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Abstract: Due to budget and sensor technology constraints, a single sensor cannot simultaneously
provide observational images with both a high spatial and temporal resolution. To solve the above
problem, the spatiotemporal fusion (STF) method was proposed and proved to be an indispensable
tool for monitoring land surface dynamics. There are relatively few systematic reviews of the STF
method. Bibliometrics is a valuable method for analyzing the scientific literature, but it has not
yet been applied to the comprehensive analysis of the STF method. Therefore, in this paper, we
use bibliometrics and scientific mapping to analyze the 2967 citation data from the Web of Science
from 1991 to 2023 in a metrological manner, covering the themes of STF, data fusion, multi-temporal
analysis, and spatial analysis. The results of the literature analysis reveal that the number of articles
displays a slow to rapid increase during the study period, but decreases significantly in 2023. Research
institutions in China (1059 papers) and the United States (432 papers) are the top two contributors in
the field. The keywords “Sentinel”, “deep learning” (DL), and “LSTM” (Long Short-Term Memory)
appeared most frequently in the past three years. In the future, remote sensing spatiotemporal fusion
research can address more of the limitations of heterogeneous landscapes and climatic conditions to
improve fused images’ accuracy.

Keywords: bibliometrics; spatiotemporal fusion; remote sensing; multi-temporal synthesis; network
analysis; Web of Science

1. Introduction

With the development of aerospace technology, more and more remote sensing satel-
lites have been successfully launched and are widely used in resource and environment
monitoring, disaster prevention and reduction, sustainable development monitoring, and
other fields [1–3]. It is challenging for one satellite sensor to have high spatial and temporal
resolution, even with the growing number of remote sensing satellites in operation [4].
Sentinel-2, WorldView-3, and Landsat 9 are a few examples of high-spatial-resolution but
poor-temporal-resolution satellites that produce amazing surface photos at resolutions
of 0.3 to 1 m. On the other hand, satellites such as GOES, the Terra and Aqua satellites
on board Moderate Resolution Imaging Spectroradiometer (MODIS), and the National
Oceanic and Atmospheric Administration (NOAA) series, although lower in spatial resolu-
tion (usually in the range of a few hundred meters to one kilometer), can provide almost
real-time data updates [5]. Over the last twenty years, the field of remote sensing has seen
significant advancements, with the development of over 100 spatiotemporal fusion (STF)
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models [6]. These innovations now allow for the generation of images that boast a high
resolution across both the spatial and temporal dimensions.

Although the remote sensing STF technique has been widely studied and applied,
there is no bibliometric approach to analyze research trends in relation to it in detail. This
paper aims to fill this research gap by providing a comprehensive view of the development
history of the STF technique in remote sensing and pointing out possible future research
directions in this field. The concept of bibliometrics was initially introduced by Pritchard
in 1969 [7], who defined it as “the application of mathematical and statistical methods to
books and other means of communication of knowledge”. As such, bibliometrics is unique
as a powerful instrument for examining the development of science research. It measures
data extracted from Internet academic reference sources related to a specific research topic,
including author distribution, publication volume, and the active participation of research
institutes in the sector. According to Ellegaard and Wallin [8], bibliometrics can be used to
find important research within a field of study, offering a knowledge map with keywords,
institution affiliations, national connections, and distribution characteristics. Additionally,
it provides a quantitative assessment of the present state and prospective trends within
research topics. In general, a deeper understanding of a research field is achieved with an
increased number of references included in bibliometric analysis [9]. While the general
approach to bibliometrics in remote sensing studies has been similar, the specific research
topics have varied significantly [10–17]. This work is the first bibliometric examination of
the literature on STF in remote sensing.

2. Purpose and Scope of the Study
2.1. Purpose of the Study

The primary aim of this review is to thoroughly investigate the history, current status,
and future trends of remote sensing STF through bibliometric analysis methods. The focus
is on three areas:

a. Technological advances: identifying and analyzing critical advances in the field of
technology, including theories, methodologies, and use cases.

b. Academic contributions and leadership: analyzing critical scholars, research institu-
tions, and publications that have significantly impacted the field.

c. Research hotspots and trends: using bibliometric tools to reveal significant research
themes and trends and predict possible future research directions.

Three questions are raised in light of the above objectives:

1. What is the global trend in the scientific literature on temporal and spatial integration
of remote sensing?

2. What insights can be derived from this trend?
3. What emerging research trends can be anticipated in the field of remote sensing STF?

2.2. Scope of the Study

a. Period: we focus on the literature within the last 30 years (1991–2023), reflecting the
latest research developments.

b. Data source: we mainly analyze the literature from Web of Science.
c. Keywords and themes: we focus on relevant themes such as “spatiotemporal fusion”,

“data fusion”, “remote sensing”, “spatial analysis”, and other related topics.

3. Bibliometric Methods and Framework
3.1. Literature Search Methodology

We chose the “Web of Science Core Collection SCI Expanded” database as the data source
for our study and focused on STF in remote sensing. To this end, we used advanced search
techniques to construct a search formula containing multiple keywords: TS = (“Data Fusion”
or “Temporal–Spatial Fusion” or “Spatiotemporal Fusion” or “Multitemporal Analysis” or
“Spatial Analysis”). Within the foundational collection “Science Citation Index Expanded (SCI-



Atmosphere 2024, 15, 598 3 of 21

EXPANDED)—1945–present”, our initial search resulted in 30,820 documents. Subsequently,
we performed a more refined screening of this literature, explicitly restricting the scope to the
field of remote sensing. This process resulted in 2967 relevant documents, with data updated
to 19 December 2023. These bibliographic records were exported to a plain text file format,
including the entire record and cited references.

