN), the deep
and cross network (DCN), and the wide and deep network (WDN). These models are supplemented
by various data augmentation methods, including the Synthetic Minority Over-Sampling Technique
(SMOTE), KMeans-SMOTE, and Borderline-SMOTE, to correct the imbalance in pilot report data.
Bayesian optimization was utilized to fine-tune the models for optimal predictive accuracy. The
effectiveness of these models was assessed through metrics including sensitivity, precision, F1-score,
and the Matthew Correlation Coefficient. The Shapley Additive Explanations (SHAP) algorithm
was then applied to the most effective models to interpret their results and identify key factors,
revealing that the intensity of wind shear, specific runways like 07R, and the vertical distance of wind
shear from the runway (within 700 feet above runway level) were significant factors. The results of
this research provide valuable insights to civil aviation experts, potentially revolutionizing safety
protocols for managing aborted landings under adverse weather conditions, thereby improving
overall airport efficiency and safety.

Keywords: civil aviation safety; aborted landings; deep learning; SHAP

1. Introduction

An aborted landing, often termed as a “go-around”, is a situation typically encountered
during the final approach phase of a flight. This occurs when landing safely is not possible
due to various reasons, including extreme weather, an occupied runway, poor visibility,
or an unstable approach [1]. In such cases, it is crucial to halt the landing attempt, ascend
again, and either prepare for a different landing approach or head to an alternate airport,
as depicted in Figure 1. During this phase, the aircrew follows specific procedures and
rigorously checks the relevant checklists. Aborted landings can negatively impact airport
efficiency, airline timeliness, and increase the workload for air traffic controllers [2,3].

The accurate evaluation of aborted landings is important for enhancing safety mea-
sures and developing effective strategies to reduce their frequency. Aborted landings,
especially those occurring during wind shear, are rare and complex events influenced by a
multitude of interconnected factors, making it challenging to fully understand every aspect
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of these incidents. By understanding the detailed interactions between these factors, we
can develop sophisticated safety protocols that not only prevent aborted landings but also
minimize their impact on airport throughput and scheduling.
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2. Related Work

Investigating the diverse factors and standards that affect aborted landings has been
a significant area of ongoing research. Studies have explored various elements, such as
weather and environmental conditions, the psychological states of pilots and air traffic
controllers, and unstable aircraft landings. One study focusing on environmental influences
on aircraft aborted landings identified key factors like runway visibility, wind speed near
the runway, and localizer deviation as significant [4]. Another research pointed out that
atmospheric pressure, wind speed, and visibility play major roles in causing aborted land-
ings [5]. Further research noted that severe thunderstorms and wind speeds over 29 mph
near runways are critical factors, although visibility levels showed less significance [6].
Additionally, poor weather conditions, especially convective storms affecting the runway’s
glide path, have been linked to the occurrence of aborted landings [7].

Unstable or non-stabilized approaches are significant contributors to commercial
aviation accidents during landing [8–10]. A stable approach requires adherence to specific
criteria related to configuration and speed. Approaches that do not meet these criteria
are deemed unstable, substantially increasing the risk of incidents or aborted landings.
Research analyzing aborted landings found that factors like flight separation, approach
stability, departing aircraft, and the aircraft’s altitude above the runway significantly affect
the probability of an aborted landing [11]. Various studies on aircraft aborted landings
have mainly focused on the efficiency and attitudes of pilots and air traffic controllers.
It was uncovered that aborted landings could be linked to a temporary impairment in
rational decision-making due to negative emotional impacts [12]. An investigation into
pilot performance and visual scanning behavior during aborted landings revealed that
most pilots, about two-thirds, committed errors, including significant deviations in flight
path, during an aborted landing [13]. According to [3], a lack of situational awareness
among air traffic controllers is a key factor in aborted landings. Another study indicated
that the decisions regarding aborted landings are heavily influenced by the experience and
age of air traffic controllers [14].

