
Citation: Parmeggiani, D.; Despini, F.;

Costanzini, S.; Silvestri, M.; Rabuffi, F.;

Teggi, S.; Ghermandi, G. Assessing

Satellite Data’s Role in Substituting

Ground Measurements for Urban

Surfaces Characterization: A Step

towards UHI Mitigation. Atmosphere

2024, 15, 551. https://doi.org/

10.3390/atmos15050551

Academic Editor: Ferdinando Salata

Received: 20 March 2024

Revised: 15 April 2024

Accepted: 24 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Assessing Satellite Data’s Role in Substituting Ground
Measurements for Urban Surfaces Characterization: A Step
towards UHI Mitigation
Davide Parmeggiani 1,* , Francesca Despini 1, Sofia Costanzini 1 , Malvina Silvestri 2 , Federico Rabuffi 2 ,
Sergio Teggi 1 and Grazia Ghermandi 1

1 Department of Engineering, University of Modena and Reggio Emilia, 41125 Modena, Italy;
francesca.despini@unimore.it (F.D.); sofia.costanzini@unimore.it (S.C.); sergio.teggi@unimore.it (S.T.);
grazia.ghermandi@unimore.it (G.G.)

2 National Institute of Geophysics and Volcanology, 00143 Rome, Italy; malvina.silvestri@ingv.it (M.S.);
federico.rabuffi@ingv.it (F.R.)

* Correspondence: davide.parmeggiani@unimore.it

Abstract: Urban surfaces play a crucial role in shaping the Urban Heat Island (UHI) effect by ab-
sorbing and retaining significant solar radiation. This paper explores the potential of high-resolution
satellite imagery as an alternative method for characterizing urban surfaces to support UHI mit-
igation strategies in urban redevelopment plans. We utilized Landsat images spanning the past
40 years to analyze trends in Land Surface Temperature (LST). Additionally, WorldView-3 (WV3)
imagery was acquired for surface characterization, and the results were compared with ground
truth measurements using the ASD FieldSpec 4 spectroradiometer. Our findings revealed a strong
correlation between satellite-derived surface reflectance and ground truth measurements across
various urban surfaces, with Root Mean Square Error (RMSE) values ranging from 0.01 to 0.14.
Optimal characterization was observed for surfaces such as bituminous membranes and parking
with cobblestones (RMSE < 0.03), although higher RMSE values were noted for tiled roofs, likely due
to aging effects. Regarding surface albedo, the differences between satellite-derived data and ground
measurements consistently remained below 12% for all surfaces, with the lowest values observed in
high heat-absorbing surfaces like bituminous membranes. Despite challenges on certain surfaces,
our study highlights the reliability of satellite-derived data for urban surface characterization, thus
providing valuable support for UHI mitigation efforts.

Keywords: surface reflectance; albedo; urban surfaces characterization; SUHI; spectral signature

1. Introduction

The Urban Heat Island (UHI) phenomenon delineates a stark contrast in temperature
between urbanized regions and their adjacent rural environs [1]. This thermal dichotomy
arises from the compounding effects of urban expansion and global warming. Urban
landscapes, characterized by impermeable surfaces such as concrete and asphalt, possess a
heightened capacity to absorb and retain solar radiation, perpetually emitting heat both
diurnally and nocturnally. In contrast, rural areas, with their prevalent vegetation and
porous soils, exhibit diminished thermal retention capabilities. This disparity in thermal
behavior manifests notably during nocturnal hours when urban surfaces gradually release
stored heat, maintaining elevated temperatures within the urban microclimate [2]. The
resultant urban heat signature often escalates temperatures by 5–10 ◦C relative to their
rural surroundings [3]. As cities keep expanding, the UHI issue becomes increasingly
concerning. Elevated urban temperatures engender multifaceted consequences, including
heightened energy demands for cooling, heightened susceptibility to heat-related illnesses,
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and compromised air quality [4,5]. Consequently, increased greenhouse gas emissions
further exacerbate the cycle of global warming, perpetuating the UHI feedback loop.

The Surface Urban Heat Island (SUHI) phenomenon refers to increased temperatures
observed in urban surfaces compared to their surrounding rural areas, and it correlates
with the broader UHI effect seen in densely populated urban centers. Numerous studies
have delved into quantifying the profound influence of urban expansion on urban surface
temperatures and their surrounding microclimates. These investigations consistently re-
veal a compelling correlation between urban density and surface temperature variations
within the urban fabric. Specifically, the data underscore a distinct positive relationship
where heightened urban density invariably translates to elevated surface temperatures,
marking a significant positive correlation with correlation coefficient higher than 0.85 [6,7].
Conversely, cities characterized by lower density and exhibiting lower temperatures (re-
ferred to as low–low) alongside a more dispersed urban layout showcase a notable cooling
effect across their proximate environments. The SUHI effect is, thus, influenced by the
morphological characteristics of urban areas. Non-linear random forest regression analysis
further demonstrated that 91.84% of the variability in the SUHI effect can be explained by
morphological factors [8,9]. These findings underscore the importance of an appropriate
spatial layout for built-up areas to mitigate the SUHI effect.

In this framework, to mitigate SUHI effects, the deployment of solar reflective materials
emerges as a promising technological recourse [10,11]. These materials, colloquially known
as “cool roofs” or “cool pavements”, augment the solar reflectance (or albedo) of urban
surfaces, thereby mitigating the heat absorption literature [12,13]. Strategic application of
such materials to areas with lower solar reflectance stands as a measure to yield substantial
ameliorative effects [14,15]. Therefore, comprehensive urban surfaces characterization is
fundamental for informed intervention strategies.

In scientific practice, the determination of radiometric properties of surfaces typically
involves adherence to standardized ASTM methods. These methods employ a range of in-
struments tailored to specific standards. Notable instruments include a spectrophotometer
equipped with a 150 mm integrating sphere spanning wavelengths from 300 to 2500 nm, a
reflectometer, and a pyranometer [16]. These instruments are detailed in ASTM standards
such as ASTM E903, ASTM C1549, and ASTM E1918, respectively [17,18]. Another valuable
tool in this context is the ASD Fieldspec 4, a field spectroradiometer that delivers highly
accurate measurements of solar reflectance values across a broad spectral range spanning
from 350 to 2500 nm [19].

