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Abstract: Particular matter (PM) constitutes one of the major air pollutants. Human exposure to fine
PM (PM with a median diameter less than or equal to 2.5 µm, PM2.5) has many negative and diverse
outcomes for human health, such as respiratory mortality, lung cancer, etc. Accurate air-quality
forecasting on a regional scale enables local agencies to design and apply appropriate policies (e.g.,
meet specific emissions limitations) to tackle the problem of air pollution. Under this framework,
low-cost sensors have recently emerged as a valuable tool, facilitating the spatiotemporal monitoring
of air pollution on a local scale. In this study, we present a deep learning approach (long short-term
memory, LSTM) to forecast the intra-day air pollution exceedances across urban and suburban
areas. The PM2.5 data used in this study were collected from 12 well-calibrated low-cost sensors
(Purple Air) located in the greater area of the Municipality of Thermi in Thessaloniki, Greece. The
LSTM-based methodology implements PM2.5 data as well as auxiliary data, meteorological variables
from the Copernicus Atmosphere Monitoring Service (CAMS), which is operated by ECMWF, and
time variables related to local emissions to enhance the air pollution forecasting performance. The
accuracy of the model forecasts reported adequate results, revealing a correlation coefficient between
the measured PM2.5 and the LSTM forecast data ranging between 0.67 and 0.94 for all time horizons,
with a decreasing trend as the time horizon increases. Regarding air pollution exceedances, the LSTM
forecasting system can correctly capture more than 70.0% of the air pollution exceedance events in
the study region. The latter findings highlight the model’s capabilities to correctly detect possible
WHO threshold exceedances and provide valuable information regarding local air quality.

Keywords: PM2.5; air pollution exceedances; air pollution forecasting; LSTM

1. Introduction

Airborne particles with an aerodynamic diameter smaller than 2.5 µm (PM2.5) pose a
fundamental atmospheric hazard. High PM2.5 values are highly associated with numerous
adverse health effects affecting respiratory and cardiovascular systems [1–3]. According
to the World Health Organization, WHO, PM-related pollution is found to be associated
with approximately 7 million premature deaths worldwide [4]. Densely populated urban
settings, where anthropogenic emissions are more intense and the population density is
constantly increasing, are more prone to experience severe particle pollution events that,
apart from the economic and social costs, affect humans’ life, well-being, and ecosystems [5].
Degraded air quality is often also reported in suburban and rural areas due to widespread
PM sources and long-range transport, with almost 90% of people living in areas that exceed
WHO-regulated limits [6]. Eventually, many environments report high PM levels that may
lead to exceedances of the PM concentration standards defined by WHO directives [7].
The latest WHO guidelines recommend that daily PM2.5 concentrations should not exceed
15 µg m−3. In 2021, according to the European Environment Agency (EEA), among the
27 EU countries, approximately 97% of the urban population was exposed to PM2.5 levels
above the WHO annual threshold of 5 µg m−3 [8].
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The emergence of low-cost sensors (LCSs) has altered PM monitoring capabilities
in recent years [9–12]. The LCSs’ challenges and limitations, compared to traditional
regulatory-grade instruments, have been thoroughly explored and presented by several
studies and reviews [13–16]. According to those studies, the main concerns about LCSs
focus on their precision and data quality, drift over time, and the possible effect of meteoro-
logical parameters (mainly temperature and relative humidity). Despite these drawbacks,
LCSs have been widely utilized in recent years since they are easy to use, provide real-time
measurements, and can be deployed in large numbers, increasing the spatiotemporal res-
olution of existing regulatory monitoring networks. Moreover, the implementation of a
proprietary calibration scheme can radically improve LCSs’ performance and response,
reducing their biases compared to reference instruments [17,18].

Several monitoring systems based on LCSs have been deployed across urban and
suburban environments [19–21], yielding additional information about PM2.5 pollution
episodes and hotspots. High-spatiotemporal-resolution PM data can facilitate policy mak-
ers to mitigate the risks and problems associated with deteriorated air-quality conditions.
Historical or real-time PM data can also be vital tools for understanding PM-related prob-
lems and leading to quick decision making and the implementation of protective measures.
Nonetheless, retrospective policies may raise citizen awareness and combat air pollution,
but they still do not reduce individuals’ exposure to elevated PM concentration levels and
their detrimental effects.

An effective method to bridge this gap and implement more effective policies could
be the adoption of early warning PM2.5 forecasting systems that could be a pivotal way to
reduce exposure and PM2.5-related health risks. Regional and global forecasting systems
offer broad capabilities and innovative tools in atmospheric composition research. The
Goddard Earth Observing System (GEOS) composition forecast system from NASA’s
Global Modeling and Assimilation Office (GMAO) provides up to 5 days forecast of
PM2.5 along with several other pollutants (NO2, SO2, CO, and O3) on a 0.25◦ × 0.25◦

spatial resolution [22]. The GEOS-CF model, in general, overestimated surface PM2.5 mass
concentrations with an average model normalized root mean square error (NRMSE) of 1.65
and a modest correlation coefficient (R) of 0.46.