This research represents a novel attempt to apply deep learning models to analyze
aircraft aborted landings. It employs three advanced deep learning techniques, including
the conventional deep neural network (DNN) [15], the deep and cross network (DCN) [16],
and the wide and deep network (WDN) [17] to predict aircraft aborted landings due to
wind shear, using pilot reports (PIREPs) as the primary data source. Data augmentation
techniques like Synthetic Minority Over-Sampling Technique (SMOTE) [18], KMeans-
SMOTE [19], and Borderline-SMOTE [20] were used to address the imbalance in PIREP data.
Bayesian optimization [21] was implemented for selecting and refining the hyperparameters
of these models and their learning processes. Since deep learning models are not inherently
interpretable, the post hoc interpretation strategy of the Shapley Additive Explanations
(SHAP) algorithm [22] was utilized to assess the impact of various factors. The combination
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of deep learning algorithms with SHAP can aid in developing targeted interventions to
reduce aborted landings during wind shear events.

The paper is structured as follows: Section 3 provides a detailed overview of the study
location, PIREP data, and the proposed deep learning architectures. Section 4 discusses the
performance evaluation and interpretation of the optimal deep learning models via SHAP
analysis. Section 5 elucidates the findings of the study.

3. Materials and Methods
3.1. Study Location

Hong Kong International Airport (HKIA), a major aviation center in the Hong Kong
region, is located on the man-made island of Lantau, positioned along the subtropical
coastline of mainland China (Figure 2). The typical weather patterns in Hong Kong are
characterized by tropical cyclones and the southwest monsoon, which frequently lead to
severe thunderstorms and intense rainfall in the area [23,24]. This airport is known to be
more vulnerable to wind shear compared to many other airports globally [25,26].
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3.2. Data Description

The incidence of aborted landings due to wind shear is relatively rare, leading to a
skewed dataset in pilot reports (PIREPs) that predominantly reflects successful landings.
PIREPs are formal accounts given by pilots about weather phenomena experienced during
a flight [27], aimed at providing warnings to other pilots and helping air traffic control
be aware of potential dangers. This ensures pilot safety by enabling them to steer clear
of such hazards [28]. These reports include details like aircraft type, flight number, time,
temperature, precipitation, and current weather conditions, such as intense thunderstorms
and wind shear. As mentioned earlier, HKIA is particularly prone to wind shear, ranking
it among the world’s most vulnerable airports in this respect. Thus, PIREPs from HKIA
predominantly contain data on wind shear events, including information on altitude,
intensity, and the position of the wind shear relative to the runway threshold [29]. They
also describe factors leading to wind shear, like gust fronts or sea breezes, and incidents of
aborted landings.

In aviation, the classification of wind shear encounters in relation to the runway is
typically labeled as RWY, MD, or MF. Figure 3 depicts the runway as a gray rectangle
marked RWY. The rectangles to the right of the runway indicate distance in miles to
the final approach, with each 1MF rectangle representing one nautical mile to the final
approach. The green rectangles on the left side show the distance from the end of the
runway used for departures. For instance, a two-mile final (2MF) is a spatial measurement
of two nautical miles from the runway’s edge at the arrival threshold, shown as a blue
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circle in the diagram. Figure 4 presents two examples of urgent and non-urgent PIREPs.
Table 1 outlines various factors derived from PIREPs that could influence the occurrence
of aborted landings during wind shear conditions. The following section will discuss the
study location and the proposed deep learning architectures in more detail.
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Table 1. Description and coding of different factors extracted from HKIA-based PIREPs.

Factors from PIREPs Data Type Description and Coding

Type of aircraft Discrete 0: narrow-body aircraft, 1: wide-body aircraft
Assigned approach runway Discrete 0: 07R, 1: 07C, 2: 07L; 3:25R, 4: 25C, 5: 25L

Intensity of wind shear Continuous Negative (−): tail wind, positive (+): headwind
Wind shear horizontal distance from the runway Discrete 0: RWY, 1:1MF, 2; 2MF, 3: 3MF

Wind shear vertical distance from the runway Continuous -
Cause of the wind shear Discrete 0: gust front; 1: sea breeze

Precipitation Discrete 0: No, 1: yes
Season of the year Discrete 0: winter, 1: spring, 2: summer; 3: autumn

3.3. Deep Neural Network Architectures

This section provides an overview of the different architectures employed in this study
for the prediction of aircraft aborted landing. Additionally, it emphasizes the fundamental
attributes of the aforementioned architectures.