3.2. In-Depth Bibliometric Analysis

In their study, Aria and Cuccurullo meticulously delineated the methodology for
bibliometric analysis, encompassing five meticulous steps, namely, study design, data
collection, data analysis, data visualization, and interpretation of results, which are covered
in their studies [10,12–17]. Figure 1 demonstrates the flow of this complete methodology.
In the research design phase, remote sensing STF was first identified as the research theme,
and three research questions were defined for this theme. Subsequently, we decided to use
the Web of Science (WOS) Science Citation Index (SCI) Expanded database as our main
source of data. During the data collection phase, we acquired 2967 documents from the
database through a comprehensive literature search. Considering the importance of peer
review, during the literature screening process, we specifically utilized a document type
filter to ensure the quality of the literature by selecting only the papers included in the
WOS database. Ultimately, 2967 papers published between 1991 and 2023 were screened.
The entire set of bibliographic records was smoothly imported into the Biblioshiny web
program, facilitating a thorough analysis. These records were also converted into the
bibliometric data format used in R (RData) format for use in subsequent stages of data
analysis. Through this meticulous series of steps, this study ensured the accuracy and
reliability of the data obtained.
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Figure 1. Illustrative depiction of the bibliometric analysis methodology [18].

Using R programs, we performed a descriptive bibliometric assessment and created
a matrix of information that included each of the documents in the third step of our data
analysis procedure. Next, in phase four, we employed a variety of tools to analyze and
visualize the data further. These tools included Biblioshiny version 4.0, Tidyverse version
2.0.0 (specifically ggplot2), VOSviewer version 1.6.20, and Python version 3.12.3, with the
help of which we generated concept maps, co-citation networks, and a variety of other
diagrams that helped to provide a more visual and in-depth understanding of the data.
In addition, we applied Bradford’s law to analyze journal distribution, which allowed us
to identify sources that have a significant influence in the field. This way, we could more
accurately locate those journals and publications that contributed most to remote sensing
STF. Section 4 of this study will ultimately detail our data analysis and visualization results
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interpretation. The interpretation includes an essential reading of the data and an in-depth
understanding of the research area. Such analysis and interpretation help to better reveal
current and future remote sensing STF trends.

4. Findings and Discussion

The initial findings from the bibliometric analysis encapsulate the bibliographic statis-
tics. In this section, we offer an in-depth analysis of indicators, information, and hot
keywords in the relevant literature in the field of study, the country of origin and institution
of the first author, the journal from which the study originated, the top ten authors globally,
and the most influential papers.

4.1. Extensive Bibliometric Evaluation

Figure 2 illustrates the scientific output throughout the study period. Only five articles
were published in 1991, and the number of documents gradually increased. Especially after
2016, the number of papers related to STF increased rapidly, reaching a peak of 471 documents
in 2022 and then decreasing in 2023 with 347 papers. The average annual growth rate reached
14.17%. As shown in Section 4.3, the main contributor to the total number of articles was
China. The decline in 2023 corresponds to a decrease in the number of papers from China.
Table 1 details the essential information of 2967 papers published in the WOS SCI Extended
database during the period of 1991–2023. The average number of citations per paper over
the last 33 years is 34.22. These papers involved 9017 authors, including 97 independent
authors. On average, there were five authors per paper (precisely 4.63). The Collaboration
Index, which is the total number of authors of multi-authored articles divided by the total
number of multi-authored articles, is 3.11 [19]. In total, 7989 author keywords were covered
by these publications.
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Figure 2. The scientific literature on STF in remote sensing produced from 1991 to 2023.

Table 1. Key information on remote sensing for STF.

Main Details Synopsis Worth

Documents Total number of papers 2967
Sources The distribution of frequency of sources, including books and periodicals 41

Timespan Years of release 1991–2023
References Total number of citations, total number of keywords used by authors 101,780

Author’s Keywords (DE) Total number of phrases that frequently appear in the title of an article 7989
Keywords Plus (ID) References 4473

Authors Total number of writers 9017
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Table 1. Cont.

Main Details Synopsis Worth

Authors of single-authored documents The number of lone writers for each piece 97
Authors of multi-authored documents The number of writers for publications with multiple authors 8920

Authors per document The average number of writers for every document 3.04
Co-authors per document The mean quantity of co-authors for every document 4.63

Average citations per document The mean quantity of citations found in every document 34.22
Collaboration Index A measure of the level of collaboration in academic research 3.11

International co-authorships % Researchers and academics from different countries working together 33.7

4.2. WOS Research Domains

Clarivate Analytics’s WOS research domains are used to categorize research publi-
cations [15]. Each document in the WOS database is categorizable into a minimum of
one particular subject of study. This analysis shows that the literature on remote sensing
STF covers an increased number of research subjects in 2023, 14, compared to 4 in 1991
(Figure 3a). The top 10 research fields with the highest production include remote sensing,
computer science, mathematics, environmental science and ecology, geology, physical
geography, engineering, geochemistry and geophysics, imaging science and photographic
technology, geology, and telecommunications. Figure 3b illustrates the annual progression
of the ten most prolific areas in STF research, delineating the shift in focus areas over time.
Preceding 2009, geochemistry and geophysics, computer and imaging science, and photo-
graphic science and photographic technology were the main fields of study, after which
each area garnered increasing attention. By 2022, remote sensing became the dominant area,
with a large output of STF literature. However, all fields show a clear downward trend
by 2023. The three scientific fields with the highest number of closely linked citations are
remote sensing, imaging science and photographic technology, and environmental science
with ecology.
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Figure 3. (a) Countless WOS research topics about remote sensing STF are covered in the literature.
(b) The temporal dynamics of the top ten WOS research areas with the highest productivity in the
literature on remote sensing STF.

4.3. Exploration of Research Countries

The results show that authors from 50 countries have researched STF in remote sensing.
The five countries with the most research outputs are China (1059 papers), the United States
(432 papers), Italy (215 papers), Germany (169 papers), and Spain (101 papers). Since
2015, the number of publications from China has increased, surpassing that of the United
States (Figure 4a). China’s share of remote sensing STF scientific output has grown yearly,
reaching 61.38% by 2023 (Figure 4b). Apart from the quantity of scientific outputs, the map
of national collaborations can also serve as an indicator of a country’s research strength.
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Figure 5 illustrates global collaborations, showing that the United States (64 collaborative
connections) has the most national collaborations, followed by China (52), Germany (51),
Italy (45), France (42), the United Kingdom (39), Spain (29), the Netherlands (27), India (24),
Canada (23), and Japan (23). Cooperation in remote sensing STF research is more limited
in other countries. China cooperates mainly with the United States, Germany, the United
Kingdom, France, Australia, Canada, and Italy. In contrast, the United States cooperates
mainly with Germany, France, Italy, Canada, Spain, and the United Kingdom.
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4.4. Global Research Institutions