However, these instruments provide measurements in specific points, and may not
be suitable for assessing extensive areas. For this purpose, remote sensing emerges as
an important and practical tool for analyzing and characterizing large urban areas [20].
Through satellite imagery equipped with Thermal InfraRed (TIR) bands, it becomes possible
to compute Land Surface Temperature (LST) and identify hotspots and critical areas within
urban environments [21]. Moreover, satellite sensors with bands in the Visible and Near
Infrared spectral regions enable the extraction of key surface characteristics, such as solar
reflectance (or albedo), which represents the proportion of solar radiation reflected back
into the atmosphere [22].

Hence, two pivotal questions arise: “Are satellite remote sensing measurements con-
sistent with ground-based measurements?” and “Can satellite measurements be effectively
used to characterize surface conditions, thus replacing laboratory measurements?” This
paper aims to tackle these inquiries by scrutinizing disparities and correlations between
surface reflectance spectra detected remotely and ground measurements. Specifically, our
analysis harnesses remote sensing data acquired from the WorldView3 satellite sensor along-
side ground measurements from the Jasco V-670 UV-Vis-NIR laboratory spectrophotometer
(Jasco International, Tokio–Japan, equipment provided by EElab laboratory, University
of Modena) equipped with a 150 mm integrating sphere covering wavelengths from 300
to 2500 nm, as well as the ASD FieldSpec 4 field spectroradiometer (Malvern Panalytical,
Cambirisge–UK, equipment provided by National Institute of Geophysics and Volcanology)
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spanning wavelengths from 350 to 2500 nm. This integrated methodology allows for the
characterization of urban surfaces in terms of their spectral signatures and albedos using
satellite imagery.

The study area is the Municipality of Sassuolo, located in the northern part of Italy,
where several Regions of Interest (ROIs) have been selected as test sites for comparison.
The chosen ROIs represent the prevalent impervious urban surfaces found within the study
area, as well as more broadly across urban environments.

Furthermore, we have acquired and analyzed a comprehensive time series of Landsat
images to evaluate the temporal trend of LST specifically on urban impervious surfaces.
Our emphasis on these surfaces stems from their amenability to replacement with solar
reflective materials, thereby playing a pivotal role in mitigating the SUHI effect.

Additionally, the nearest LST map produced for the year of the WV3 satellite image
acquisition has been examined and compared to the albedo map to identify the correspon-
dence between critical areas, hotspots, and areas with low albedo values.

With these analyses, our aim is to ascertain the satellite data’s efficacy in characterizing
surfaces comparably to laboratory or on-field measurements. This enables swift and facile
identification of potential critical areas within urban zones where UHI effects are most
prominent. Subsequently, it facilitates the exploration of mitigation strategies that may
include the strategic deployment of solar reflective materials in areas significantly affected
by the phenomenon.

2. Materials and Methods
2.1. Study Area

The study area of this study is the municipality of Sassuolo, situated within the
Emilia-Romagna region in northern Italy. Sassuolo is part of the Emilian ceramic district,
alongside neighboring municipalities such as Fiorano Modenese, Maranello, Casalgrande,
and Formigine. The choice of this area is due to the highly urbanized and industrialized
urban fabric. Located within the Po Valley, this geographical region is characterized by
subdued or near-absent winds due to the surrounding mountainous terrain. Consequently,
heat emissions from urban surfaces tend to remain localized, with limited dispersion
to adjacent areas via advective processes [23]. This restricted dissipation of heat con-
tributes to heightened air temperatures within the city, leading to the emergence of the
UHI phenomenon. Furthermore, the lack of strong winds poses challenges for air quality
management, as pollutants accumulate more readily in urban environments [24]. Figure 1
shows the location of the study area.

2.2. Dataset

Initially, we acquired a Worldview3 (WV3) image of the study area. This image served
as the basis for extracting spectral signatures and determining the albedo of urban surfaces
within our scope of interest. Additionally, it allowed us to compare these measurements
with those obtained through fieldwork and laboratory analysis.

The WV3 satellite sensor is equipped with 16 multispectral bands, comprising 8 bands
in the Visible-Near Infrared (VNIR) range and 8 in the Short Wave Infrared (SWIR) range.
The spectral resolution of these bands is, respectively, 1.20 m and 7.50 m. Detailed specifica-
tions of the WV3 sensor bands are provided in Table 1. Primarily, the selection of the WV3
image was guided by prudent resource management, considering the substantial costs
typically associated with acquiring high-resolution satellite imagery, particularly for expan-
sive study domains. Moreover, the availability of the WV3 image from a previous research
endeavor expedited our project timeline and minimized acquisition-related expenditures.
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Figure 1. Location of the study area.

Table 1. Satellite specifics of WorldView3.

Spectral Region Bands Bandwidth (nm) Spatial Resolution (m)

Visible—Near
Infrared

Coastal—blue 400–450

1.20

Blue 450–510
Green 510–580
Yellow 590–630

Red 630–690
Red-edge 710–750

NIR-1 770–900
NIR-2 860–1040

Short wave Infrared

SWIR-1 1120–1230

7.50

SWIR-2 1550–1600
SWIR-3 1640–1680
SWIR-4 1710–1750
SWIR-5 2150–2190
SWIR-6 2190–2230
SWIR-7 2240–2290
SWIR-8 2240–2370

The image of the study area was captured on 31 July 2018 at 10:30 am, coinciding with
the passage of the WV3 sensor over the study area (Figure 2). The timeliness of the image
ensured a precise representation of the study area’s current characteristics, encompassing
pertinent urban surface attributes crucial to our analytical pursuits.
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Figure 2. WorldView3 image of the study area and overlook of the chosen ROIs highlighted in yellow.
1: Polyolefin roof, 2: new tiles roof, 3: aged tiles roof, 4: asphalt parking, 5: parking with cobblestones,
6: bituminous membrane.

In addition to covering the municipality of Sassuolo, the image encompasses neigh-
boring municipalities, which will be instrumental in extending our study to the entire
Emilian ceramic district. While our initial study was limited to utilizing the image solely
for the Sassuolo municipality, the surfaces studied are nearly identical throughout the
entire Emilian ceramic district. Therefore, any expansion of the study will likely involve
classifying the entire district, although the surfaces under analysis will remain consistent
with the current study.