3.3.1. Conventional Deep Neural Network (DNN)

The conventional DNN refers to an artificial neural network architecture that in-
corporates numerous hidden layers positioned between the input and output layers. In
essence, a conventional DNN can be described as an advanced computational model that
encompasses multiple layers, facilitating the processing of multiple inputs and generating
multiple outputs in a feed-forward manner, as shown in Figure 5 [30]. The layers referred to
as hidden layers are composed of nodes that receive input from the preceding layer. These
nodes execute a mathematical operation, commonly referred to as an activation function,
on the input and produce an output that serves as the input for the subsequent layer. As
illustrated in Figure 5, the input layer consists of three nodes, also referred to as neurons,
while the output layer comprises two nodes. The hidden layers consist of intermediary
layers, each containing neurons. One of the main perks of a DNN lies in its ability to
accurately approximate a nonlinear function to any desired level of precision. This feat is
made possible through a meticulous choice of appropriate activation functions. Notably,
the Rectified Linear Unit (RLU), Hyperbolic Tangent, and sigmoid activation functions are
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widely employed in different fields. The conventional DNN also has the capability to be
employed for tasks that involve regression and classification [31].
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3.3.2. Deep and Cross Network (DCN)

The DCN model architecture is an improved version of the conventional DNN that
commences with an embedding and stacking layer, followed by a cross network and a deep
network operating in parallel. Subsequently, a final layer is implemented to combine the
outcomes from both of the preceding networks. A comprehensive DCN model is illustrated
in Figure 6. The DCN model retains the advantages of a DNN model while also introducing
a novel cross network that exhibits improved efficiency in learning bounded-degree feature
interactions. Specifically, the DCN employs feature crossing at every layer, eliminating the
need for manual feature engineering and introducing minimal additional complexity to the
DNN model. For the details of the working principle of the DCN, refer to the paper [16].
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3.3.3. Wide and Deep Network (WDN)

The WDN approach involves the simultaneous training of wide linear models (WLM)
and a DNN in order to leverage the advantages of both memorization and generalization
in different fields of application. The wide component can be described as a generalized
linear model. The deep component refers to a type of neural network known as a feed-
forward neural network. The prediction is made by combining the output log odds of
the deep and wide components using a weighted sum. The input is subsequently passed
through a logistic loss function for the purpose of joint training. This process involves
back-propagating the gradients from the outcome to both the wide and deep components
of the model concurrently, utilizing an optimization strategy. The WDN architecture is
shown in Figure 7. For details regarding the WDN model, refer to [17].
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3.4. Deep Learning Model Interpretation

Certain machine learning algorithms, such as the random forest algorithm and extreme
gradient boosting algorithm, possess an intrinsic capability to provide insights on the
importance of factors. Nevertheless, deep learning models are capable of estimating other
models, although they do not inherently possess this characteristic. Therefore, in order to
develop interpretable deep learning models, SHAP analysis is coupled with an optimal
deep learning model. SHAP is a mathematical approach that possesses the capability
to elucidate the predictions generated by both machine learning [22,32–34] and deep
learning [30,35,36] models. This approach has its roots in the principles of game theory and
can be employed to explain predictions by quantifying the individual contributions of each
factor to the prediction. It determines the most significant factor and quantifies its impact
on the model’s prediction.

3.5. Performance Indicators

The metrics for a binary classification problem are characterized by true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN). Positive and
negative are standard terms used to describe the classes in a binary classification problem.
Accordingly, a true positive occurs when both the actual and estimated classes are positive.
When the actual class is negative but the estimated class is positive, this is a false positive.
Based on these, different metrics can be evaluated, including sensitivity; also being known
as recall or the true-positive rate, sensitivity is a quantitative metric that assesses the ability
of a model to accurately identify positive instances within a given dataset. Precision is a
metric that quantifies the ratio of accurately predicted positive instances. The F1-score is
a metric that incorporates both precision and sensitivity. It accounts for imbalanced class
distribution in the data and is commonly regarded as one of the most reliable indicators
of a model’s effectiveness. The Matthews Correlation Coefficient (MCC) is another metric
utilized to assess the efficacy of binary classification models. It considers both true and false
positives and negatives, making it widely recognized as a balanced measure that remains
applicable even when the classes exhibit significant disparities in size. It yields a numerical
value ranging from −1 to +1. A coefficient with a value of +1 signifies an ideal prediction,
while a value of 0 indicates no improvement and −1 denotes complete discordance between
the prediction and the observed outcome. The mathematical expressions of these indicators
are shown by Equations (1)–(4).