The European Copernicus Atmosphere Monitoring Service (CAMS) also offers a
forecast and assimilation system [23]. PM2.5 global forecasts are provided with a 3 h time
interval and on a 0.1◦ spatial grid with a forecast horizon up to 96 h. The forecasting
system integrates meteorological and atmospheric composition models along with satellite
products. Despite the system’s satisfactory performance for large-scale PM-event forecasts,
it is unable to predict local concentrations due to their increased emission uncertainties [24].
Overall, the proposed system tends to underestimate surface PM10 mass concentrations
with a mean bias of −4.5 µg m−3, while the modified normalized mean bias (MNMB)
and the fractional gross error (FGE) are −0.1 and 0.52, respectively, for the multi-model
ensemble product [25].

Moreover, Bertrand et al. [26] developed five different machine learning algorithms
to further improve CAMS air-quality forecasts, using 3 years’ worth of PM2.5 data. More
specifically, two approaches were proposed to improve PM2.5 forecasts (among other
pollutants) for the next day (in daily and hourly intervals). The results suggest that the
proposed approaches improve the performance of the raw ensemble forecast.

Over the past years, several approaches have emerged concerning the development
of PM forecasting systems based on deterministic or statistical models on various time
scales [27,28]. Machine learning approaches gained popularity in the last few years, and
various forecasting algorithms, including artificial neural networks (ANNs), random forests
(RFs), hidden Markov models (HMMs), and hybrid methods, have been developed to
predict PM concentrations [29,30].

Perez et al. [31] proposed a statistical PM2.5 concentration prediction model in Chile.
A feed-forward neural network, with 13 input variables, was developed to forecast hourly
PM2.5 measurements from one to twenty-one hours in advance in Santiago using historical
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PM2.5 and PM10 data along with meteorological variables (wind speed, relative humid-
ity, etc.). The performance of the model during periods when high concentrations were
dominant, mainly during the nighttime, was reasonable, reporting a percent error of 30%,
compared to the reported concentrations by the nearby PM2.5 station, for forecasting up to
15 h in advance.

Overall, long short-term memory (LSTM) neural networks are found to offer rather
accurate air pollution estimations [32,33]. Zhao et al. [34] proposed a fully connected LSTM
model (LSTM-FC) to forecast PM2.5 levels over 48 h, at 6 h increments, taking as inputs
historical air quality and meteorological data along with the day of the week. The forecasted
PM2.5 by the LSTM-FC presented better performance and lower biases compared to ANN
and LSTM models that were implemented on the same dataset. Two tree-based machine
learning and LSTM models were developed to improve existing deterministic forecasts of
PM10 and gaseous pollutants in Stockholm, Sweden [35]. The results demonstrate that the
PM10 LSTM forecast outperforms the deterministic ones. For the deterministic mode, R2

values between the predicted values and the measurements ranged from 0.21 to 0.08 for the
1-day and 3-day forecasts, respectively, while the corresponding metrics for the LSTM were
improved, compared to the deterministic model, ranging between 0.37 and 0.28. Pappa
and Kioutsioukis [36] used PM2.5 data from LCSs and air pollution CAMS forecasts, the
Julian day, and the day of the week, to develop two PM2.5 forecasting algorithms relying on
the analog ensemble (AnEn) technique and LSTM, for the next four days in Patras, Greece.
Both methods reported lower MBEs, 0.7 µg m−3 for both the AnEn and LSTM, than CAMS
(2 µg m−3), when compared to observations from a ground-based low-cost monitoring
network.

The primary objectives of the present study are:

1. To implement an LSTM-based methodology for forecasting the hourly intra-day PM2.5
concentrations for an urban area (here, the Municipality of Thermi, Greece) by using
fine temporal resolution PM2.5 data and meteorological conditions seeking to enhance
the model’s forecasting performance.

2. To investigate the applicability of PM2.5 forecast concentrations to capture the daily
exceedances of air pollution.

2. Study Area and Data
2.1. Study Area

The research area was the Municipality of Thermi, a medium-sized city located in
northern Greece (Figure 1; black rectangle). The Municipality of Thermi (latitude: 40.55◦ N;
latitude: 23.02◦ E) has approximately 55.000 inhabitants. According to the Köppen–Geiger
classification system, the municipality of Thermi is characterized by a hot summer Mediter-
ranean climate (Csa), with hot, dry summers and mild winters [37].

The Municipality of Thermi’s air-quality conditions are affected by local sources,
mainly traffic and residential heating emissions, while the transboundary transport of
pollutants due to air masses originating from central and eastern Europe may also provoke
elevated PM2.5 levels [38]. Moreover, the municipality of Thermi is situated next to the
metropolitan area of Thessaloniki (Figure 1), the second largest city in Greece. Thus,
emissions from Thessaloniki’s urban, industrial, and port activities [39] may also have a
negative contribution to the municipality of Thermi’s air-quality conditions. In general,
domestic biomass burning has been identified as one of the major air-quality issues among
southeastern European countries [40] and Thessaloniki [41–43]. This is the case also for
the greater Thermi area where prolonged biomass burning activities from the residential
heating sector comprise during the winter the most abundant PM source.