Research on STF in remote sensing has been conducted at 1624 institutions world-
wide. Each research institution’s influence was evaluated by counting the citations that its
publications received. The ten most influential research institutions were determined by
tallying all of the citations received by their publications, which included 180 articles and
each institution’s first-author accomplishments. The impact of the papers varied greatly
from institution to institution, with Wuhan University in China (2203 citations) and the
University of Florence in Italy (2011) having the highest total number of citations, followed
by Beijing Normal University (2006), the Goddard Space Flight Center (1753), the German
Aerospace Center (DLR), the Remote Sensing Technology Institute (1678), Texas A&M
University (1493), the Instituto Superior Técnico (1359), the University of Tokyo (1330),
Earth Resources Technology, Inc. (1316), and the Aerospace Information Research Institute,
Chinese Academy of Sciences (1116) (Table 2).
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Table 2. The top ten organizations in total citations for remote sensing spatial and temporal
integration research.

Institution Country TC TA

Wuhan University China 2203 75
University of Florence Italy 2011 8

Bejing Normal University China 2006 35
Goddard Space Flight Center USA 1753 11

German Aerosp Center DLR; Remote Sensing Technol Institute Germany 1678 1
Texas A&M University USA 1493 8

Instituto Superior Técnico Portugal 1359 1
University of Tokyo Japan 1330 12

Earth Resources Technology, Inc. USA 1316 2
Aerospace Information Research Institute China 1116 27

For analyzing international research networks in STF of remote sensing, we used
cluster analysis to classify research institutions. This analysis was performed on the
program Biblioshiny, and the results are presented in the form of a radar chart drawn
in Python. The radar chart reveals institutions’ trends and relative positions in remote
sensing STF in different countries. In each radargram, different colors represent different
institutions, and their shapes and sizes reflect each institution’s performance in other
metrics. The primary metrics used to assess these clusters include betweenness, closeness,
PageRank, and the number of articles published (Articles).

As depicted in Figure 6a, the National Aeronautics and Space Administration (NASA)
and the Chinese Academy of Sciences (CAS) exhibit robust profiles across all four mea-
sured indicators. Their prominence in metrics like betweenness, closeness, PageRank, and
publication volume highlights their significant roles in the field of spatiotemporal fusion
(STF) within remote sensing. Most of the first clusters are U.S. institutions, with NASA,
the United States Department of Agriculture (USDA), the University of California (U.C.)
system, and the University of Maryland system playing critical roles in spatial and temporal
fusion of remote sensing. The USDA has a significant impact in the field of agricultural
sciences, and the U.C. system and the University of Maryland system demonstrate exten-
sive collaboration and theoretical contributions to multidisciplinary research. The second
cluster contains mainly Chinese research organizations (Figure 6b). Wuhan University,
Beijing Normal University, China University of Geosciences, and Tsinghua University also
show importance in the research network and extensive academic connections.
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4.5. Pivotal Source Journals

STF remote sensing investigations were published in 420 main journals; in 2023, there
were 14 publication sources, up from 4 in 1991. We also looked at how widely renowned
sources distributed research publications on remote sensing in the field of STF. The top
5 journals published 1855 papers (62.52% of the total), while 31 journals (7.32% of the
total) published only 1 remote sensing time–space fusion paper. Out of all the journals,
104 (41.46%) produced a maximum of 10 publications. The top five scientific journals
by total number of published articles are displayed in Figure 7: Remote Sensing (849),
IEEE Transactions on Geoscience and Remote Sensing (321), ISPRS International Journal
of Geo-Information (281), IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing (203), and Remote Sensing of Environment (201). Table 3 shows that
the Journal of Remote Sensing had the largest annual growth rate, while the Journal of
Remote Sensing of the Environment had the highest total number of citations. Following
Bradford’s law, the source journals for remote sensing STF research papers exhibit a high
degree of dispersion. The number of regional references was used to choose the top ten
most influential journals (Table 3). In the field of remote sensing STF studies, the journals
indicated by asterisks are regarded as primary source journals, including the journals IEEE
Transactions on Geoscience and Remote Sensing and Remote Sensing. Therefore, these
journals were crucial in STF research during the study period.
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Table 3. Top ten locally cited journals in remote sensing STF research.

Sources N.LC ND JCI (2022) H Index

Remote Sensing of the Environment 14,494 201 2.45 238
IEEE Transactions on Geoscience and Remote Sensing * 10,306 321 1.89 216
Remote sensing * 8772 849 1.02 81
International Journal of Remote Sensing 5145 186 0.66 151
ISPRS Journal of Photogrammetry and Remote Sensing 3798 118 2.58 110
IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 2745 203 1.12 64

IEEE Geoscience and Remote Sensing Letters 2400 103 1.13 89
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Table 3. Cont.

Sources N.LC ND JCI (2022) H Index

Photogrammetric Engineering and Remote Sensing 2366 57 0.28 114
International Journal of Applied Earth Observation and
Geoinformation 1885 106 1.46 76

International Journal of Geosciences and Remote Sensing 1361 120

Abbreviations: N.LC, the total number of local citations; X *, the journal, which is a fundamental resource within
the STF domain study based on Bradford’s law.

4.6. Influential Authors

One common metric used to assess academic achievement is the H-index, which
measures the frequency with which a scientist’s works have been cited [20]. In remote
sensing STF, we found the ten most prominent researchers. Among them, the STARFM
algorithm based on the weight function model proposed by Gao, F. (from Earth Resources
Technology, Inc., with an H-index of 27) is one of the most cited articles, with 1268 cita-
tions [5]. Other notable researchers include Chanussot, J. (from the University of Savoy,
with an H-index of 24) and Zhu, X.X. (from DLR, the German national space agency, with
an H-index of 20), both of whom have made notable academic contributions to the field
(Table 4). Three of these ten most influential researchers are from China, two are from
the United States, and one each are from Germany, France, Portugal, Japan, and Iceland,
respectively, demonstrating international collaboration. A total of 2967 papers enlisted
the contributions of 9017 authors, with 97 independent authors responsible for 102 single-
author papers. The collaboration index was 3.11, and the average quantity of co-authors
for each manuscript was 4.63, highlighting remote sensing STF research as a typical field of
multi-author collaboration.

