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Abstract: The desiccation of the Aral Sea due to water withdrawal from contributing rivers has
resulted in an unprecedented change in the region’s climate, from maritime to hot dry desert.
Afforestation has been implemented on the desiccated seafloor—the Aralkum Desert—for stabilizing
the exposed substrate. However, studies on the long-term status of the afforested sites are limited.
Here, we examined C and N isotopic signatures in Haloxylon aphyllum plantations, as indicators of
time-integrated plant response to the prevalent water and salinity constraints, in northern Aralkum,
Kazakhstan. Foliar 13C composition analysis in a chronosequence of H. aphyllum plantation sites (aged
1–27 years) on the sandy substrate revealed a significant trend towards higher water-use efficiency in
older plantations, possibly in response to declining water availability. A lack of correlation between
plant 13C signature and soil electrical conductivity suggests no history of salt stress despite the
saline environment. Furthermore, 15N enrichment in plant tissue in the water-limited Aralkum
ecosystem indicates the relative openness of N cycling. There was an increase in species richness
and self-propagation at the plot scale, indicating successful afforestation effort. Coupled with other
approaches, isotope discrimination might elucidate mechanisms underlying stress tolerance in
H. aphyllum, which could support the afforestation efforts.
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1. Introduction

The desiccation of the Aral Sea due to withdrawal of water from the contributing rivers has
resulted in a significant change in the region’s climate, from maritime to dry hot desert, with
irreversible consequences for the regional ecosystems and local livelihoods [1–3]. Afforestation has
been implemented on the dried seafloor, the man-made Aralkum Desert, for stabilization of the
exposed substrate, in order to prevent soil erosion, salty dust storms, and adverse effects on human
health. The newly vegetated areas also hold potential for carbon sequestration, foraging, and wildlife
conservation [1,4]. Black and white saksaul species (Haloxylon spp.), native to the central Asian deserts,
have been the pioneering species in the afforestation efforts dating to the late 1980s and more recent
decades. Several studies have evaluated the phytoremediation potential of Haloxylon spp. in test
sites at the crucial stage of plantation establishment [5–7]. However, studies addressing the long-term
development of vegetation are limited, and they have mostly focused on natural succession in various
exposed substrates [1,7] and the spatial dynamics of vegetation cover [8]. Long-term development and
sustainability of afforested plots have eluded attention, often due to limited feasibility for conducting
field studies in remote locations with lacking research infrastructure for continuous measurement of
soil-plant-atmosphere dynamics.
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Stable carbon (C) and nitrogen (N) isotopic signatures of plants and soils can serve as tracers that
indicate time-integrated responses of plants to the environmental constraints [9,10]. These indicators are
thus suitable for a rapid assessment of environmental influences, that is, water and salinity constraints
prevalent in Aralkum, on plant functions that cannot be easily measured or surmised from yield data
alone. Rainfall variability is considered the most significant factor affecting the C and N isotopic
composition in dryland plants [11,12]). A low soil water potential due to dryness decreases intercellular
CO2 concentration through stomatal closure, resulting in 13C enrichment in the foliar tissue. The plant
C isotopic composition (δ13C) is also positively related to the intrinsic water-use efficiency (WUE,
the ratio of water loss to biomass gain), because a decrease in water availability induces stomatal
closure thereby enhancing the WUE [9]. Similarly, soil salinity is found to be correlated with δ13C
because salinity-induced water stress, due to a lower water potential of saline soils and thus reduced
water uptake by the roots [13], reduces stomatal conductance and consequently increases intrinsic
WUE. Natural abundance of 15N in plants and soils can be used as an indicator of N cycling in an
ecosystem [14], but the interpretation of 15N signatures is more complex as they reflect the net result of
a range of processes [10].

In this study, we conducted a preliminary evaluation of the long-term status of afforested sites
using stable C and N isotopic signatures as indicators of plant vigor in response to the prevalent
water and salinity constraints in Aralkum. The specific objectives of our study were as follows: (i)
examining the range of 13C and 15N signatures in plant communities of Haloxylon-based afforestation
series in northern Aralkum, (ii) assessing long-term variations in δ13C and δ15N in the afforestation
chronosequence sites, and (iii) interpreting the observed variations in relation to the plant water status.

2. Materials and Methods

The study area in northern Aralkum covers about 9600 km2 of 44.822◦ N and 45.741◦ N latitude
and 60.014◦ E and 61.332◦ E longitude (Figure 1). The area has been entirely desiccated since about 1977.
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Figure 1. Study area in northern Aralkum, Kazakhstan (a) and locations of the surveyed afforestation
sites (b). Source: Landsat-8 OLI acquired on 17–31 August 2018. WGS 1987 UTM Zone 40N.