An Internet of Things (IoTs) monitoring system equipped with 28 low-cost PM sensors
was deployed in 2018 in the greater Municipality of Thermi area, continuously monitoring
and transferring information about PM concentrations (https://www.thermiair.gr/; ac-
cessed on 1 May 2024). To facilitate the analysis, the measurement sites were classified into
3 sub-regions considering their type and geographical location [44]. The three sub-regions

https://www.thermiair.gr/
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examined in the Municipality of Thermi were: (1) the city center of Thermi (abbreviated as
Thermi; 6 stations), Trilofos (4 stations), and Vasilika (2 stations).
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• Thermi is in the municipality’s city center. In that area, vehicular circulation density is
high and characterized as an urban-traffic region.

• Trilofos is a suburban area situated approximately 11 km south of Thermi’s city center.
• Vasilika, located 13 km southeast of Thermi, is a suburban area mainly affected by

residential heating emissions.

The geographical arrangement, the characteristics, and the PM2.5 levels of the mea-
suring areas are presented in Figure 1 and Table 1. Moreover, the hourly and daily PM2.5
levels of each measuring station are presented in Figures S1 and S2, respectively, whereas
the average PM2.5 concentrations per season in the examined sites in Figure 1 are presented
in Table S1. Overall, the measuring locations showed an hourly data completeness higher
than 92%.

Table 1. Information about the examined areas in Thermi during the study period (2021–2023).

# Station Name Classification Area Latitude (◦) Longitude (◦) PM2.5 (µg m−3)

Cold Period
(November–March)

Warm Period
(April–October)

1 Thermi Traffic Urban 40.55 23.02 15.6 ± 11.8 7.4 ± 4.2

2 Trilofos Background Suburban 40.47 22.97 16.8 ± 14.7 6.9 ± 4.3

3 Vasilika Background Suburban 40.48 23.14 19.9 ± 16.8 7.5 ± 4.9

Even though the proposed methodology was applied to the three distinct sites in the
greater Municipality of Thermi area, for brevity, only the results for Thermi are presented
in the main text, whereas the results for the two additional sites, Trilofos and Vasilika,
are presented in the Supplementary Materials. Across the area, historical records showed
elevated PM2.5 mass concentrations, especially during winter, and emphasize the need
for better air-quality management. The forthcoming analysis focused on the period from
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January 2021 to December 2023. Measurements before January 2021 were not considered to
avoid effects of the restriction measures due to the COVID-19 outbreak in Greece.

2.2. Data
2.2.1. PM2.5 from LCSs and CAMS

For the purpose of this study, PurpleAir (PAir) LCSs were utilized, providing continu-
ous PM2.5 measurements. Their operation is based on the principles of light scattering and
conversion of the signal to mass concentration values. An integrated fan drew ambient air
through the measurement chamber where a photodiode detected scattered light that was
later converted to PM concentration though a proprietary algorithm.

The PM network provides measurements in about 2 min intervals averaged over
10 min and hourly periods for the forthcoming analysis. For data validity during the hourly
mean calculations, we required more than 4 (out of the total of 6) 10 min measurements.
The rest of the data was flagged as invalid and was excluded from the subsequent analysis.

Hourly PM2.5 measurements were used for the development and verification of the
proposed forecasting model. Several studies have investigated and evaluated these sensors,
and the results point out a satisfactory performance across various environments [45–47].
More specifically, for the forthcoming analysis, the raw (CF = 1) PAir measurements were
corrected based on the equation derived by Kosmopoulos et al. [17] to assure the network’s
accuracy:

PM2.5 = 0.42 PAir2.5 + 0.26
(
µgm−3

)
(1)

The European Copernicus Atmosphere Monitoring Service (CAMS) provides hourly
air-quality forecasts for Europe on a ~10 km spatial grid with a forecast horizon up to
96 h [48]. The CAMS air-quality dataset was generated by an ensemble of eleven distinct air-
quality forecasting systems spanning across Europe. A median ensemble was derived from
the individual outputs providing PM2.5 measurement forecasts, aiming to achieve a better
performance than the individual model products. The PM2.5 forecasts were available daily
every 00 UTC. The spatial collocation between the gridded forecasts and measurements
was conducted by selecting the nearest neighbor pixel of the site location (Table 1).

2.2.2. Meteorology

Meteorological parameters were acquired from the Copernicus Atmosphere Data
Store using the CAMS global atmospheric composition forecasts dataset [49]. The global
atmospheric composition forecasts data run twice daily from 00 and 12 UTC at hourly
temporal resolutions (for surface fields) and 0.4◦ spatial grids. In this study, the meteoro-
logical variables used were air temperature at 2 m (T in ◦C), wind speed (WS in m/s), wind
direction (WD in degrees), total precipitation (TP in mm), and boundary layer height (BLH
in m). To extract the gridded forecasted data for the three regions, firstly, the daily forecasts
for 00 UTC were selected; secondly, the average lat–lon pair of the stations included in each
region (Figure 1) was calculated (Table 1); and thirdly, a nearest neighbor interpolation was
applied for each lat–lon pair.