Table 4. Top ten authors with the highest H-index.

Author H Index TC Country UN

Gao, F. 27 5873 USA Earth Resources Technology, Inc.
Chanussot, J. 24 6123 France University of Savoy Mont Blanc—Chambery

Zhu, X.X. 20 3526 Germany Remote Sensing Technology Institute IMF
Yang, Y. 19 1319 USA University of Maryland; Hydrol and Remote Sensing Lab

Yokoya, N. 17 2821 Japan University of Tokyo
Huang, B. 16 1143 China Chinese University of Hong Kong
Zhu, X.L. 16 2289 China Beijing Normal University

Benediktsson, J.A. 15 2295 Iceland University of Iceland
Du, Q. 15 1960 USA Mississippi State University

Chen, J. 14 1898 China National Geomatics Center of China

4.7. Influential Papers

For identifying the most impactful papers from 1991 to 2023, we utilized citation
counts as a primary metric, following methodologies proposed in previous studies [21].
Our analysis distinguishes between the global reference factor (GRF), which accounts
for all citations recorded in Web of Science, and the local reference factor (LRF), which
reflects citations within the specific field (see Tables 5 and 6 for detailed metrics). Table 7
presents a detailed overview of the models used in the top ten local papers, along with
their respective contributions. One standout paper in our analysis is the Spatio-Temporal
Adaptive Reflectance Fusion Model (STARFM) proposed by Dr. Gao Feng from the USDA.
This influential work pioneered a weight function-based approach for surface reflectance
fusion, effectively integrating the high-resolution spatial capabilities of Landsat with the
high-frequency temporal data from MODIS. The STARFM algorithm has demonstrated its
ability to predict surface reflectance with an accuracy comparable to that of the Landsat
Enhanced Thematic Mapper Plus (ETM+). Its effectiveness was substantiated through
both simulated and actual Landsat/MODIS datasets [5]. This seminal paper has garnered
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widespread recognition, significantly influencing the development of spatiotemporal fusion
(STF) research. The continuous increase in its citation numbers serves as a testament to its
enduring relevance and foundational role in the field. The success of the STARFM method
has provided robust support for ongoing advancements in the remote sensing STF domain,
illustrating the practical and theoretical value of integrating spatial and temporal data to
enhance remote sensing capabilities.

Table 5. Top ten papers based on local reference factor.

Document DOI LRF GRF Contribution

On the blending of the Landsat
and MODIS surface reflectance:

predicting daily Landsat
surface reflectance

10.1109/TGRS.2006.872081 359 1268
Introduced a weight function-based

approach for surface
reflectance fusion.

An enhanced spatial and temporal
adaptive reflectance fusion model
for complex heterogeneous regions

10.1016/j.rse.2010.05.032 300 800

Improved accuracy of
fine-resolution reflectance
predictions, particularly in
heterogeneous landscapes.

A flexible spatiotemporal method
for fusing satellite images with

different resolutions
10.1016/j.rse.2015.11.016 204 413

Combines a demixing-based
approach with weighting functions
and spatial interpolation techniques.

A new data fusion model for high
spatial- and temporal-resolution
mapping of forest disturbance
based on Landsat and MODIS

10.1016/j.rse.2009.03.007 191 525

Improves detection of land cover
changes and disturbances with

enhanced spatial and
temporal resolution.

Spatiotemporal Fusion of
Multisource Remote Sensing Data:

Literature Survey, Taxonomy,
Principles, Applications, and

Future Directions

10.3390/rs10040527 131 267
Categorizes existing spatiotemporal

data fusion methods and outlines
future research directions.

A comparison of STARFM and an
unmixing-based algorithm for

Landsat and MODIS data fusion
10.1016/j.rse.2014.09.012 129 259

Combines Bayesian theory and the
STARFM moving window concept

to estimate changes in
fine-resolution elements.

Spatiotemporal Satellite Image
Fusion Using Deep Convolutional

Neural Networks
10.1109/JSTARS.2018.2797894 108 199

Leverages machine learning to
model the correlation across

observed coarse–fine image pairs.
Spatiotemporal Satellite Image

Fusion Through One-Pair
Image Learning

10.1109/TGRS.2012.2213095 100 178
Establishes correspondence between

LSHT and HSLT data through
super-resolution techniques.

Use of MODIS and Landsat time
series data to generate

high-resolution temporal synthetic
Landsat data using a spatial and

temporal reflectance fusion model

10.1117/1.JRS.6.063507 96 186
Leverages unmixing to enhance

image resolution before applying
spatiotemporal fusion.

Generating daily land surface
temperature at Landsat resolution

by fusing Landsat and
MODIS data

10.1016/j.rse.2014.02.003 95 363

Modifies STARFM to refine surface
temperature data by considering the
annual temperature cycle and urban

thermal landscape heterogeneity.

Table 6. Top ten papers based on global reference factor.

Document DOI LRF GRF Contribution

Deep Learning in Remote Sensing:
A Comprehensive Review and List

of Resources
10.1109/MGRS.2017.2762307 62 1678

Leverages deep learning to advance
remote sensing, improve analysis
tasks, and gain new insights into
processing remote sensing data.

10.1109/TGRS.2006.872081
10.1016/j.rse.2010.05.032
10.1016/j.rse.2015.11.016
10.1016/j.rse.2009.03.007
10.3390/rs10040527
10.1016/j.rse.2014.09.012
10.1109/JSTARS.2018.2797894
10.1109/TGRS.2012.2213095
10.1117/1.JRS.6.063507
10.1016/j.rse.2014.02.003
10.1109/MGRS.2017.2762307
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Table 6. Cont.

Document DOI LRF GRF Contribution

Hyperspectral Remote Sensing
Data Analysis and Future

Challenges
10.1109/MGRS.2013.2244672 13 1359

Offers a thorough examination of
hyperspectral data analysis methods,
delineates cutting-edge techniques,

and outlines future
research directions.