Given the subject matter under investigation, we directed our attention towards the
most urbanized part of the Municipality of Sassuolo, omitting the hilly areas that were not
pertinent to our study.

Furthermore, Landsat 5, 7, and 8 images have been used to retrieve LST maps and
statistics on the study area. Landsat 5, launched in 1984, operated until its retirement in
2013. Equipped with the Thematic Mapper (TM) sensor, Landsat 5 provided data with
seven spectral bands covering a range from visible to thermal infrared. Its spatial resolution
was typically 30 m for most bands, with a resolution of 120 m for the thermal band [25].
Following Landsat 5, Landsat 7 was launched in 1999, featuring the Enhanced Thematic
Mapper Plus (ETM+) sensor. This sensor enhanced the capabilities of Landsat imaging,
offering similar spectral bands to Landsat 5, but with improved radiometric and geometric
characteristics [26]. In 2013, Landsat 8 continued the legacy of its predecessors, equipped
with the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS). Landsat 8’s
OLI sensor provides data with nine spectral bands, including improved spectral resolution
compared to previous sensors, while the TIRS sensor captures thermal infrared data with
two bands [27]. Overall, Landsat satellites have played a crucial role in monitoring land use,
land cover changes, environmental studies, and various other applications contributing
valuable data to scientists, researchers, and policymakers around the world [28].
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Utilizing Landsat imagery, we calculated the median LST for the meteorological
summer, spanning from June to August, for each year from 1985 to 2023. Additionally,
we computed the maximum and minimum temperature values for each year during the
summer period. The analysis of these values offers insights into the SUHI phenomenon,
closely associated with the development of the UHI phenomenon [29,30].

2.3. Ground Truth Data

For ground-based measurements, the ASD FieldSpec 4 pro portable spectroradiometer
was used to measure solar reflectance directly on field [19]. FieldSpec is a field portable
radiometer designed for rapid data collection, capable of capturing spectra in just 1/10th of
a second. It is specifically engineered to gather measurements of solar reflectance, radiance,
and irradiance. Three distinct spectrometers cover the spectral range from 350 to 2500 nm,
with one operating in the Visible and Near-Infrared (VNIR) region and two in the Short-
Wave Infrared (SWIR) region. The sampling rate is 0.2 s per spectrum [19]. Measurements
were conducted using the fiber-optic cable, featuring a field of view of 25◦, with a portable
Garmin GPS recording the coordinates for each spectrum in NMEA format. The instrument
is equipped with an internal calibration system, allowing for the calibration operations
to be performed typically during optimization at each measuring cycle or in response to
variations in environmental conditions. Acquisition instrument procedures are managed
with a laptop, which enables the measurement of dark power and the configuration of the
capture mode for radiance or reflectance. Technical specifications of the instrument are
reported in Table 2.

Table 2. Technical specifications of the ASD FieldSpec 4 Standard Resolution [19].

Spectral Range 350–2500 nm

Spectral Resolution 3 nm @ 700 nm
10 nm @ 1400/2100 nm

Sampling Interval * 1.4 nm @ 350–1050 nm
2 nm @ 1000–2500 nm

Scanning Time 100 milliseconds

Stray light specification VNIR 0.02%—SWIR 1 & 2 0.01%

Wavelength reproducibility 0.1 nm

Wavelength accuracy 0.5 nm

Maximum radiance ** VNIR 2 × Solar—SWIR 10 × Solar

Bands 2151
* The symbol “@” is used here to denote the relationship between spectral resolution and a specific wavelength.
** Maximum radiance measurements are expressed as multiples of solar irradiance: VNIR (2 times Solar), SWIR
(10 times Solar).

The initial aim of the study was to compare all field measurements, along with
satellite data, to laboratory measurements obtained using the Jasco V-670 UV-Vis-NIR
spectrophotometer. This instrument was enhanced with an additional 150 mm integrating
sphere (ILN 725 model), covering the spectral range from 300 nm to 2500 nm [16]. However,
the instrument requires a sample of urban surfaces for analysis, which proved challenging
to obtain for the types of surfaces under study. Consequently, the analysis with the
spectrophotometer was restricted to the bituminous roof surface identified within the
urban area of Sassuolo, for which a sample for measurement was available.

2.4. Regions of Interest Identification

For comparing spectral signatures and albedo acquired from satellite and ground-
based measurements, a suitable number of ROIs were carefully selected to enable the
study of diverse urban surface types. These ROIs were chosen based on their internal
homogeneity and the uniformity of their immediate surroundings. Additionally, criteria
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such as consistent lighting conditions and a size exceeding 16 m2 were followed to ensure
compatibility with the 7.50 m resolution in the SWIR region of the satellite image.

Six ROIs were acquired from the satellite and with specific ground measurements
using the FieldSpec spectroradiometer (Figure 2).

This selection was underpinned by the overarching goal of ascertaining whether
satellite-derived data can effectively capture reflectance patterns in a manner comparable to
ground-level measurements. To achieve this objective, a spectrum of typical urban surfaces
was identified, leading to the following designated areas:

• Polyolefin roof.
• Aged tiles roof.
• New tiles roof.
• Asphalt parking.
• Bituminous membrane.
• Parking with cobblestones.

This selection of surfaces seeks to encapsulate a diverse range of materials and textures
commonly encountered within the study region. The study area was intentionally chosen
to encapsulate prevailing conditions found in analogous locales.

The primary objective centers around evaluating the capacity of satellite data to
accurately depict the reflectance properties of these surfaces vis à vis in situ measurements
facilitated by using the FieldSpec spectroradiometer.

The choice of six ROIs was deliberate and aligned with several key considerations
integral to the study’s objectives.

Firstly, it is important to note that for each ROI, at least 10 measurements were taken
using the FieldSpec spectroradiometer, and the average spectrum was derived. This ap-
proach ensured robust data collection and representative spectral signatures for analysis.
Furthermore, the selection of ROIs was based on the most common urban materials found
not only within the study area, but also across Italy, ensuring broader applicability and rel-
evance. The chosen materials represent surfaces commonly encountered in urban settings,
and are potential candidates for replacement with solar reflective materials to increase
surface albedo and mitigate the UHI effect. Therefore, characterizing these specific material
types was crucial to evaluating their reflectance properties and potential for mitigation
strategies. In essence, while the number of ROIs may seem limited, their selection and char-
acterization were meticulously planned to serve the specific goals of the study, including
representativeness, practical applicability, and relevance to broader urban contexts beyond
the study area.