3. PM2.5 Concentration Forecasting Based on the LSTM
3.1. LSTM

The LSTM [50] constitutes a type of recurrent neural network (RNN) [51]. RNNs are
superior at processing time-series data for forecasting. This lies in their ability to remember
information from past occurrences that can be used to predict future patterns, making them
adequate for forecasting tasks. However, RNNs frequently suffer from vanishing gradient
problems, leading to slow model learning (in terms of updating neural network weights)
and, in the worst scenario, stopping the learning procedure [52]. LSTM models have been
developed to overcome such problems and, internally, can learn long-term dependencies,
thus being a promising solution for long-term time-series forecasting [53]. A reference
LSTM architecture is depicted in Figure 2a.
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Figure 2. (a) Long short-term memory (LSTM) neural network architecture. (b) The cell state, (c) the
forget gate, (d) the first step of the input gate, (e) the second step of the input gate, and (f) the output
gate of an LSTM architecture. The white rectangles correspond to a neural network layer, while the
red elliptic shapes correspond to a pointwise operation.

The diagram in Figure 2a particularly describes a memory block, where the core idea is
to transfer information through the cell state (Figure 2b; the horizontal line running through
the top of the diagram), which is weighted based on its significance. The information added
or removed from the cell state is regulated by the so-called gates. An LSTM includes three
of these gates, namely the input, forget, and output gates. In the following paragraphs, the
LSTM implementation will be thoroughly presented in steps.

The first step of the LSTM application involves the amount of information that is
to be removed by the cell state (forget gate; Figure 2c). The latter is accomplished using
Equation (2):

ft = σ(Wf·[ht−1, xt] + bf) (2)

where σ is the sigmoid function (Equation (3)):

σ(t) =
1

1 − e−t (3)

The next step is to choose which new information will advance through the new
cell state (input gate; Figure 2d,e). This is performed in two steps: first, a sigmoid layer
determines which values will be updated (Equation (4)), and second, a tanh layer creates a
vector of new potential values (Equation (5)):

it = σ(Wi·[ht−1, xt] + bi) (4)

Ĉt = tanh(WC·[ht−1, xt] + bC) (5)

The following step is to update the cell state, Ct−1, with a new weighted cell state, Ct,
based on Equation (6):

Ct = ft ∗ Ct−1 + it ∗ Ĉt (6)

The first part of Equation (6) corresponds to the amount of information that will be
forgotten by the old cell state, Ct−1, whilst the second part of Equation (6) refers to the
amount of information that will be updated.

The last step is to decide the output values (output gate; Figure 2f). This is conducted
in two steps: first, a sigmoid layer is applied, which decides what parts of the cell state
will be the output (Equation (7)), and second, the tanh function is applied to the cell state,
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scaling the values between −1 and 1, and then multiplying it by the output of the sigmoid
gate (Equation (8)), so that the only output is the parts that are decided.

ot = σ(Wo·[ht−1, xt] + bo) (7)

ht = ot ∗ tanh (C t) (8)

3.2. Methodology

The proposed methodology for PM2.5 forecasting is illustrated in Figure 3. To achieve
the “best” LSTM network architecture, various tests were applied, seeking an optimal
configuration of hyperparameters, such as the number of (1) hidden layers, (2) nodes in
each hidden layer, (3) epoch, (4) batch size, and (5) length of the time input sequence. In
addition, the most suitable optimizer, loss, and activation functions were investigated. The
optimal configuration for these hyperparameters for each region was determined through
a group of various range values, resulting in the “best” LSTM network architecture (see
Section 3.3).
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3.2.1. Input Parameters

The applied methodology consisted of three main categories of input parameters,
(1) PM2.5, (2) meteorological variables, and (3) time variables, all related to air pollution.
The major auxiliary predictor parameters (except LCSs PM2.5) in the applied methodology
were the meteorological forecasts from CAMS.

In polluted areas, temperature has a negative relationship to PM2.5 concentrations
for low temperatures and a positive relationship for high temperatures [54]. Temperature
affects fuel usage and chemical reactions in the atmosphere [36]. Wind speed presents a
negative correlation with PM2.5 due to its ability to carry air pollutants away from their
source, causing ambient particle dispersion, provoking lower PM2.5 concentrations for
higher wind-speed values [55]. Wind direction is an important meteorological variable
for detecting the location of the air pollution source. Boundary-layer height controls the
volume available for pollution dispersion and movement in the lower atmosphere [56].
Low values and weak turbulence enhance the accumulation of air pollutants. Precipitation
reveals a negative correlation with PM2.5 concentrations due to wet deposition mechanisms.

Two additional variables were included to describe the intra-day and yearly emissions
variability. The day of the year was applied to reproduce the seasonal variations in emis-
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sions, and the hour of the day was used to capture the variability of city activities within
the day that affected air pollution.

3.2.2. Data Preprocessing

Data were adequately preprocessed for the optimal training of the model. In particular,
the input variables, as described in Section 3.2.1, were applied as 24 h data sequences.
The time lag of 24 was selected because a continuous and repeated pattern was revealed
for the PM2.5 autocorrelation for every 24 h (Figure S3). The latter means that the PM2.5
observations were highly correlated for this period, and the value of 24 was suitable as
a time-lag value. As was mentioned in Section 2.2.2, the forecasted meteorological data
were available daily at 00 and 12 UTC at a 1 h temporal resolution. In this study, the 24 h
meteorological data sequences were constructed using the closet forecasted data at 00 UTC.
For model training, the 24 h data sequences were generated in sliding windows of 1 h,
aiming to forecast PM2.5 concentrations 24 h in advance. WD was classified into sixteen
sectors and was used as categorical data. Prior to model training, the non-categorical feature
parameters underwent normalization between 0 and 1 using the Min–Max normalization
method.