On the blending of the Landsat
and MODIS surface reflectance:

predicting daily Landsat
surface reflectance

10.1109/TGRS.2006.872081 359 1268
Introduced a weight function-based

approach for surface
reflectance fusion.

Geographic Object-Based Image
Analysis—Towards a

new paradigm
10.1016/j.isprsjprs.2013.09.014 20 1043

Investigates per-pixel method
limitations and concludes GEOBIA

is a fresh, evolving paradigm.
Deep Learning Classification of

Land Cover and Crop Types Using
Remote Sensing Data

10.1109/LGRS.2017.2681128 23 921
Introduces a multilevel deep

learning architecture for classifying
land cover and crop types.

Remote sensing of the urban heat
island effect across biomes in the

continental USA
10.1016/j.rse.2009.10.008 13 906

Examines and contrasts the urban
heat island (UHI) response in

various biomes across the
continental USA, emphasizing the

impact of ecological factors on
UHI intensity.

Multiresolution-based image
fusion with additive wavelet

decomposition
10.1109/36.763274 56 889

Discusses a technique that uses
multiresolution wavelet
decomposition to merge

high-resolution panchromatic and
low-resolution multispectral images.

Spectral and Spatial Classification
of Hyperspectral Data Using

SVMs and Morphological Profiles
10.1109/TGRS.2008.922034 16 856

Explores using morphological
transformations for processing

hyperspectral imagery in
urban areas.

An enhanced spatial and temporal
adaptive reflectance fusion model
for complex heterogeneous regions

10.1016/j.rse.2010.05.032 300 800

Improved accuracy of
fine-resolution reflectance
predictions, particularly in
heterogeneous landscapes.

Coupled Nonnegative Matrix
Factorization Unmixing for

Hyperspectral and Multispectral
Data Fusion

10.1109/TGRS.2011.2161320 55 696

Presents a coupled non-negative
matrix factorization (CNMF)
algorithm designed to fuse

low-spatial-resolution hyperspectral
and high-spatial-resolution

multispectral data.

The advancements in spatiotemporal data fusion are well documented through several
high-impact papers. The Enhanced Spatio-Temporal Adaptive Reflectance Fusion Model
(ESTARFM) algorithm, ranked second by LRF and ninth by GRF, represents a significant
improvement over the well-known STARFM algorithm. This enhanced model addresses
the limitations of STARFM by improving the accuracy of fine-resolution reflectance pre-
dictions, particularly in heterogeneous landscapes. It introduces a conversion factor that
refines weight calculations based on the spectral similarity between fine- and coarse-
resolution image elements, facilitating more precise studies of global landscape changes
on seasonal and interannual scales [22]. Following this, the Flexible Spatio-Temporal Data
Fusion (FSDAF) method, ranked third in LRF, combines a demixing-based approach with
weighting functions and spatial interpolation techniques. This hybrid algorithm effectively
merges frequent coarse spatial resolution data from MODIS with infrequent high-resolution
data from Landsat, generating consistently high-resolution synthetic images. The FSDAF
method’s superiority in producing accurate images, particularly in capturing reflectance
changes due to land cover transitions, highlights its potential to enhance the availability

10.1109/MGRS.2013.2244672
10.1109/TGRS.2006.872081
10.1016/j.isprsjprs.2013.09.014
10.1109/LGRS.2017.2681128
10.1016/j.rse.2009.10.008
10.1109/36.763274
10.1109/TGRS.2008.922034
10.1016/j.rse.2010.05.032
10.1109/TGRS.2011.2161320
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of high-resolution time series data for rapid surface dynamics studies [23]. Moreover,
the Spatio-Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH)
method, which ranks fourth in LRF, introduces a novel approach to mapping reflectance
changes using a weight function to identify change spots dynamically. By blending data
from Landsat TM/ETM+ and MODIS, STAARCH improves the detection of land cover
changes and disturbances with enhanced spatial and temporal resolution. Validation using
a disturbance dataset confirmed its ability to accurately date disturbances over multiple
years, showcasing improvements over previous data fusion techniques [24].

Table 7. Review of key models of spatiotemporal data fusion and their influence.

Rank by LRF Model/Method DOI Key Contribution

1 STARFM 10.1109/TGRS.2006.872081
Pioneer of the STARFM algorithm, a weight

function-based approach for surface
reflectance fusion.

2 ESTARFM 10.1016/j.rse.2010.05.032 Significant contributions to remote sensing
data fusion methodologies.

3 FSDAF 10.1016/j.rse.2015.11.016 Advanced developments in data
fusion applications.

4 STAARCH 10.1016/j.rse.2009.03.007 Developed improved methods for assessing
environmental changes using data fusion.

5 Comprehensive review article 10.3390/rs10040527 Further enhancements in the field of
spatiotemporal data fusion.

6 STRUM 10.1016/j.rse.2014.09.012 Introduced new techniques in urban
landscape monitoring through data fusion.

7 CNN-based STF method 10.1109/JSTARS.2018.2797894 Development of novel spatiotemporal fusion
algorithms for enhanced accuracy.

8 Dictionary pair
learning-based STF 10.1109/TGRS.2012.2213095 Improved methodologies for spatial data

fusion, impacting environmental studies.

9 New data fusion model 10.1117/1.JRS.6.063507 Contributions to temporal data analysis
and fusion.

10 SADFAT 10.1016/j.rse.2014.02.003
Advanced the understanding of spatial

dynamics through innovative
fusion techniques.

The fifth most impactful paper in the LRF is a comprehensive review article that cate-
gorizes existing spatiotemporal data fusion methods, discusses the underlying principles,
and outlines future research directions. This paper is instrumental in summarizing appli-
cation prospects and synthesizing knowledge across various studies published in remote
sensing journals. Notably, it utilizes a literature citation map based on X. Zhu et al. [4] to
identify highly cited works, enhancing the understanding of field dynamics. Following
this, the sixth-ranked paper by LRF introduces the Spatiotemporal Reflectance Unmixing
Model (STRUM). STRUM innovatively combines Bayesian theory and the STARFM moving
window concept to estimate changes in fine-resolution elements directly from coarse image
elements. Demonstrated using analog, Landsat, and MODIS imagery, and assessing tempo-
ral Normalized Difference Vegetation Index (NDVI) profiles, STRUM effectively captures
phenological changes, showcasing the utility of hybrid data fusion approaches [25].