It is important to note that, despite the careful selection of ROIs, some complex surfaces
may present additional challenges in remote characterization. These difficulties may stem
from reflectance variation due to different atmospheric conditions, cast shadows, and
material complexity. Although such challenges were not discussed in detail in this study,
they are relevant topics deserving further exploration and discussion. However, for the
purposes of this study, the studied surfaces did not exhibit these complexities, and therefore
the procedures were not hindered by such issues.

2.5. Methodology

The methodology employed in this study is illustrated in Figure 3, which provides a
comprehensive chart depicting the sequential steps followed in data collection, processing,
and results.
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2.5.1. Satellite Images

The Landsat 5, 7, and 8 images spanning from 1985 to 2023 were processed using
the open-source platform Google Earth Engine. We utilized datasets comprising atmo-
spherically corrected surface reflectance and land surface temperature, derived from data
generated with Landsat 5, 7, and 8 satellites. Pre-processing operations on these datasets
merely necessitated the application of scale and offset factors as indicated in the metadata,
along with the implementation of a masking function to exclude images with excessively
high cloud cover, ensuring their suitability for analysis. For each year, the median LST over
the area of interest (the municipality of Sassuolo) was calculated for the summer period [31].
Additionally, we computed maximum and minimum temperatures within the study area,
referencing the highest and lowest values found within individual pixels rather than across
the entire area. This approach allows us to identify temperature hotspots and understand
the range of temperature variability present in the dataset.

In our analysis, we also applied the Mann–Kendall test and Theil–Sen slope estimator
to evaluate the trend in LST over the summer period from 1985 to 2023. The Mann–Kendall
test is a non-parametric statistical method used to assess trends in time-series data. It
is particularly useful for detecting monotonic trends, which are trends that consistently
increase or decrease over time [32]. The test provides several key statistics, including the
tau statistic and the p-value. The tau statistic measures the strength and direction of the
trend, where positive values indicate an upward trend and negative values indicate a
downward trend. The p-value assesses the statistical significance of the observed trend.
Additionally, we calculated the slope of the trend with the Theil–Sen estimator [33], which
represents the rate of change in LST over time. The Theil–Sen slope estimator is a more
viable alternative to a standard linear regression slope [34]. This slope provides valuable
insight into the magnitude of the trend and allows us to quantify the expected change in
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LST over a given period. The non-parametric Mann–Kendall and Theil–Sen slopes have
been employed by various authors in the last two decades to detect the monotonic trends
in a series of environmental, metrological, or hydrological data [35].

Landsat images also enable the generation of point maps of LST, which can be utilized
to pinpoint hotspots or critical areas. Given the acquisition date of the WV3 image, we
opted to employ the LST map from the summer of 2018 acquired on the 1st of August, to
identify potential correlations between areas experiencing high temperatures and those
exhibiting low albedo values.

The WV3 image acquired of the study area is provided in Digital Number (DN);
thus, an initial pre-processing was needed to retrieve surface reflectance. First of all, the
radiometric corrections were performed to obtain the Top of Atmosphere (TOA) radiance
for each pixel. Then, the acquired image underwent atmospheric corrections to attain
surface reflectance. Atmospheric corrections were imperative to mitigate signal distortions
induced by atmospheric conditions. To implement atmospheric corrections, we employed
the ENVI 5.3 software [36] along with the FLAASH (Fast Line of sight Atmospheric Anal-
ysis of Hypercubes) module. FLAASH harnesses the MODTRAN4 code to simulate the
complex radiative transfer processes occurring within the atmosphere, which can distort
surface signals. Moreover, FLAASH accounts for various factors such as adjacency effects,
climatic conditions, solar positioning, atmospheric dust, and water vapor content, ensuring
accurate corrections.

Following the pre-processing stage, a 16-band image in surface reflectance was ob-
tained. This image primarily served to extract spectral signatures from the chosen ROIs
and compare them with satellite measurements. Additionally, the 16 bands were utilized
for albedo calculations using the methodology delineated by Kuester [37], with coefficients
derived from Thuillier [38]. Prior to this procedure, albedo calculation involved complex
integration of the bidirectional hemispherical reflectance distribution function [39]. How-
ever, adopting the methodology outlined by Kuester streamlines the albedo calculation
process, making it faster and simpler. Presently, Thuillier coefficients are employed for
sensor calibration by WV3 manufacturers [40].

The albedo value could therefore be computed using the following equation:

Albedo = ∑16
i=1 wi ∗ ρi (1)

where wi are coefficients from Thuillier [38], representing the ratio of extraterrestrial solar
irradiance within the specific band to the total irradiance obtained by summing across all
bands. The values for the 16 bands in the image are outlined in Table 3. Additionally, ρi
represents the spectral reflectance for each WV3 band.

2.5.2. Ground Truth Data

The instruments utilized for ground truth data, namely the spectroradiometer and
the spectrophotometer, provide spectral signatures of the investigated surface as mea-
surement outputs. The ASD FieldSpec 4 spectroradiometer was employed to capture
spectral signatures of selected ROIs at ground level (see Figure 4). The ASD FieldSpec 4
spectroradiometer was utilized for each ROI, capturing measurements at 10 distinct points
within the ROI to encompass the area captured by the satellite. At each measurement point,
15 spectra were collected and subsequently averaged, with the exclusion of any measure-
ment errors or outliers.
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Table 3. Thuillier coefficient values for each WV3 sensor band.

Bands Thuillier Coefficients (-) *

Coastal (B1) 0.13
Blue (B2) 0.15

Green (B3) 0.13
Yellow (B4) 0.13

Red (B5) 0.11
Red-edge (B6) 0.10

NIR1 (B7) 0.078
NIR2 (B8) 0.063

SWIR1 (B9) 0.035
SWIR2 (B10) 0.019
SWIR3 (B11) 0.017
SWIR4 (B12) 0.015
SWIR5 (B13) 0.0067
SWIR6 (B14) 0.0063
SWIR7 (B15) 0.0057
SWIR8 (B16) 0.0050

* The symbol (-) denotes a dimensionless parameter.
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The laboratory spectrophotometer was used exclusively to obtain spectra from avail-
able samples of bituminous membranes.