3.2.3. Methodology Configuration

The dataset was split into two parts before the development of the LSTM model: the
training and testing datasets. The 2021–2022 period was allocated for the training dataset,
while 2023 for testing. The training set during the training of the model was again divided
into two datasets: 90% of the training dataset was used for training the model and the
other 10% for model validation. The model used has two LSTM layers (Figure 2), each
with 64 nodes activated through the tanh function, and a fully connected linear output
layer (Figure 3). The Adam optimizer was applied, encompassing the minimum error with
the least number of epochs (50). Regarding validation loss, the mean absolute error was
preferred for the tuning of the LSTM.

The same model’s hyperparameter tuning revealed the same configuration for each of
the three regions. The outputs (1–24 h ahead, as mentioned in Section 3.2.2) of each model
forecast were daily averaged for examining the presence of daily PM2.5 exceedances. The
detailed methodology configuration, including all the LSTM’s parameters, is presented in
Table S2.

3.3. Model Evaluation

The assessment of PM2.5 forecasts was performed using the mean absolute error
(MAE), root mean square error (RMSE), and Pearson correlation coefficient (R) that are
defined by:

MAE =
1
N∑N

i=1|PM2.5,LSTM,i − PM2.5,LCSs,i| (9)

RMSE =

√
1
N∑N

i=1(PM2.5,LSTM,i − PM2.5,LCSsd,i)
2 (10)

R =
∑N

i=1
(
PM2.5,LSTM,i − PM2.5,LSTM

)(
PM2.5,LCSs,i − PM2.5,LCSs

)√
∑N

i=1
(
PM2.5,LSTM,i − PM2.5,LSTM

)2
√

∑N
i=1

(
PM2.5,LCSS,i − PM2.5,LCSS

)2
(11)

Additionally, the qualitative performance of the forecasted PM2.5 exceedances was
assessed using the following metrics:

Total Accuracy =
True cases
Total cases

=
TE + TNE

TE + FE + FNE + TNE
(12)

Precision =
TE

TE + FE
(13)
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Recall =
TE

TE + FNE
(14)

The above metrics (Equations (12)–(14)) can easily be understood by using the follow-
ing confusion matrix (Figure 4).
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The diagonal elements of the confusion matrix (Figure 4) represent the correctly
detected exceedance/no-exceedance events (true exceedance, TE, and true no-exceedance,
TNE). The off-diagonal values indicate erroneous predictions for the presence or absence
of TE (false exceedance, FE, and false no-exceedance, FNE) using the daily average PM2.5
forecast.

4. Results
4.1. PM2.5 Concentrations and Meteorology

The average monthly PM2.5 concentrations in Thermi in 2021–2023 are presented
separately for each year in Figure 4. During the warm season (April to October), PM2.5
levels in Thermi remain stable, with monthly average concentrations remaining lower
than 10 µg m−3 (Figure 4). Impaired air-quality conditions were reported during the
colder period (November to March). Especially during January and December, PM2.5 levels
remain higher than 12 µg m−3, reaching up to approximately 22 µg m−3 (January 2022).
Transportation and residential heating emissions (biomass burning) are the primary local
PM2.5 sources during these months. A common seasonal pattern was also identified across
other regions (Trilofos and Vasilika). For clarity, the results of the analysis from these two
regions are shown in the Supplementary Materials (Figures S4a and S5a).

The diurnal variability of PM2.5 concentrations in Thermi is depicted in Figure 5. The
PM2.5 cycle exhibited a modest peak around 05:00–07:00 (UTC), due to the morning rush
hour, and then a nighttime peak at 17:00–21:00 (UTC) that is highly associated with local
biomass burning emissions, due to the increased heating needs during the colder period
(November to March). Higher hourly values were revealed for the training years (2021 and
2022) than the testing period (2023). The discrepancy between the periods is more apparent
for the nighttime peak. The corresponding diurnal variabilities for Trilofos and Vasilika are
shown in Figures S4b and S5b.
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WHO exceedances in Thermi per year in the 2021–2023 study period.

In 2021–2023, several exceedances of the WHO-regulated daily limits (15 µg m−3)
were reported in all areas during both seasons (Figures 5c, S4c and S5c). The number of
exceedance days in Thermi was higher during the wintertime (December to February), as
it was expected due to the lower temperatures and the increased heating needs. During
that period, the observed exceedance episodes were more than 10, for each month, and
reached up to 21 in January 2022. These elevated PM2.5 pollution episodes underline the
importance of local emissions and the need for better air-quality management mechanisms
that should be put into place.