Sensitivity =
TP

TP + FN
, (1)

Precision =
TP

TP + FP
, (2)

F1-Score =
TP

TP+ 1
2 (TN + FN)

, (3)

MCC =
TP × TN − FP × FN√

(TP + TN)× (TP + FN) + (TN + FP)× (TN + FN)
, (4)
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4. Results and Discussion

This study focused on examining the instances of aborted landings due to wind shear
at Hong Kong International Airport (HKIA). Utilizing PIREP data from 1 January 2015 to
23 July 2023 from HKIA, a thorough analysis revealed a total of 3585 wind shear events
affecting both arriving and departing flights. Of these, our research specifically examined
the 2024 cases reported by flights arriving at HKIA. In these 2024 wind shear incidents,
there were 476 aborted landings and 1552 successful landings. Standard protocols for
data preparation and pre-processing were followed in this study [37]. The data were
randomly divided, with 70% allocated to training and the remaining 30% for testing, with
all deep learning models being evaluated on this split. This division was carried out using
a randomly chosen seed.

A binary classification problem was established, designating successful landings
during wind as the majority class and aborted landings as the minority class. In order to
tackle the issue of imbalanced data, three data augmentation techniques including SMOTE,
KMeans-SMOTE, and Borderline-SMOTE were used to balance the training data. Post-
treatment, the dataset consisted of 1093 successful and 1093 aborted landing instances, as
depicted in Figure 8. The research was conducted in a Jupyter Notebook environment,
using custom-written Python code that leveraged libraries such as Pandas, Numpy, sklearn,
TensorFlow, and DeepTables.
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Figure 8. Instances of training data: (a) original data instances; (b) instances resampled via SMOTE,
KMeans-SMOTE, and Borderline-SMOTE.

Following the initial setup, the hyperparameters for each deep learning architecture
were identified. Bayesian optimization was then employed to refine these hyperparameters,
with the primary aim of enhancing the F1-score. This method is preferred for hyperparam-
eter tuning due to its efficacy in producing more accurate hyperparameter estimates. It has
been shown to yield better values for hyperparameters with considerably fewer iterations
compared to grid and random search methods, as indicated in previous research [38,39].

For the conventional DNN and WDN models, key hyperparameters included the
number of hidden layers, the neurons in each layer, the type of activation function, the
training algorithm, and the learning rate. The activation function and optimizer, being
non-numeric, were conventionally transformed into numerical proxies. Additionally, a
uniform dropout rate of 0.1 was applied across all hidden layers in the networks. In
the case of the DCN model, an extra hyperparameter, the number of cross layers, was
also considered. Tables A1–A3 in Appendix A display the ranges and optimal values
for these hyperparameters as determined by Bayesian optimization under various data
treatment strategies.

4.1. Performance Analysis and Comparison

Following the determination of the optimal hyperparameter combination, the deep learn-
ing models were subsequently retrained on the established training dataset. Monitoring of
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the validation loss was performed in order to mitigate the risk of over-fitting, and the strategy
of early stopping was employed. A confusion matrix was developed for the proposed deep
learning models using both the original untreated data and resampled data. Initially, it was
observed that deep learning models exhibited a poor performance when applied to imbal-
anced datasets, as shown in Figure 9. Among the 150 aborted landing instances in the testing
dataset, the DNN correctly classified 8 instances, the DCN correctly classified 30 instances,
and the WDN correctly classified 7 instances of aborted landings. The performance metrics
of the proposed deep learning models, when applied to untreated data, are presented in
Table 2. The experimental results indicate that the utilization of untreated PIREP data in
DNN, DCN, and WDN models led to a decrease in the F1-score, with values of 9.88%,
29.27%, and 8.33%, respectively. Additionally, the MCC values were also lower, measuring
0.138, 0.218, and 0.057 for DNN, DCN, and WDN, respectively.
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Figure 9. Confusion matrix of proposed deep learning model using untreated data: (a) the DNN
model; (b) the DCN model; (c) the WDN model.

Table 2. Performance assessment of proposed deep learning models using untreated data.