Afforestation sites of different establishment ages were selected for reconstructing the pattern of
plant development and responses to environmental constraints. Seven afforestation sites established
during 1991–2017 (Table 1) by planting seedlings or seeds (only in 1991) of Haloxylon aphyllum
were surveyed on 20–21 August 2018. These plantations were set up on typical barren plain areas
characterized by a sandy substrate (sand fraction = 90%) with remnant seashells. In most of the sites
that we visited, the original stand density and plant age distribution were significantly altered by both
mortality and self-propagation of Haloxylon plants. Three sampling plots of size 30 m × 44 m were
delineated randomly in each plantation site, and then H. aphyllum individuals were counted and the
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presence of any plant species besides H. aphyllum was examined. Sun-exposed photosynthetic tissues
(foliage and green shoots) were sampled from the outer surface of the crown at approximately 1.5 m
above the ground in three randomly selected individuals of H. aphyllum and each of the co-occurring
species (Table 1). The samples were collected into zip-bags and transported in a cool box to the
laboratory, where they were dried at 60 ◦C and finely ground.

Table 1. Plant species identified in August 2018 in the northern Aralkum sites afforested with Haloxylon
aphyllum during 1991–2017 (plantations aged 1–27 years).

Number Family Species Common or Local
Name

Year of
Afforestation

1. Amaranthaceae/Chenopodiaceae
Haloxylon aphyllum (Minkw.)
Iljin. (Synonym: Haloxylon
ammodendron (C.A.Mey.)

Black saksaul
1991, 2000, 2005,
2008, 2009, 2010,

2013, 2017

2. Amaranthaceae Halocnemum strobilaceum
(Pall.) Bieb Sarsazan 1991, 2005, 2009,

2017

3. Amaranthaceae Atriplex fominii Iljin. Lebeda, Olabuta 2013, 2017

4. Asteraceae Karelinia caspia (Pall.) Less. Ak-bash 1991, 2005

5. Asteraceae Artemisia diffusa H. Krasch. Common
wormwood 1991

6. Tamaricaceae Tamarix hispida Willd. Russian tamarisk 2005, 2017

7. Fabaceae Alhagi maurorum Medik. Camelthorn 1991

8. Solanaceae Lycium ruthenicum Murray Karamik 1991

The concentration and isotope ratios of C and N were determined using a continuous-flow stable
isotope ratio mass spectrometer (IsoPrime VisION–EA; Isoprime, Manchester, UK) coupled with a CNS
analyzer (Elementar Group, Hanau, Germany). Each sample was processed in duplicates. A multiple
replicate analysis indicated that standard deviations of the δ13C and δ15N values were < 0.1%� and <

0.2%�, respectively. The C and N isotope compositions (δ13C and δ15N) were calculated as follows:

∆(%�) = [(Rsample/Rstandard) − 1] × 1000 (1)

where, R is the ratio of 13C/12C or 15N/14N; the V–PDB (available from the IAEA) standard was used in C
analysis and atmospheric N2 values in the N analysis. A simple linear regression analysis was applied
to reveal the significance of temporal trends in the isotopic signatures across the afforestation series.

3. Results and Discussion

The stand density of H. aphyllum varied between 66 and 164 individuals per hectare, with the
highest density in the older sites. Including H. aphyllum, eight plant species belonging to five families
were identified in the afforested sites (Table 1), which corresponded to the species richness observed in
the later successional stages (20–30 years) in naturally vegetated sandy areas in northern Aralkum [6].
In three of the eight sites, no other species besides H. aphyllum was detected, however the current
vegetation inventory was restricted by the sampling plots’ area visited once during late summer.

The species might have been introduced unintentionally during the afforestation activity with
Haloxylon and/or their seeds dispersed by wind after or before afforestation. Halocnemum strobilaceum
and Atriplex fominii, both belonging to the same family as H. aphyllum (Amaranthaceae), were recorded
in four and two of the eight sites, respectively. The oldest plantation (year 1991) was most species-rich
and characterized by the relatively dense stand. The presence of several individuals of Tamarix hispida,
the only other woody species, in two sites (dated to 2005 and 2017) signifies a shallower groundwater
table that favored the establishment of this obligate phreatophyte in the sites [15].

Carbon concentration in the photosynthetic organs ranged from 29.5% in H. strobilaceum to 44.4%
in Artemisia diffusa across the sites (Figure 2a). The average foliar C concentration in H. aphyllum plants
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was 34.1% ± 0.6% across all sites. The δ13C values for Amaranthaceae family members were in a narrow
range—from −12.5%� in H. aphyllum to −15.5%� in A. fominii (Figure 2b). This range suggests the C4

photosynthetic pathway [9,16] in all these species. The C4 plants tend to show lower transpiration rates
and higher intrinsic WUE relative to those of the C3 plants. The other species exhibited significantly
more negative δ13C values, ranging from −24.8%� to −28.2%�, which is consistent with those in C3

plants [9]. The relatively lower δ13C in A. diffusa suggests its greater WUE among the C3 plants.
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Figure 2. Carbon concentration (a) and δ13C (b) in photosynthetic organs of plant species identified in
the northern Aralkum sites afforested with Haloxylon aphyllum during 1991–2017 (plantations aged
1–27 years).