The ground measurement campaign took place during the summer of 2023, which
occurred at a different timeframe compared to the WV3 image acquisition in July 2018.
Therefore, we expect to observe variations in the results attributable to surface aging
processes occurring between 2018 and 2023.
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The parameter of albedo, or solar reflectance, is computed using Equation (2) according
to the standard method prescribed by ASTM E903-96:

ρsol =
∑N

i=1 [ρ(λi) ∗ E(λi)] ∗ ∆λi

∑N
i=1 E(λi)∗ ∆λi

(2)

where:

• ρsol is the urban surface solar reflectance [-];
• ρ(λi) is the urban surface spectral reflectance [-];
• E(λi) is the solar spectral irradiance [W m−2];
• ∆λi is the wavelength step [nm].

The ρ(λi) values are acquired through measurements conducted using both the spec-
troradiometer and the spectrophotometer. For each instrument, ρsol is derived utilizing
the standard irradiance spectrum E891BN and the AM1GH spectrum, the latter being em-
ployed to simulate high-temperature conditions. It is worth noting that ∆λi varies between
the two instruments: 1 nm for the spectroradiometer, and 5 nm for the spectrophotometer.

To ensure a direct comparison between the spectral signatures of ROIs obtained from
satellite and ground measurements, spectral resampling was conducted. This process is
essential for aligning the spectral resolution of both datasets. The high spectral resolution of
the spectroradiometer and spectrophotometer provides a comprehensive spectral library of
the analyzed ROIs. This spectral information is utilized for spectral resampling, requiring
the knowledge of the response function F(λ) for each satellite band. The resampling process
involves applying weights to the spectral reflectance for each wavelength interval to obtain
reflectance values in satellite bands. This is calculated using the formula:

ρb =
∑N

i=1 ϕi ∗ ρi

∑N
i=1 ϕi

(3)

where N represents the 16 WV3 satellite bands and Φ are the weights to be applied for
each band. Each band’s wavelength interval is discretized, and for each band (denoted by
subscript i), the response function value Φi and the spectral library value ρi are divided by
Φi. Consequently, ρb is obtained by computing a weighted average.

As mentioned before, the study aimed to compare field and satellite measurements
with laboratory data obtained using the Jasco V-670 UV-Vis-NIR spectrophotometer, but,
due to challenges in obtaining suitable urban surface samples for analysis, this analysis was
limited to the available sample from the bituminous roof surface in Sassuolo’s urban area.

3. Results and Discussion
3.1. LST Analysis

To comprehensively analyze the SUHI trends within the study area, our initial step
involves examining the temporal variations of LST using Landsat 5, 7, and 8 imagery.
This is depicted in Figure 5, illustrating the median, maximum, and minimum LST values
during the summer period from 1985 to 2023. It is worth noting that the median LST value
is calculated across the entire study area, providing an overview of the overall temperature
trends. Meanwhile, the maximum and minimum LST values are calculated for the pixel
with the highest and lowest temperatures recorded each year during the summer period,
offering insights into localized temperature extremes. This visualization highlights the
temporal variations of LST, shedding light on the magnitude and temporal patterns of
SUHI over the specified time frame. To ensure a robust representation of all years within
the considered period, years with only one available image for the summer period were
excluded from the analysis. Figure 5 also displays the number of available images for each
year. The years excluded from the study were then 1999, 2006, 2007, and 2008.
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Figure 5 illustrates the rising temperatures in the study area, particularly in recent
years, attributable in part to the phenomenon of global warming, as well as the ongoing
urbanization of the region. Analysis of land use data provided by the Emilia Romagna
Region reveals a notable increase in the percentage of land consumption for the Munici-
pality of Sassuolo, reaching 30.71% by 2022. Based on available data, starting from 2006,
the net increase in land consumption has exceeded 50 hectares [41]. This upward trend
underscores the impact of urban expansion on local temperature dynamics, highlighting
the interplay between environmental factors and anthropogenic activities. These results
are consistent with the scientific literature, where several studies have been addressed to
understand the relationship between urban density and LST when computed with multi-
temporal Landsat imagery [6,42]. The literature analysis revealed a positive correlation
between higher temperatures and levels of urban growth, with a quadratic relation for
daytime and a coefficient of determination r2 around 0.98–0.99 that decreased to 0.95–0.96
for nighttime [6,43]. Areas characterized by high-rise structures and economic activities
experienced the most pronounced impact of the heat island phenomenon [44,45].

The median LST ranges from a minimum of 31.6 ◦C to a maximum of 46.0 ◦C. The peak
values are observed in the years following 2000, with the highest median LST recorded
in 2022. It is important to note and emphasize that Landsat images are acquired around
10 am, when urban surfaces are still absorbing heat, and certainly do not reflect the peak
temperatures of the day.

Looking at median LST, the results obtained from the Mann–Kendall test reveal
compelling evidence of a significant positive trend over the analyzed period. The tau
statistic of 0.67 and the low p-value of 2.26 × 10−8 indicate a robust and consistent upward
trend in LST. Moreover, the calculated slope of 0.292 further confirms the magnitude of this
trend. This slope represents the rate of change in LST over time. Specifically, it implies that
if the current trend continues, we can expect an increase of 2.92 ◦C in LST over ten years.
This trend is deemed significant at the 99% confidence level, suggesting a high level of
certainty in the observed increase in LST. The obtained trend is consistent with the literature
studies that found, in several worldwide locations, values from 0.017 to 0.32 ◦C [46,47].