Deep Learning
Models

Performance Measures

Sensitivity (%) Precision (%) F1-Score (%) MCC Run Time
(Seconds)

DNN 66.67 76.21 9.88 0.138 37
DCN 54.55 78.34 29.27 0.218 46
WDN 38.89 75.80 8.33 0.057 47

A confusion matrix, as shown in Figure 10, was subsequently constructed for the con-
ventional DNN model using data that had undergone pre-processing techniques including
SMOTE, KMeans-SMOTE, and Borderline-SMOTE. The utilization of data processing tech-
niques led to significant improvements in the precise categorization of aborted landings. In
the context of the DNN + SMOTE scenario, it was observed that 116 out of 150 instances ac-
curately classified aborted landings. In the context of DNN + KMeans-SMOTE, the accurate
classification was attained in 118 instances out of a total of 150. DNN + Borderline-SMOTE
resulted in the efficient classification of 128 instances of aborted landings out of 150. The
findings shown in Table 3 indicate that the DNN + SMOTE, DNN + KMeans-SMOTE, and
DNN + Borderline-SMOTE models led to a higher F1-score, with values of 69.05%, 71.73%,
and 77.34%, respectively. The MCC values were also higher compared to untreated data,
measuring 0.583, 0.618, and 0.701, respectively.
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Figure 10. Confusion matrix and ROC plot for DNN model (a) with SMOTE-treated data; (b) with
KMeans-SMOTE-treated data; (c) and with Borderline-SMOTE-treated data.

Table 3. Performance assessment of DNN model using different data augmentation strategies.

Data Augmentation Techniques
Performance Measures

Sensitivity (%) Precision (%) F1-Score (%) MCC Run Time (Seconds)

SMOTE 62.37 91.96 69.05 0.582 38
KMeans-SMOTE 65.92 92.56 71.73 0.618 40

Borderline-SMOTE 70.15 94.56 77.34 0.701 35

The development of a confusion matrix for the DCN model also involved the utiliza-
tion of SMOTE, KMeans-SMOTE, and Borderline-SMOTE, as shown in Figure 11. In the
case of DCN, data treatment techniques also resulted in notable advancements in the precise
categorization of aborted landings. In the specific scenario involving DCN + SMOTE, it
was noted that 127 instances out of a total of 150 were successfully classified as aborted
landings. In the context of the DCN + KMeans-SMOTE approach, a total of 150 instances
were evaluated, resulting in accurate classification in 134 instances. The implementation of
the DCN + Borderline-SMOTE technique yielded a successful classification rate of 142 out
of 150 instances of aborted landings. The results presented in Table 4 demonstrate that the
DCN + SMOTE, DCN + KMeans-SMOTE, and DCN + Borderline-SMOTE models yielded
superior F1-scores, achieving 73.41%, 76.15%, and 82.56%, respectively. The MCC values
also exhibited higher magnitudes, with respective measurements of 0.642, 0.686, and 0.773.
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Table 4. Performance assessment of DCN model using different data augmentation strategies.

Data Augmentation Techniques
Performance Measures

Sensitivity (%) Precision (%) F1-Score (%) MCC Run Time (Seconds)

SMOTE 64.62 94.95 73.41 0.642 49
KMeans-SMOTE 66.85 96.67 76.15 0.686 46

Borderline-SMOTE 73.59 98.62 82.56 0.773 51

A confusion matrix was also developed for the WDN models, as shown in Figure 12,
and the findings are displayed in Table 5, which indicate that the WDN + SMOTE, WDN +
KMeans-SMOTE, and WDN + Borderline-SMOTE models exhibited F1-scores of 68.48%,
74.18%, and 78.75%, respectively, and the MCC metric was measured at 0.576, 0.657, and
0.719, respectively.
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Figure 12. Confusion matrix and ROC plot for WDN model (a) with SMOTE-treated data; (b) with
KMeans-SMOTE-treated data; (c) and with Borderline-SMOTE-treated data.

Table 5. Performance assessment of WDN model using different data augmentation strategies.

Data Augmentation Techniques
Performance Measures

Sensitivity (%) Precision (%) F1-Score (%) MCC Run Time (Seconds)

SMOTE 57.80 93.86 68.48 0.576 40
KMeans-SMOTE 63.44 96.25 74.18 0.657 52

Borderline-SMOTE 68.82 97.73 78.75 0.719 54

Based on above findings, it can be concluded that the DCN + Borderline-SMOTE and
WDN + Borderline-SMOTE techniques yielded superior F1-score values of 82.56% and
78.75%, respectively. These techniques also demonstrated higher MCC scores of 0.773 and
0.719, respectively. In addition, the optimal deep learning models were compared to binary
logistic regression (BLR) using both untreated and treated data. The findings indicate that
both the F1-score and MCC obtained from BLR, in the case of both untreated and treated
data, were much lower than those obtained for optimal deep learning models, as shown
in Table 6. The closeness of the results for the optimal deep learning models necessitated
the utilization of SHAP analysis for the interpretation of these models, as detailed in the
following section.
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Table 6. Performance comparison of optimal deep learning models and BLR.