Figure 6 shows the mean monthly temperature values as well as the diurnal variability
of the boundary-layer height and the wind speed and direction during the study period
in the study area, separated into warm and cold periods. A strong monthly temperature
variability was documented, including records that varied from 2 ◦C to 27 ◦C from January
(winter) to July (summer). Throughout the colder period, the predominant wind direction
was northwest, favoring long-range PM2.5 transportation from other European cities and,
specifically, Thessaloniki (located in the northwest of the Municipality of Thermi) to the
study region. During the warm period, northwest (less intense than the colder period) and
south-southeast winds were identified as the prevailing winds. Consequently, the examined
area could also be affected by long-range transport from southern European source regions.
In addition, notable differences in the boundary-layer height are presented between the
two periods (Figure 6). The diurnal cycle of boundary-layer height was stronger during the
warm period, increasing the dispersion and movement of atmospheric pollution into the
lower atmosphere. On the contrary, a confined range of BLH was documented in the cold
period, revealing values between 200 m during the sunless hours and 800 m at noon.
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4.2. Forecasting PM2.5 Performance

The hour-by-hour forecasting performance of the applied methodology is presented
in Figure 7. The analysis was conducted for 2023 (Figure 7) as well as separately for the
warm (Figure 7b) and cold (Figure 7c) periods. The following performance indicators,
RMSE, MAE, and R, were calculated and used as the error evaluation indices of the LSTM’s
performance for various forecasting periods (from 1 h ahead up to 24 h).
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Based on Figure 7, the forecast horizon clearly affected the model’s performance,
especially at short time horizons (up to 5 h). Taking into account the whole testing period
(2023), the correlation between the measured PM2.5 values and the LSTM forecast data
ranges between 0.67 and 0.94 for all time horizons, revealing a decreasing trend as the
time horizon increases (Figure 7a). As expected, the LSTM revealed a better forecasting
performance at short time horizons (R > 0.8 up to 5 h). The cold period yielded similar
results, while the warm period revealed lower R values at higher forecast horizons. For the
Trilofos and Vasilika regions, similar results were reported, with the only differences being
the slightly lower R values at short time horizons presented in Vasilika (Figures S6 and S7).

After the first hour, the MAE and RMSE evaluation metrics increased gradually with
time, indicating the highest bias of the estimations compared to the actual observations
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generated by the proposed LSTM model. A sharp reduction in the model’s performance
(MAE and RMSE) was observed during the subsequent hours, from 1 to 9 h (from 1.9 to
3.5 and from 3.2 to 5.9 µg m−3). After these breakpoints, the MAE and RMSE curves were
more flat, denoting a less-pronounced performance deterioration. In general, the RMSE
and MAE recorded ~2 µg m−3-higher values in Vasilika than in Thermi and Trilofos due to
the higher observed PM2.5 levels (Figure S5). Despite the increment in evaluation indices
and the slightly lower accuracy, we can observe that the model’s efficiency remains quite
reasonable in all the examined areas.

The accuracy of the proposed methodology was also evaluated against the PM2.5
forecasts from CAMS (Figure S8). To compare the two different forecasting products, the
metrics were calculated by using the hourly LSTM PM2.5 concentrations with a starting
forecast time of 00 UTC to match the temporal resolution of CAMS, which was provided
at that time. The two products revealed the same metrics pattern as the time horizon
increased, reflecting the diurnal variability of air quality across the study regions. The
LSTM forecasts included lower RMSE, MAE, and higher R metrics than CAMS, especially
across the morning and nighttime rush hours, where the PM2.5 concentrations were highly
variable. For instance, LSTM R values in Thermi ranged from 0.55 to 0.92 (average = 0.72),
while CAMS revealed a poorly R range between 0.52 and 0.65 (average = 0.57).

The performance of the applied methodology in reproducing the diurnal cycle of
PM2.5 mass concentration was investigated by calculating the mean hourly PM2.5 fore-
casts and measurements, including their deviations, as depicted in Figure 8. The diurnal
fluctuations in PM2.5 concentrations were calculated using the forecasts with a starting
forecast time of 00 UTC. The proposed model PM2.5 forecasts demonstrate a remarkable
performance in capturing the diurnal cycle of air pollution, particularly during nighttime
hours when Thermi experiences the highest concentration levels. The LSTM seems to
slightly overestimate the measurements by ~2 µg m−3 during the cold period at morning
rush hour.
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4.3. Forecasting Air Pollution Exceedances

The WHO-regulated daily PM2.5 threshold was assessed to evaluate the forecasting
system’s efficiency more thoroughly in pollution-level estimations. Several WHO daily limit
exceedances were reported in the examined areas during the study period (2021–2023), as
shown in Figures 5c, S4 and S5c. To investigate the LSTM exceedance forecast performance,
daily PM2.5 concentrations were calculated using the forecasts with a starting forecast time
of 00 UTC. If the daily averaged forecasted PM2.5 value exceeds the WHO predefined
threshold limit (15 µg m−3), then an air pollution exceedance event occurs. The purpose
and utility of the proposed PM2.5 forecasting lie in the implementation of better and
improved air-quality management techniques. Thus, it is crucial to evaluate the LSTM’s
daily exceedance prediction skills.