The seventh-ranked paper proposes a novel deep convolutional neural network
(CNN)-based method for spatiotemporal fusion (STF) tailored for remote sensing data.
This approach leverages machine learning (ML) to model the correlation across observed
coarse–fine image pairs, addressing the complex correspondence and significant spatial
resolution gaps between MODIS and Landsat images. The dual five-layer CNN architecture
not only extracts valid image features effectively but also learns the end-to-end mapping,
yielding superior fusion results compared to sparse representation-based methods [26].
The eighth most influential paper, by Song and Huang, develops a dictionary-pair learning-
based STF method that utilizes a unique two-stage fusion model. This method establishes
a correspondence between low-spatial-resolution, high-temporal-resolution (LSHT) data,

10.1109/TGRS.2006.872081
10.1016/j.rse.2010.05.032
10.1016/j.rse.2015.11.016
10.1016/j.rse.2009.03.007
10.3390/rs10040527
10.1016/j.rse.2014.09.012
10.1109/JSTARS.2018.2797894
10.1109/TGRS.2012.2213095
10.1117/1.JRS.6.063507
10.1016/j.rse.2014.02.003
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and high-spatial-resolution, low-temporal-resolution (HSLT) data through super-resolution
techniques and high-pass modulation. The fusion model effectively captures surface re-
flectance changes associated with climate and land cover type changes, outperforming
other well-known STF algorithms in accuracy and detail [27].

Notably, the ninth and tenth most influential papers ranked by LRF, which focus on
specific advancements in data fusion models, do not appear in the top ten papers ranked
by GRF. The ninth LRF paper introduces a new data fusion model that leverages unmixing
to enhance image resolution before applying STF, utilizing classification maps from high-
resolution imagery of the T1 temporal phase to reverse decompose the low-resolution
imagery [28]. The tenth LRF paper presents the Spatio-Temporal Adaptive Data Fusion
Algorithm for Temperature Mapping (SADFAT), which modifies STARFM by integrating
considerations of the annual temperature cycle and urban thermal landscape heterogeneity
to refine surface temperature data [29].

Among the GRF’s most influential papers, only the third- and ninth-ranked papers
overlap with the LRF’s top ten, highlighting a divergence in citation impact and local rele-
vance. The highest-ranked GRF paper explores the application of deep learning in remote
sensing, with a focus on image recognition, target detection, and semantic segmentation,
underscoring the growing importance of artificial intelligence (AI) technologies in this
field [30]. The second place GRF paper provides an overview of six significant themes
in hyperspectral data analysis, including fusion, unmixing, and classification, reflecting
key trends and challenges in remote sensing [31]. Subsequent GRF papers address a vari-
ety of topics: the fourth-ranked paper critiques the limitations of pixel-by-pixel analysis
in high-resolution imagery, advocating for the Geographic Object-Based Image Analysis
(GEOBIA) paradigm in geographic information science [32], while the fifth delves into deep
learning for land cover and crop classification using multi-temporal, multi-source satellite
imagery [33]. The remaining papers explore methods related to the urban heat island
effect, the fusion of high-resolution panchromatic with low-resolution multispectral images,
and the integration of low-spatial-resolution hyperspectral and high-spatial-resolution
multispectral data [34–37].

4.8. History and Frontier Applications

This study detected 7989 author keywords from 2967 papers published in STF studies
from 1991 to 2023. Figure 8 depicts the trend of author keywords over time, with the x-axis
representing the year and the y-axis denoting the keywords. Each “dumbbell” or dot repre-
sents a keyword’s relative importance or popularity in a given year. At the same time, the
length of the horizontal line indicates the duration of or attention received by the keyword
between years. The yellow dot represents the first quartile of the publication year associated
with the keyword, while the purple dot indicates the third quartile of the publication year.
The red dot marks the median of the publication year, signifying the concentrated period
when the paper was published. The size of the dots reflects the number of documents.
The size of the central red dot mirrors the frequency of keywords; the larger the dot, the
more often a keyword appears. “Data fusion”, “remote sensing”, “spatial analysis”, “deep
learning”, “MODIS”, “Landsat”, “lidar”, “spatial resolution”, “spatiotemporal fusion”,
and “machine learning” are the top ten keywords in terms of frequency. Landsat, MODIS,
WorldView-2, and Sentinel are the most widely used remote sensing space–time fusion
sensors. These remote sensing satellites provide a rich spatial and temporal data source for
environmental monitoring and surface characterization. Six hundred and fifty-six papers
were published in 2012–2023, accounting for 22.4% of the total papers. Landsat provides
medium-to-high-spatial-resolution imagery for monitoring surface changes such as urban
sprawl, deforestation, etc. Landsat provides a rich spatial and temporal data source for
environmental monitoring and characterization in spatial and temporal fusion. In STF,
Landsat data are often used to provide finer spatial details in combination with other data
with a higher temporal resolution but a lower spatial resolution (e.g., MODIS). One of the
prerequisites for the fusion of Landsat and MODIS is the similarity of orbital parameters. It
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is also possible to combine dual generative adversarial network (GAN) models with Cube-
sat constellation images for the super-resolution of historical Landsat images for spatially
enhanced long-term vegetation monitoring [38]. MODIS data are often combined with
other data sources to improve spatial resolution or long-term temporal tracking. The latest
MODIS data can be used for data fusion to estimate urban heat wave temperatures [39],
combined with deep neural networks for progressive spatiotemporal image fusion [40] and
the STF of surface temperatures based on convolutional neural networks [41].
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The amount of research on Sentinel data has grown the fastest in recent years. There
is an increasing demand for hyperspectral data; conversely, the fusion of Landsat and
MODIS images has been widely studied and provides a reasonable basis for developing
fusion workflows for Sentinel-2 and Sentinel-3 data [42]. Recent studies show more appli-
cations of Sentinel data in ecological environments, such as the near-real-time monitoring
of tropical forest disturbances fused with Landsat data [43], the monitoring of maize ni-
trogen concentration merged with radar (C-Sar), optical and sensor satellite data [44], and
the fusion of multimodal satellite-borne Lidar data with visual images to estimate forest
canopy height [45]. Light Detection and Ranging (LiDAR) and hyperspectral imagery
(207 articles for 2014–2023) are two basic types of data used in remote sensing applications.
High-resolution topographic data can be obtained using LiDAR data, which makes it easier
to combine and understand different remote sensing datasets [46]. The electromagnetic
spectrum that an object reflects or emits is captured by hyperspectral imaging, enabling
various materials to be identified and analyzed based on their unique spectral characteris-
tics. Hyperspectral imaging (10 articles for 2013–2022) is a more advanced technique than
multispectral imaging [47], which collects information across the entire spectrum of waves
at a very high resolution. A thorough and in-depth examination of the Earth’s surface,
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atmosphere, and environment is made possible by data from a variety of sensors, such as
LiDAR, multispectral or hyperspectral imaging, and radar [48].