Deep Learning Models + Data
Augmentation Techniques

Performance Measures

Sensitivity (%) Precision (%) F1-Score (%) MCC

DCN + Borderline-SMOTE 73.59 98.62 82.56 0.773
WDN + Borderline-SMOTE 68.82 97.73 78.75 0.719

BLR + Untreated data 50.03 76.67 39.73 0.060
BLR + SMOTE 43.36 82.41 45.56 0.266

BLR + KMeans-SMOTE 51.24 84.61 52.43 0.368
BLR + Borderline-SMOTE 57.42 86.56 58.36 0.445

4.2. Interpretation of Optimal Deep Learning Models

The development of an accurate deep learning model for aborted landings is of
great importance, as an optimized deep learning model has the potential to provide a
deeper comprehension of the relationship between aborted landings and the various
factors that contribute to them. Following predictive analysis by deep learning models,
SHAP bee swarm plots [40] were generated for both optimal DCN + Borderline-SMOTE
and WDN + Borderline-SMOTE in order to evaluate the significance and contribution of
various factors. As depicted in Figure 13, the input factors are arranged on the vertical
axis in descending order of ascending influence, commencing with the factor exerting the
greatest influence. The plot illustrates the contribution of these factors, with the SHAP
value represented on the horizontal axis and a color scale ranging from blue (indicating
low significance) to red (indicating high significance).
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For both optimal deep learning models, the three primary factors that exhibited
significance were the intensity of wind shear, the assigned approach runway, and the
vertical distance of wind shear from the runway. These findings indicate that although
there may be slight variations in the performance of these deep learning models, each one
may possess distinct advantages in different scenarios. When considering the intensity of
wind shear, it can be observed that the blue dots are positioned to the right of the vertical
reference line on the SHAP bee swarm plot. This positioning suggests a significant impact
of negative wind shear magnitude, indicating the impact of tail wind shear and its influence
on aborted landings during wind shear events. In a similar vein, it can be observed that
runways at HKIA that are assigned lower codes are indicative of a greater impact on the
occurrence of aborted landings. The occurrence of southerly or southeasterly gusts of wind
at HKIA increases the probability of wind shear, potentially resulting in notable aborted
landings at runway 07R. The aborted landings were additionally impacted by the lower
altitude of wind shear events. The results of the factor importance and contribution analysis
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presented in this study were found to be consistent with previous research conducted by
others [41–43].

Furthermore, SHAP interaction plots were developed to analyze the top three factors
that are considered significant. Figure 14a illustrates the correlation between the intensity
of wind shear and the vertical distance of wind shear from the runway. The presence
of red and blue dots positioned above a horizontal green reference dashed line signifies
a significant level of effect exerted by the respective factor. It can be observed that the
combined influence of tail wind shear, as indicated by negative values, and the low altitude
of wind shear, as indicated by blue dots, often results in aborted landings. Nevertheless,
the observed head wind shear does not have any substantial influence, and the presence of
wind shear at high altitudes does not yield any noteworthy effects on aborted landings.
The information presented in Figure 14b indicates there is a higher probability of aborted
landings due to trail wind shear at runway 07R. Nevertheless, there were no noteworthy
instances of aborted landings recorded on other runways. Figure 14c shows a notable
concentration of purple dots, symbolizing runway 07R, in the region situated above the
horizontal green reference dashed line and below an altitude of 700 ft, indicating a higher
occurrence of aborted landings. Based on the findings, it may be inferred that there is
a higher probability of aborted landings for aircraft at runway 07R when wind shear
phenomena manifest at altitudes below 700 ft.
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5. Conclusions and Future Direction

This study employed three advanced deep learning models, including conventional
deep neural networks (DNNs), a deep and cross network (DCN), and wide and deep
networks (WDN), to predict instances of aircraft aborted landings due to wind shear at
HKIA. Utilizing PIREP data from 1 January 2015 to 23 July 2023, our analysis identified
a total of 3585 wind shear events affecting both arriving and departing flights. Of these
events, we specifically examined the 2024 cases reported by flights arriving at HKIA, which
encompassed 476 aborted landings and 1552 successful landings. To address the imbalance
in the data, augmentation techniques such as SMOTE, KMeans-SMOTE, and Borderline-
SMOTE were employed. Additionally, the SHAP algorithm was utilized to provide deeper
insights into how various factors influence the model’s predictions.