The overall performance of the applied methodology to capture the daily air pollution
exceedances in Thermi is depicted in Figure 9. The results for the two additional sites
are presented in Figures S9 and S10. The proposed LSTM forecasting system reported
a high percentage of correctly forecasted exceedances and no exceedances during the
whole year. The proposed methodology’s total accuracy during the test period (2023) was
approximately 92%. More specifically, the LSTM forecasting system correctly captured
83.3% of the air pollution exceedance events in Thermi. This portion corresponds to the
accurate identification of 45 daily limit exceedance incidents. The analysis also denotes
the feasibility and response of the proposed algorithm to capture day to day PM2.5 level
variations.
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Figure 9. Confusion matrix for all possible cases in Figure 4. Table S3 in Thermi during (a) 2023,
(b) the warm period (April–October), and (c) cold period (November–March). The percentages of each
quadrant are calculated based on the true measured cases (either for exceedance or no-exceedance
events) and refer only to the forecasts starting at 00 UTC, including 24 h days in 2023 (testing period).

As has already been discussed in previous sections, degraded air-quality conditions in
Thermi were reported during the colder months (November to March). Thus, it would be
useful to characterize the systems’ forecasted exceedance and no-exceedance accuracies
separately for each season. During the warmer months (April to October) in 2023, there
was only one daily exceedance reported by the monitoring network (Figure 9b). That event,
though, was not captured by the LSTM algorithm. The low PM2.5 concentrations reported
during the previous hours may have led to that inability. Eventually, the system’s accuracy
in forecasting no-exceedance events was expected since the hourly and daily fluctuations
were minimized during that period.
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On the contrary, the model’s performance was ameliorated during the colder period
(November to March), when a significant increase in exceedances was exhibited. As
denoted in Figure 9c, the proposed algorithm accurately reports 45 out of the total 64 daily
exceedances of the WHO-regulated thresholds (~85% of the exceedances). Moreover, during
these months, almost 81% of the no-exceedance events (78 out of the 85) were also correctly
identified, leading to a total accuracy of 82%. Since degraded air-quality conditions in the
examined Thermi region occur almost exclusively during the winter months, it is important
to highlight the better performance of the proposed LSTM forecasting algorithm during
that period.

The latter findings underlie the model’s capabilities to correctly detect possible WHO
threshold exceedances and provide valid information concerning the local air quality in
real-time conditions.

The false-alarm probabilities, during the whole year, remained low (6.1%) in Thermi.
In cases where the model fails to correctly predict exceedances or non-exceedances, the
model tends to overestimate the PM2.5 concentrations by 4.2 µg m−3. The quality of the
reported results highlights the utility of the proposed forecasting system within the context
of the dissemination of early warnings to the public and stakeholders and tackling or even
eliminating PM air pollution-related problems.

The monthly variability of the correctly captured exceedances using the LSTM (Figure 10a)
and CAMS (Figure 10b) forecasts was further investigated in Thermi as well as for the
other two sites in Figures S11 (Trilofos) and S12 (Vasilika). During the winter months
(December to February), the LSTM forecasting performance was adequately good, ranging
between 84.2% and 100.0%, capturing, in total, 40 out of 45 exceedances. At the same time,
the CAMS can correctly capture 32 out of 45 exceedances, documenting a range between
63.1% and 85.7%, lower than the proposed methodology. Both forecasting methodologies
failed to capture the one exceedance case in April. In Trilofos, the results were similar to
those in Thermi (Figure S11). Nevertheless, at the Vasilika site, the CAMS failed to capture
the majority of the exceedance cases, while the LSTM revealed a superior performance,
capturing 59 out of 63 cases (>84.0%) during the winter months (Figure S12).
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Figure 11 presents the daily PM2.5 concentrations as derived by the forecasting system
(black bars) and the monitoring network (purple bars). The diagram also visualizes the
European AQI as provided by the European Environment Agency (EEA) and the European
Commission. The use of this index facilitates the evaluation of the LSTM’s overall forecast-
ing performance for different PM2.5 levels. For clarity, we present the results during the
4 months of the testing period (2023) representative of each season, namely January for
winter, April for spring, July for summer, and October for autumn. These months accurately
represent the seasonal magnitude of and daily variations in PM2.5 concentrations during
the year.
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The daily time series indicate that, regardless of the month or the season, the fore-
casting system’s performance is adequately good. It is apparent that the estimated PM2.5
concentrations are in good agreement with the measured ones. The LSTM captures the
daily PM2.5 cycle of the actual values without a clear underestimation or overestimation
trend. Moreover, the model captured the daily variability of the observed data.

In January, when elevated PM2.5 levels were recorded due to biomass burning emis-
sions in Thermi and a shallower nocturnal boundary layer, the model produced accurate
forecasts with small discrepancies against the measured values. During the days with
PM2.5 concentrations higher than 15 µg m−3, the LSTM tended to slightly overestimate
the peak values in Thermi (MBE = 1.02 µg m−3), but for the majority of the days (~70% of
the days), the forecasting system predicted the AQI correctly. This finding underlines the
forecasting capabilities of such RNNs compared to the statistical models that traditionally
tend to systematically underpredict extreme pollution events [57].

During the non-winter months, PM2.5 remained lower than 20 µg m−3 in all cases,
suggesting common daily fluctuations. The system can operate robustly during summer
(July), when all days correspond to low PM2.5 concentrations (<12 µg m−3) and the weather
conditions are rather stable. A comparison between the predicted values and the mea-
sured ones indicates a good predictive capability and, in general, a better forecasting skill
during periods without abrupt PM2.5 changes. Finally, in October, the developed model’s
performance was similar and capable of properly forecasting air-quality values.