We also aimed to obtain a comprehensive overview of the relationship between tem-
perature hotspots and albedo, which is a key parameter for its influence on the distribution
and intensity of the SUHI phenomenon. Thus, we decided to focus only on impervious
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surfaces given the well-known negative correlation between LSTs and albedos in these kind
of surfaces (for vegetation, we need to consider the evapotranspiration process as well),
which has already been investigated in several studies [48,49]. Figure 6 shows the LST
map of 1 August 2018, clipped on anthropic impervious surfaces retrieved from the Corine
Land Cover map of 2017 [50] of the Emilia Romagna region. Side by side, we report the
WV3 surface reflectance image represented in natural colors to highlight how LSTs in the
southern residential area are lower than those in the northern industrial area, where LST
peaks reach up to 52 ◦C. To correlate LST with different types of urban surfaces, Figure 6
also includes the albedo map from the WV3 image that highlights critical areas in the
industrial zone, where low albedo values correspond to high LSTs.
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The negative correlation between LST and albedo, as illustrated in Figure 6, unveils
crucial insights into the SUHI phenomenon and mitigation strategies. Areas exhibiting high
LST and low albedo values indicate surfaces that absorb more solar radiation, contributing
significantly to localized heat buildup. Understanding this relationship offers opportunities
for proactive urban planning and sustainable development practices [48].

High LST coupled with low albedo areas represent urban heat hotspots, intensifying
the UHI effect. These regions experience elevated temperatures, impacting human health,
energy consumption for cooling, and overall urban microclimate quality [4]. The concentra-
tion of such heat-prone zones highlights areas requiring targeted interventions to reduce
thermal stress and enhance urban livability.

Identifying surfaces with low albedo and high LST not only helps understand the
exacerbation of the SUHI phenomenon, but also guides interventions using high albedo
solar-reflective materials. Implementing cool roofs, reflective pavements, green infras-
tructure, and urban forestry in these zones can mitigate heat absorption, lower surface
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temperatures, and reduce energy demands for cooling buildings [51]. These measures not
only enhance local thermal comfort, but also promote energy efficiency and sustainability
in urban environments.

Insights from the LST–albedo relationship guide urban planners, policymakers, and
stakeholders in prioritizing UHI mitigation efforts. Integrating heat mitigation strategies
into urban design standards, zoning regulations, and building codes can foster climate-
resilient cities [52].

3.2. Spectral Analysis

Initially, the standard error of the mean (SEM) was calculated for WV3 imagery to
assess the homogeneity of the selected ROIs. The SEM provides insights into the variability
of sample means around the population mean, aiding in the determination of whether the
chosen ROIs exhibit uniform characteristics or not.

In particular, the SEM measures the precision of the sample mean estimate as an
approximation of the population mean. It quantifies the dispersion or variability of sample
means around the population mean. The SEM is calculated by dividing the population
standard deviation by the square root of the sample size. It provides important information
about the accuracy of the sample mean in representing the population mean, taking into
account sample variability and sample size.

The formula for calculating the SEM is:

SEM =
σ√
n

(4)

where:

• SEM is the standard error of the mean;
• σ is the population standard deviation;
• n is the sample size.

Researchers often use SEM to assess the reliability and precision of sample means in
estimating population parameters. A smaller SEM indicates greater precision, meaning
that the sample mean is a more accurate representation of the population mean.

Table 4 shows SEM values computed for each ROI and for each WV3 band. For the
VNIR bands, surfaces such as Bituminous membrane, Parking with cobblestones, and
Asphalt parking exhibit remarkably low SEM values, indicating high precision in the
sample mean estimates. This suggests that the spectral characteristics of these surfaces
in the VNIR region are stable and are minimally affected by temporal variations or aging
effects. On the other hand, the Polyolefin roof, while maintaining relatively low SEM values,
shows slightly more variation compared to the aforementioned surfaces. This variation
may imply greater sensitivity to environmental or aging impacts, leading to subtle changes
in spectral signatures over time.

Turning to the SWIR bands, surfaces like the aged tiles roof and the new tiles roof
display higher SEM values, particularly in the SWIR bands. This suggests greater variability
in sample mean estimates over time or increased sensitivity to aging or environmental
effects in the SWIR region. The precision differences observed between VNIR and SWIR
bands may also stem from the varying spatial resolutions of the WV3 satellite in these
spectral regions. The higher spatial resolution in the VNIR bands allows for finer detail
capture, potentially enhancing precision in surface characterization and reducing the
influence of small-scale variations or aging effects. Conversely, the lower spatial resolution
in the SWIR bands may lead to more aggregated or generalized spectral information, which
could contribute to increased variability in sample mean estimates, especially for surfaces
sensitive to spatial heterogeneity or aging impacts.

It is important to consider these variations when using spectral data for urban analyses,
especially for surfaces prone to temporal changes. Despite some surfaces showing increased
SEM in the SWIR bands compared to the VNIR bands, they still maintain acceptable levels
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of precision. This indicates that despite spectral variations in the SWIR region, sample
mean estimates remain reliable for urban analysis purposes.

Table 4. SEM values computed for each ROI and for each band of the WV3 sensor.

ROI *
VNIR SWIR

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16

1 0.003 0.004 0.004 0.004 0.004 0.004 0.005 0.005 0.006 0.007 0.006 0.005 0.006 0.005 0.005 0.004
2 0.001 0.001 0.002 0.003 0.005 0.005 0.006 0.006 0.011 0.018 0.019 0.017 0.022 0.020 0.021 0.019
3 0.001 0.001 0.002 0.003 0.004 0.005 0.005 0.005 0.010 0.010 0.010 0.010 0.009 0.009 0.010 0.008
4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.002 0.002 0.005 0.005 0.005 0.004
5 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Max 0.003 0.004 0.004 0.004 0.005 0.005 0.006 0.006 0.011 0.018 0.019 0.017 0.022 0.020 0.021 0.019

Mean 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.005 0.007 0.007 0.006 0.007 0.007 0.007 0.006

* 1: Polyolefin roof, 2: new tiles roof, 3: aged tiles roof, 4: asphalt parking, 5: parking with cobblestones,
6: bituminous membrane.

Therefore, a WV3 image was used for a qualitative and quantitative comparison of
surface reflectance spectra for the selected ROIs using statistical parameters. In particular,
to assess deviations between the two spectra (simulated and satellite-derived), the RMSE
was employed, following the guidelines outlined by Wald [53]. An essential aspect of this
comparison process is the temporal interval between the satellite image acquisition in 2018
and the ground measurement campaign in 2023. This time-lapse encompasses the natural
aging process experienced by materials, which can significantly affect their characteristics.
Unfortunately, simultaneous ground and satellite measurements were not feasible due to
temporal constraints. However, addressing this temporal gap and conducting synchronized
measurements will be a focal point for future investigations.