It is also evident from the figure that the keywords “machine learning”, “deep learn-
ing”, and “LSTM” appearing behind the timeline were the hotspots of STF research in recent
years, and there were 318 articles in 2017–2023. ML- and DL-based STF models do not
rely on assumptions but on establishing complex relationships between input and output
images. According to a survey of existing STF models, there are ten times more DL STF
models than ML STF models. The first DL artificial neural network (ANN) STF model was
proposed in 2015 [49], followed by convolutional neural networks in STF models, which
led to a rapid increase in STF models based on DL. Deep convolutional networks are the
most commonly used CNN method among STF methods, followed by GAN, AutoEncoder,
LSTM, and Transformer. Different convolutional neural networks have been developed
in STF models at other times (see Table 8). There are seven commonly used DL strate-
gies for existing STF methods: residual learning, attention mechanism, super-resolution,
multi-stream, composite loss function, multi-scale mechanism, and migration learning. The
main applications of DL techniques in STF are land cover classification [33,50–59], change
detection [60–69], and multi-sensor data fusion [70–74]. “Spatial analysis” and “GIS” had a
total of 443 publications in 2017–2023, and the synergy between STF, spatial analysis, and
the Geographic Information System (GIS) provides more integrated and fine-grained tools
and methods.

Table 8. Overview of application of ML and DL in spatiotemporal fusion technology.

Category Description

ML Models
Utilizes models like random forests, regression trees, and decision trees to establish
relationships between input and output images, focusing on direct mappings, but may
struggle with the high-dimensional nature of RS images.

DL Models
Predominantly uses CNNs which handle complex, non-linear mappings effectively,
automatically learning and extracting high-level features for reconstructing or
predicting finer-resolution images.

CNN Variants

- Deep Convolutional Networks: stack multiple layers to learn spatial features.
- GANs and AutoEncoders: for sophisticated image synthesis and feature

representation.
- LSTMs and Transformers: address temporal dynamics in STF, less commonly used.

Specific CNN Models in STF

- STFDCNN, VDCNSTF: focus on non-linear mapping and super-resolution.
- ESRCNN, DSTFN: predict specific bands of satellite images with techniques like

self-adoption and multi-temporal fusion.

Advancements and Innovations

- Advanced Models: direct processing of fine–coarse image pairs, use of 3D CNNs
for depth in feature extraction.

- Innovations like BiaSTF and HDLSFM: combine different CNN models or
integrate with other algorithms like linear regression for enhanced prediction
accuracy and application relevance.

5. Current Challenges and Future Research Projections
5.1. Numerous STF Studies, More Limited Practical Applications

This study’s research patterns suggest that STF research is presently going through a
growth phase. Despite the growing presence of STF models in this field of research, their
applications are still relatively limited, especially in practical Earth observation applications.
Taking agricultural scenarios oriented toward asynchronous phenological changes as an
example, although STF has been recognized as an effective tool for predicting missing
high-spatial-resolution images, most of the STF methods are based on the assumption that
there is a consistent albedo relationship for the same land cover type between the base date
and the prediction date. However, this assumption does not always hold in agricultural
scenarios, as climatic changes can vary significantly across crop types or the same crop at
different growth stages [75]. Expanding the scope of studies to include asynchronous phe-



Atmosphere 2024, 15, 598 16 of 21

nological changes is crucial to advancing the practical application of STF techniques. Such
studies focus on temporal variability, spatial variability, and spatial–temporal interactions
and are typical examples of in-depth investigations of the spatial–temporal variability of
natural phenomena. In agricultural applications, images of critical phenological periods are
vital because they capture the unique spectral characteristics of crops. The diversity of phe-
nological changes, especially in the context of current climate change and environmental
change, has become an essential area of research. It provides critical information on ecosys-
tem health, species migration patterns, agricultural production, and biodiversity. Critical
phenological periods usually last for a short amount of time and are synchronized with the
rainy season. However, obtaining high-spatial-resolution imagery of critical phenological
periods is still challenging, relying only on a single satellite platform. This challenge further
emphasizes the importance of developing more advanced STF models and methods to
better capture and understand the dynamics of these critical periods.