Regarding the system’s capability to identify the WHO daily limit exceedances,
Figure 12 presents the predicted exceedances for each day of the month in 2023.

As has already been discussed, the examined area experienced higher PM2.5 concen-
trations during the colder months; thus, the occurrence of the exceedances was reported
during that time of the year. Figure 12 shows the seasonal variability of the PM2.5 ex-
ceedance frequency reported by the LSTM system against the measurements. The system
performance exhibits high similarity and a common temporal pattern. The increased num-
ber of exceedances accumulated during December, January, and February, when more than
50 daily exceedances were reported in all areas. During that period, the forecast algorithm
reported a success rate higher than 75% of daily exceedances.
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5. Discussion

Since PM air pollution poses one of the most important environmental issues affecting
global health and ecosystems, effective policies are necessary to lower the burden of PM-
related adverse effects. The development of numerous, commercial, low-cost PM sensors
during the last decade has facilitated the continuous real-time monitoring of particles’
ambient concentrations and the identification of their spatiotemporal variations and source
identification. Despite the comprehensive insights provided by such dense networks, there
is still a lack of awareness among citizens regarding the association between the poor air
quality we breathe and the potential health effects.

An effective method to bridge this gap and implement more effective policies could
be the adoption of early warning PM forecasting systems as an aid in decision making.
Knowing, in advance, the probability of exceedances of the regulated PM limits could be a
valuable tool for sensitive groups of people (e.g., kids, the elderly, and those with asthma),
allowing them to plan their activities and reduce their exposure. Minimizing people’s
exposure to elevated PM levels could reduce health risks and could help them increase
their environmental consciousness.

The proposed PM2.5 forecasting algorithm could be integrated into already existing
monitoring networks as a valuable air-quality early warning system. It could be a valuable
and effective tool to stakeholders and air-quality management experts to implement coun-
termeasures to safeguard public health. The application of such a forecasting algorithm
would allow citizens, and especially vulnerable groups, i.e., children, elderly, and people
with asthma or allergies, to reduce or tailor their outdoor activities based on intra-hour or
daily PM2.5 level forecasts. The synergy of continuous monitoring and early warning could
be the basis for better mitigation strategies toward achieving more effective environmental
and public health protection techniques.

6. Conclusions

Reliable air pollution forecasting has gained more attention recently to offer accurate
information on air-quality levels because of the critical implications high PM2.5 concen-
trations have on the environment and human health. To improve the decision-making
process for required mitigation and to warn the public early on, accurate and practical
air-quality forecasting is also essential. In this study, an LSTM-based model was proposed
to forecast 1 h PM2.5 concentrations across urban and suburban environments (Municipality
of Thermi, Greece). The proposed LSTM approach uses, except for PM2.5 measurements,
two groups of auxiliary data, such as meteorological data, like the temperature, wind speed
and direction, precipitation, and boundary-layer height, and time variables, like the hour
of the day and the day of the year, to enhance forecasting accuracy.

The forecasting performance of PM2.5 concentrations in terms of correlation was be-
tween 0.67 and 0.94 at all-time horizons, revealing a decreasing trend as the time horizon
increased. PM2.5 concentration forecasts were further used to detect possible WHO thresh-
old exceedances and provide valid information concerning the local air quality. The LSTM
forecasting system can correctly capture more than 71.0% of the air pollution exceedance
events in the urban area. Despite the good accuracy of the LSTM model to capture air pollu-
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tion exceedance events, it can also avoid false-alarm probabilities, with cases lower than 8%
in the broader area. The findings of this work anticipate that hourly PM2.5 concentration
forecasting as well as the accurate detection of possible WHO threshold exceedances will be
of great significance for the citizens in the larger area as they can provide vital information
about heavy air pollution days.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos15050594/s1, Figure S1: Hourly time series of PM2.5 con-
centrations at the stations in Thermi, Trilofos, and Vasilika; Figure S2: Daily time series of PM2.5
concentrations at the stations in Thermi, Trilofos, and Vasilika; Figure S3: Autocorrelation coefficient
of PM2.5 observations of different delay times; Figure S4: Same as Figure 5 for Trilofos; Figure S5:
Same as Figure 5 for Vasilika; Figure S6: Same as Figure 7 for Trilofos; Figure S7: Same as Figure 7 for
Vasilika; Figure S8: LSTM and CAMS evaluation metrics, MAE, RMSE (µg m−3), and R for Thermi
in 2023, taking into account the 24 h forecasts at 00 UTC; Figure S9: Same as Figure 9 for Trilofos;
Figure S10: Same as Figure 9 for Vasilika; Figure S11: Same as Figure 10 for Trilofos; Figure S12: Same
as Figure 10 for Vasilika; Figure S13: Same as Figure 11 for Trilofos; Figure S14: Same as Figure 11
for Vasilika; Table S1. Average PM2.5 concentrations (±standard deviation) during winter, spring,
summer, and autumn in the 14 examined sites in Thermi. The averaged values have been calculated
from the daily data; Table S2: LSTM configuration.
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