The most complete comparison was achieved for the bituminous membrane, as mea-
surements were acquired from the satellite and both ground instruments, i.e., the spectrora-
diometer and the spectrophotometer.

As illustrated in Figure 7, the spectral signature of this surface, derived from satellite
data, was juxtaposed with ground instrument data.
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Figure 8 presents graphical representations of all six investigated surfaces: the poly-
olefin roof, the aged and new tiles roofs, the asphalted car park, the bituminous membrane,
and the cobblestone parking.
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ASD Fieldspec 4 measurements resampled with WV3 spectrum.

The spectral resampling of high-resolution spectra acquired using a ground instrument,
aimed at simulating the behavior of the WV3 satellite, has yielded promising outcomes
despite the temporal gap between the WV3 image acquisition and the ground campaign.

Notably, highly absorbent surfaces, like bituminous membranes, displayed minimal
susceptibility to the aging process. The spectra extracted from the satellite image are
effectively substitutable with those obtained through instrumental measurement. Similar
patterns hold for surfaces with diverse textures, such as car parks paved with cobblestones.
For tiled surfaces, the situation is more complicated. Remote sensing characterization faces
greater difficulties and is not immediately attainable, primarily due to the evolving nature
of the surfaces themselves. More pronounced deviations are evident, particularly within the
SWIR spectral region. These deviations can be attributed to the aging process that surfaces
undergo over time, and also to the coarse spectral resolution of WV3 in the SWIR region
compared to the VNIR. In the case of the Polyolefin roof, the impact of aging becomes
apparent. Spectra measured both from the satellite and on-site exhibit a similar trend, albeit
with lower reflectance values recorded in 2023. This particular roof is a “cool” white-colored
covering, known for experiencing a rapid decline in solar reflectance in the initial years post-
application [54]. In this case, ensuring proper surface maintenance becomes fundamental
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to mitigate this decline in its reflective properties. Aging effects on the Polyolefin roof
are depicted in the spectral measurements, revealing insights into the surface’s response
to environmental conditions over time. Analogous trends and correlations have been
identified in the related literature studies, emphasizing the robustness and reproducibility
of our findings across different contexts [55,56].

Table 5 provides an insight into the mean RMSE values computed using the single
RMSE values for each WV3 band across each ROI and urban surface type. RMSE serves as
a measure of the discrepancy between measured and predicted values, with lower RMSE
values indicating higher measurement accuracy. The RMSE values, falling within the 3–4%
range, are considered acceptable due to their alignment with the total uncertainty inherent
in spectrophotometer/spectroradiometer measurements [16,43]. Among the surfaces an-
alyzed, the “Parking with cobblestones” area stands out for its remarkably low RMSE of
0.01. This suggests a strong agreement between the observed and predicted data, likely
because cobblestone surfaces offer a consistent and easily measurable texture. Moving on
to the “Bituminous membrane” surfaces, both measurements taken with the ASD Fieldspec
4 and the Spectrophotometer show good agreement with RMSE values of 0.02 and 0.03,
respectively. This indicates reliable results from both methods, affirming their effectiveness
in assessing bituminous membrane surfaces. The “Asphalt parking” ROI demonstrates a
RMSE of 0.06, suggesting a moderate level of accuracy in measurements. Asphalt surfaces
typically absorb more solar radiation, contributing to higher urban heat island effects.
When comparing the RMSE values for the “Polyolefin roof”, “Aged tiles roof”, and “New
tiles roof” regions, we find them ranging from 0.10 to 0.14. These values indicate a moderate
to slightly higher level of deviation, all falling well below the acceptable threshold of 4%.
The observed RMSE values suggest a probable influence of aging on surface characteristics.

Table 5. Mean Root Mean Square Error (RMSE) value for each ROI.

ROI Mean RMSE (-) *

Parking with cobblestones 0.01
Polyolefin roof 0.10
Aged tiles roof 0.13

Asphalt parking 0.06
New tiles roof 0.14

Bituminous membrane (ASD Fieldspec 4) 0.02
Bituminous membrane (Spectrophotometer) 0.03

* The symbol (-) denotes a dimensionless parameter.

Our findings underscore the efficacy of satellite imagery analysis for characterizing
homogeneous surfaces like bituminous membranes and cobblestone parking lots. These
materials exhibit stable characteristics over time, minimizing the impact of aging on their
spectral signatures and allowing image acquisition at any temporal moment. Conversely,
surfaces such as brick or cool materials are notably influenced by aging effects, affecting
the reliability of satellite-derived characterizations beyond image acquisition.

Hence, materials like bituminous membranes and cobblestone parking lots could
potentially be well-characterized using satellite data rather than ground measurements.
These surfaces play a pivotal role in effective SUHI mitigation strategies, especially through
the strategic application of cool materials. The precision offered by satellite data allows
for a comprehensive understanding of these surfaces, enabling targeted interventions to
combat the UHI effect and enhance overall urban climate resilience.

3.3. Albedo Analysis

Table 6 showcases a comparison between the solar reflectance (albedo) values obtained
through satellite imagery (WV3) on the chosen ROIs and those measured on the ground
using the Fieldspec spectroradiometer. Additionally, the ground-measured values have
been post-processed to simulate satellite-derived data, aligning with the AM1GH and
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E891BN standards. This comparison provides insight into the congruence between ground-
based measurements and satellite-derived estimations of solar reflectance.

Table 6. Comparison of solar reflectance: satellite-derived vs. ground-measured.

Urban Surfaces
Solar Reflectance

WV3 Satellite Fieldspec (AM1GH) Fieldspec (E891BN)

Parking with
cobblestones 0.14 0.14 0.15

Polyolefin roof 0.65 0.57 0.58
Aged tiles roof 0.21 0.28 0.32
New tiles roof 0.21 0.30 0.33

Bituminous
membrane 0.12 0.11 0.11

Asphalt parking 0.16 0.20 0.22

The comparison of solar reflectance values between satellite-derived data from WV3
and ground measurements using the Fieldspec spectroradiometer, considering the AM1GH
and E891BN standards for simulation, reveals interesting patterns across different
urban surfaces.