Initial results with untreated PIREP data showed lower F1-scores and MCC values,
demonstrating the challenges posed by imbalanced data. After applying data treatment,
the DCN model, enhanced with Borderline-SMOTE, achieved superior results, with an
F1-score of 82.56% and an MCC of 0.773. Following closely was the WDN model, also
treated with Borderline-SMOTE, which demonstrated an F1-score of 78.75% and an MCC of
0.719. These outcomes demonstrate the significant potential of targeted data treatments for
enhancing model performance. The SHAP analysis identified the intensity of wind shear,
the assigned approach runway, and the vertical distance of wind shear from the runway as
critical factors influencing aborted landings. Notably, tail wind shear at runway 07R and a
lower altitude of wind shear occurrence (below 700 feet above runway level) significantly
increased the likelihood of aborted landings.

The findings from this study provide invaluable insights for aircrew, aviation safety
researchers, policymakers, and air traffic controllers. They highlight the importance of
considering specific environmental and operational conditions when developing strategies
to mitigate the risk of aborted landings. Future studies should include a broader array of
data sources, such as international flight operations and flights over varied terrain or near
large structures, to better understand the diverse factors contributing to aborted landings.
There is also a need to explore additional deep learning models to compare effectiveness
across different architectures and potentially discover more robust or efficient solutions.
Investigating the temporal variability of wind shear effects and its long-term impact on
aborted landings could provide deeper insights for training and operational protocols.
Assessing the integration of these deep learning models into real-time systems could
revolutionize how air traffic controllers manage incoming flights during adverse weather
conditions, enhancing both safety and efficiency. Based on the identified key factors,
revised aircraft operational protocols and updated flight training programs focusing on
handling wind shear conditions could be developed to significantly reduce the probability
of aborted landings.
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Appendix A

Table A1. Hyperparameters of DNN models with different data augmentation strategies.

Parameters Range
Substitute
Number

Optimal Values

SMOTE KMeans-SMOTE Borderline-SMOTE

Number of hidden layers [2, 5] 2 2 2
Number of neurons [2, 100] [92, 89] [90, 86] [90, 94]

Activation function [Relu, sigmoid, softplus,
softsign, tanh, selu] [1,2,3,4,5,6] sigmoid softsign sigmoid

Learning rate [0.01, 2] 0.15 0.11 0.19

Optimizer [SGD, Adm, Adagrad,
Adadelta] [1,2,3,4] SGD SGD Adm

Table A2. Hyperparameters of DCN models with different data augmentation strategies.

Parameters Range
Substitute
Number

Optimal Values

SMOTE KMeans-SMOTE Borderline-SMOTE

Number of hidden layers [2, 5] 3 2 3
Number of neurons [2, 100] [89, 88, 73] [85, 86] [94, 91, 83]

Number of cross layers [1, 6] 3 4 4

Activation function [Relu, sigmoid, softplus,
softsign, tanh, selu] [1,2,3,4,5,6] sigmoid sigmoid sigmoid

Learning rate [0.01, 2] 0.21 0.16 0.17

Optimizer [SGD, Adm, Adagrad,
Adadelta] [1,2,3,4] Adm Adadelta Adm

Table A3. Hyperparameters of WDN models with different data augmentation strategies.

Parameters Range
Substitute
Number

Optimal Values

SMOTE KMeans-SMOTE Borderline-SMOTE

Number of hidden layers [1, 3] 2 2 3
Number of neurons [2, 100] [87, 75] [84, 80] [96, 93, 85]

Activation function [sigmoid, softplus,
softsign, tanh, selu] [1,2,3,4,5,6] sigmoid tanh softplus

Learning rate [0.01, 2] 0.09 0.15 0.13

Optimizer [SGD, Adm, Adadelta,
Adagrad] [1,2,3,4] Adagrad Adm Adagrad
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