The average 13C signature of H. aphyllum (−12.8± 0.2%�) is higher than that reported by Su et al. [17]
and Zhao et al. [16] in native stands of this species in northwestern temperate deserts of China (−14.3%�

and −14.1%�, respectively). The observed value is close to −12.4 ± 0.5%� exhibited by H. aphyllum
plantings under high salinity conditions in the Kyzylkum Desert [18]. The less negative 13C values
of H. aphyllum in Aralkum indicate the higher WUE. In general, the less negative the δ13C value of a
plant, the higher the WUE, provided that comparisons are made among plants that are exposed to
similar environmental conditions [9]. In this respect, it is recommended to estimate the long-term WUE
of plants in the Central Asian desert using 13C composition in the photosynthetic organs sampled
between late August and late September [17], thus integrating the responses accumulated throughout
the growing season.

The significant temporal trend of δ13C in the afforestation series, towards less negative values from
seedlings to mature plants, indicates that the plant WUE increased over time (Figure 3a). The ability of
non-phreatophytic H. aphyllum to maintain sufficient water supply to the foliage is attributed to the
efficient morphological adjustment of the rooting systems and to the strong stomatal control [15,19].
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Given the correlation between plant δ13C and atmospheric precipitation in drylands [10–12,14],
the enrichment of foliar tissue with 13C might reflect the decline in rainfall and/or decreasing water
availability for plant communities in mature Haloxylon stands. The 13C composition of C4 plants is
considered to be less sensitive to the precipitation gradient than that of C3 plants (e.g., [12] in the
Mediterranean), but several studies (e.g., [14] in northern China) demonstrated a significant enrichment
of 13C in C4 plants in response to decreasing rainfall.

Besides declining water availability, elevated soil salinity levels can also increase the 13C values
of H. aphyllum, as observed in the Central Asian Kyzylkum Desert [18]. Carbon isotopic signature
acts as an integrated indicator of stress history rather than a snapshot in time, as shown by higher
isotopic values in plant tissues developed after salinization [20]. The increase in δ13C in the Haloxylon
afforestation chronosequence sites (Figure 3a) did not conform to the temporal trend of the soil electrical
conductivity (EC1:5), thus rebuffing a history of salinity stress. The variations in soil EC1:5, between
8–21 dS m−1, point to the overall strong degree of soil salinity and thus reveal significant salt tolerance
of H. aphyllum, in line with the assessment by Matsuo et al. [18]. Shrubs of T. hispida showed a similar
13C composition in the leaves at two sites where soil salinity differed by more than two-fold (8.7 and
21 dS m−1 in sites dating to 2005 and 2017, respectively), confirming the halophytic characteristics of
this C3 species [15,18].

The changes in δ15N in soils and plants along natural precipitation gradients can be used to
identify the pattern of N losses relative to the turnover among the sites [6]. An enrichment of 15N can
signify the loss of N as it discriminates the heavier 15N isotope, favoring a larger proportional loss
of 14N and increasing δ15N. The generally high, positive values of 15N, ranging from 5.2%� to 19.7%�

(Figure 3b), were within the upper range or exceeded the values reported along the precipitation
gradient in northern China [14] and eastern Mediterranean [12]. This suggests a more open N cycling
in the water-limited and soil erosion-prone Aralkum ecosystem [1], resulting in generally higher values
and a tendency for enrichment of foliar 15N over time (Figure 3b). However, various soil processes
influence the plant 15N signatures and can be responsible for higher δ15N in plants in water-stressed
environments [10], which requires further investigation.

4. Conclusions

Increasing species richness and evidence of self-propagation observed at the plot scale indicate
the successful afforestation effort in northern Aralkum. Foliar 13C composition in H. aphyllum in a
chronosequence of afforestation sites (aged 1–27 years) exhibited a significant temporal trend towards
higher WUE in older plantations, possibly in response to declining water availability. A lack of
correlation between plant isotopic signatures and soil EC1:5 suggested no history of salt stress despite
the elevated soil salinity. Furthermore, 15N enrichment in plant tissue in the water-limited Aralkum
ecosystem indicates the relative openness of N cycling. Stable C and N isotopic composition in the
Haloxylon afforestation chronosequence sites helped to rapidly assess time-integrated plant responses
to the prevalent environmental constraints in the Aralkum ecosystem. Coupled with other approaches,
isotope discrimination might help elucidate the mechanisms underlying WUE and salt tolerance in
Haloxylon, which could support the afforestation efforts.
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