When examining the parking with cobblestones, the solar reflectance values exhibit
remarkable consistency across all datasets. This suggests a strong alignment between
satellite-derived and ground-measured values for this particular surface type.

In the case of the aged tiles roof, a distinctive trend becomes apparent. The satellite-
derived value of 0.21 is noticeably lower than both simulated ground measurements. This
discrepancy underscores the role of aging in altering the surface’s reflectance characteristics.
Similarly, the new tiles roof also showcases the impact of aging on reflectance. The satellite-
derived value of 0.21 is lower compared to the simulated ground measurements, reinforcing
the idea that aging affects the reflectance properties of this surface type.

For the Bituminous Membrane, the close alignment of values across all datasets (0.12
for the satellite and 0.11 for both simulated ground measurements) suggests a minimal
influence of aging on these particular surface’s reflectance properties.

Lastly, examining the Asphalt Parking, a significant discrepancy arises. The satellite-
derived value of 0.16 is notably lower than the values from simulated ground measurements.
This divergence underscores the significance of considering the unique characteristics and
conditions of each surface when interpreting reflectance data.

To summarize, the comparative analysis underscores the intricate relationship between
satellite-derived observations and simulated ground measurements of solar reflectance
values. Various factors, such as aging, surface properties, and measurement standards,
contribute to the complexities in reconciling these datasets. However, the results obtained
are promising, indicating the potential of satellite-based approaches for this type of charac-
terization. The low RMSE values and minimal differences in albedo for certain surfaces
hint at the efficacy and reliability of utilizing satellite data in such analyses. Evidence from
albedo comparisons between ground-based and satellite measurements further confirms
the trends observed in spectral analyses. WV3 satellite imagery emerges as a reliable
substitute for ground-based measurements, especially for homogeneous urban surfaces
with low albedo. However, for surfaces affected by aging effects, the timing of image
acquisition remains crucial. These findings are consistent with the literature review, where
surface albedo has been compared and correlated with ground measurements, especially
to validate the satellite product for MODIS or Landsat [57–59].

These findings suggest strategic approaches for UHI mitigation based on satellite data.
One recommendation is to leverage satellite imagery for urban surface classification, identi-
fying areas where cool materials can be effectively applied to reduce surface temperatures.
For instance, targeting regions with high surface temperatures and low albedo in satellite
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images can guide interventions such as the installation of reflective roofing materials or
green infrastructure.

Moreover, real-time monitoring using satellites can help track changes in surface
properties, guiding maintenance schedules for high-reflectance surfaces to sustain their
cooling effects over time. Regular assessments through satellite imagery can also inform
urban planners and policymakers about the effectiveness of UHI mitigation strategies,
allowing for adaptive measures based on evolving urban heat patterns.

In addition to direct interventions, satellite-based data can support urban planners
in developing heat-resilient urban designs. By integrating land surface temperature and
albedo data from satellites into urban planning tools, cities can optimize green spaces,
building orientations, and material choices to minimize heat absorption and maximize
cooling through natural means.

4. Conclusions

The analyses conducted in this study aimed to focus on the phenomenon of SUHI, a
phenomenon closely linked to UHI, with a particular emphasis on key parameters such as
LST and albedo. To achieve this, we employed satellite imagery from Landsat 5, 7, and 8,
as well as by acquiring a WV3 image.

Our analysis of Landsat imagery spanning from 1985 to 2023 revealed a noticeable
upward trend in LST across the entire study area during the summer months. Specifically,
we observed a significant positive trend of 2.92 ◦C per decade, demonstrating a consistent
and substantial increase in temperature over time.

However, the primary aim of this paper was to endeavor to address these two piv-
otal questions: “Are satellite remote sensing measurements consistent with ground-based
measurements?” and “Can satellite measurements be effectively used to characterize sur-
face conditions, thus replacing laboratory measurements?” Our study places, in fact, a
significant emphasis on the comparative analysis between satellite-derived observations
and ground-based measurements, particularly focusing on surface reflectance (spectral
signature comparison) and albedo values. This comparative analysis serves as a crucial
component in assessing the reliability and effectiveness of satellite-based approaches in
characterizing surface conditions. Despite inherent complexities arising from factors like
surface properties, sensor calibration, and measurement standards, our findings underscore
the promising potential of satellite-based analyses.

One important aspect of our investigation is the assessment of RMSE values, which
provide insights into the accuracy of satellite-derived data when compared to ground-based
measurements. The relatively low RMSE values obtained in our study indicate a favorable
level of agreement between the two datasets, suggesting that satellite observations can
capture surface characteristics with a reasonable degree of accuracy. This agreement
is particularly pronounced on homogeneous surfaces like bituminous membranes and
parking lots that show RMSE values lower than 0.03. Interestingly, tile roofs exhibit
comparable patterns in the Visible-Near Infrared (VNIR) spectral regions, yet they unveil
notable distinctions in the Shortwave Infrared (SWIR) range. Such variations can be
attributed not only to the disparate timing of satellite image acquisition in contrast to
ground measurement campaigns, but also to the relatively lower resolution of the SWIR
bands when compared to the VNIR bands of WV3. These kind of surfaces presents higher
values of RMSE ranging from 0.10 to 0.14.

Similar to the results obtained for the RMSE, homogeneous surfaces with high heat
absorbance reveal minimal differences in albedo values when comparing satellite-derived
data with ground-based measurements. Bituminous membranes, parking with cobble-
stones, and asphalt parking show differences lower than 0.8, while surfaces more affected
by aging problems present values up to 0.12. However, it is important to note that the
measured differences between satellite albedo and ground albedo are consistently below
12%, revealing the satellite data’s strong capability in surface characterization.
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While acknowledging the existing challenges and limitations associated with satellite
remote sensing, including issues related to spatial resolution and atmospheric interference,
our results highlight the robustness of satellite-based approaches in providing valuable
insights into surface conditions. By leveraging the strengths of both satellite and ground-
based measurements, researchers can enhance their understanding of UHI dynamics and
develop more informed strategies for mitigating the adverse effects of urban heat islands.
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