5.2. Deep Learning-Based Uncertainty in STF Data

Further exploration is needed. Significant progress has been made in deep learning
remote sensing STF in the last three years, and most STF models have adopted deep
learning techniques. A substantial amount of labeled data are required for efficient model
training to direct algorithms in identifying and deciphering particular features and patterns
in data collected via remote sensing. On the other hand, creating labeled datasets takes
a lot of work. The precision, reliability, and completeness of training data play a pivotal
role in shaping the model’s performance and generalization capabilities [76]. Variations
in temporal patterns, spectral features, or spatial sub-resolution may result from different
sources, sensors, or acquisition times [77]. The atmospheric conditions, sensor constraints,
data gathering methods, and natural variability brought on by clouds, haze, or aerosols
are some of the factors that might introduce uncertainty into remotely sensed data [78].
Furthermore, the spatial and temporal variability of natural phenomena contributes to
the heightened uncertainty of remote sensing-based AI models [79]. The training process
becomes more difficult and biased as a result of these irregularities. Missing observations
or irregular temporal sampling intervals might make it more difficult for the model to
effectively represent temporal trends in time series analysis. Addressing these challenges is
crucial for enhancing the robustness and reliability of remote sensing AI models in the face
of real-world complexities [80]. In remote sensing STF applications, deep learning models
focus on learning and understanding the heterogeneity between coarse-resolution (low-
spatial-resolution) and acceptable-resolution (high-spatial-resolution) images rather than
the subtle variations in the time series. This results in models that do not perform as well
in dealing with ∆C (the change in coarse pixels between t1 and t2) as they do with spatial
heterogeneity. Therefore, training ∆C algorithms is missing in deep learning-based STF
models. Deep learning models that are complex frequently serve as “black boxes”, posing
challenges for individuals to comprehend and elucidate their internal mechanisms and
decision-making processes [81]. The ∆C algorithm in STF involves complex spatiotemporal
data processing, which may be difficult to simulate and reproduce in deep learning model
training. Although deep learning is very effective in spatial feature recognition, it still has
room for improvement in handling complex STF tasks, especially in understanding and
learning the amount of temporal change (∆C).

5.3. STF Application Accuracy Is Less Evaluated

To comprehensively assess the performance of different models, we need a benchmark
dataset covering the diversity of the Earth’s surface and containing images from various
sensors. Obtaining a high-quality and high-resolution benchmark dataset covering a wide
range of regions and a long time series is challenging. There is a relative lack of publicly
available benchmark datasets in this area. The STF model involves complex algorithms
that deal with data that include both spatial and temporal dimensions, which adds to
the difficulty of implementation and evaluation. Since STF models are relatively new
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applications in remote sensing, widely recognized evaluation standards or methodologies
have not yet been established, making comparing different studies difficult. In practical
applications, STF models need to cope with various challenges, such as the performance
of different surface cover types, different climatic conditions, and the fusion of data from
other sensors, which may affect the accuracy assessment of the models. Developing and
evaluating STF models requires specialized knowledge and resources, limiting the number
of institutions or teams that can conduct such evaluations. STF models may still be in
the early stages of development at this time, but more assessments of their accuracy are
expected to emerge as the technology matures and the range of applications expands.

5.4. Forecast of Future Research Directions
5.4.1. STF Benchmark Dataset

Future research in STF will promote the application of STF models in dealing with
various time-varying homogeneous or heterogeneous landscapes. Additional benchmark
datasets from multiple sensors and landscapes are needed to train and test STF models.
In addition, applying data enhancement techniques to simulate different time-varying
scenarios will help to enhance these models’ generalization ability. Future STF models
will be able to handle data fusion tasks in complex environments more systematically and
robustly with such datasets.

5.4.2. Deep Learning STF Based on Time Series Analysis

Deep learning has demonstrated strong potential in dealing with the spatiotemporal
heterogeneity of remote sensing data. To properly handle spatial heterogeneity, spatiotem-
poral data fusion algorithms need to be able to recognize and adapt to the complexity and
diversity of the data in the spatial dimension while maintaining accurate tracking of the
amount of change in the temporal dimension. In terms of training strategy optimization,
designing a loss function specifically for ∆C characteristics will enable the model to pay
more attention to temporal changes. Meanwhile, improving the model’s interpretability
will help us to better understand and improve the model’s handling of temporal variations
and reveal the logic behind the model’s predictions.

5.4.3. An Applied Study of STF in Asynchronous Physical Climate Change

Regularly evaluating the effectiveness of models in handling time variation and opti-
mizing them based on feedback are also critical components of future research. Extensive
testing and empirical studies are conducted to validate the model’s performance in real-
world applications. With the continuous advancement of deep learning technology, more
innovations and breakthroughs are expected to be realized in this field. In particular, in the
direction of research on asynchronous phenological changes, combining remote sensing
data from different times and spatial resolutions can provide a more comprehensive view
of phenological changes. This may include using advanced algorithms and models for
processing and interpreting large amounts of remotely sensed data to identify and pre-
dict climatic changes. The potential applications of this line of research are wide-ranging
and include improving climate change models, guiding agricultural practices, conserving
biodiversity, and managing natural resources.

6. Conclusions

Over the past several decades, there has been a sustained increase in the volume of
publications, encompassing an ever-broadening array of research domains. This review
presents a comprehensive bibliometric analysis of STF research in remote sensing from
1991 to 2023. Over 33 years, the field has experienced exponential growth in published
articles, rising from 5 papers in 1991 to 18 papers by 2005, culminating in 347 documents by
2023. Predominant contributing nations include China, the United States, Italy, Germany,
and Spain; the Chinese Academy of Sciences and Wuhan University in China are leading
research institutions. The most influential journals in this field have been identified as



Atmosphere 2024, 15, 598 18 of 21

Remote Sensing, IEEE Transactions on Geoscience and Remote Sensing, and the ISPRS
Journal of Photogrammetry and Remote Sensing. The most prominent authors contributing
to this work are Gao, F., Chanussot, J., and Zhu, X.X.

Many other efficient bibliometric tools are available: CiteSpace handles visualizing
complex data, and HistCite and BibExcel manage and organize large amounts of data.
Publish or Perish and SciMAT provide a more profound analysis. Pajek provides large-
scale network analysis, handling and analyzing large-scale datasets. In addition, there are
EndNote, Mendeley, and Zotero reference management tools. Scopus, Incites, ESI, and
Altmetric provide detailed data analysis. In this article, Biblioshiny delivers a user-friendly
interface that makes complex analyses easy for researchers unfamiliar with programming.
However, when using the bibliometrix participle algorithm, there is still room for im-
provement in its intelligence and keyword extraction accuracy. Therefore, we need to
enhance the semantic understanding of citation data and combine multiple bibliometric
approaches in our subsequent research to enhance the accuracy of the specific statistics and
ensure greater precision, intelligence, and comprehensive knowledge extraction. Future
research could also explore knowledge graph-based approaches to construct a literature
knowledge graph to mine interdocument associations and patterns. This can better parse
the semantic relationships within literature data, provide rich and in-depth semantic in-
formation for the lexical algorithm, and further improve the accuracy and intelligence of
knowledge extraction.
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