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Abstract: Accurately determining the maximum designed water discharges of dams is extremely
important, considering the economic costs of carrying out these types of hydrotechnical works and
the possible disastrous consequences resulting from their incorrect design. This article describes
and applies probability distributions used in hydrology, with some recommended by Romanian
legislation standard NP 129-2011. The methods for estimating the parameters presented in this article,
as well as the establishment of directions for correlating the normative with international regulations,
resulting from the research on many rivers with different characteristics, conducted within the Faculty
of Hydrotechnics, were completed with specialized computer applications for applying the normative.
In this article, two case studies reflecting this research are presented. The verification of the proposed
recommendations, on rivers with hydrographic basins with different physiographic characteristics,
confirmed the opportunity to implement rigorous and simple criteria. The presentation of the quantile
form of some distributions (especially Pearson III) and of the expressions of moments (central and
raw) of high order, as well as the presentation of the frequency factors of each analyzed distribution
necessary to calculate the confidence interval, constitute novelties, thus facilitating the ease of use of
these distributions.

Keywords: Pearson III; LogPearson III; generalized extreme value; LogNormal; Wakeby; method of
ordinary moments; method of L-moments; confidence interval

1. Introduction

According to the Romanian legislation, the water dams are designed and verified at the
values of the maximum water discharges with different probabilities of being exceeded [1],
depending on the importance class of the dams [2].

Rigorous determination of these maximum flows is of particular importance given
the costs and risks associated with these types of hydrotechnical works, especially in the
context of climate change. The availability of hydrological data from the last period allows
the recalculation of maximum flows for the imposition of constructive/non-constructive
measures regarding the increase of the capacity of large water discharges.

For a better prediction of floods and the adoption of appropriate mitigation and
protection measures, it is essential to know the hydrological and hydraulic characteristics
of watercourses [3].

The current legislation [4] requires a correlation with international recommendations
and modern practices, as well as the implementation of computer applications for the
normative, to be used by engineers without advanced knowledge of mathematics and
computer science.

In Romania, the method of ordinary moments (MOM) is established, but taking into
account the fact that hydrometric monitoring is deficient, in most cases, the data series
are not older than 25 years, and it is necessary to achieve a regionalization based on the
L-moments method [5,6], which is generally a method less influenced by the length of
the data series and the existence of extreme values. Another solution is the use of partial
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series (POT), which is much more laborious to achieve, requiring additional checks of data
independence and criteria for establishing threshold values [7–9].

The comparative presentation, in this article, of the two methods for estimating
the parameters, MOM and L-moments, for certain distributions used in Romania and
correlated with international regulations [10–12] represents a starting point in achieving
a regionalization based on the L-moments method. It should be emphasized that the
L-moments method has not been presented, analyzed and applied to specific hydrography
in Romania. Switching to the L-moment can be done by linear regressions between the
coefficient of variation based on the MOM (CV) and the coefficient of variation based on
L-moments (L-CV), HCS and L-CS, where HCS is Hazen’s unbiased skewness or Cs adopted
depending on the genesis of the flows, and L-CS is the L-moment’s skewness. The genesis
of the flows represents the generating mechanism of the maximum flows given by the
spatio-temporal conditions of the precipitations and the physiographic characteristics of
the hydrographic basin [13–15].

This article analyses Pearson III, the most used three parameters of statistical distribu-
tion in Romania (parent distribution), as well as LogPearson and GEV distributions, which
are recommended by the Romanian legislation [4]. In addition to these distributions, two
distributions commonly used internationally are analyzed and applied, the LogNormal
and the Wakeby distributions [5,10–12,16–19]. This article describes the latest methods for
estimating distribution parameters using engineering mathematics software, by present-
ing, for the first time, some expressions of the functions, moments and frequency factors,
facilitating the ease of use of these distributions.

Thus, novelty elements, such as the Pearson III expressions of the probability density
function using the dgamma built-in function, the cumulative probability function using
pgamma and pchisq built-in functions, the quantile function expressed with qgamma
and qchisq functions and the form of the L-skewness coefficient expressed with ibeta and
pbeta built-in functions; the LogPearson III expressions of the probability density func-
tion using the dgamma function, the cumulative probability function using the pgamma
function, the quantile function expressed with the qgamma function, the form of the three
L-moments and the expression of the frequency factor; the GEV expression for the third
L-moment; the LogNormal expressions of the probability density function using the dnorm
built-in function and dlnorm function, the cumulative probability function (using pnorm,
plnorm and cnorm functions) and the expressions of the three conditions for L-moments
using the quantile function and the Wakeby expressions for high order moments and the
frequency factor.

All of these novelty elements help hydrology researchers understand and apply the
processes behind dedicated softwares, in which they select some options without knowing
the mathematics behind them. We consider that the use of these kinds of softwares (not
knowing the mathematics behind them) is not beneficial in the long run.

2. Flood Frequency Analysis—Determination of Maximum Flows

In Romania, the series of maximum flows used to estimate the parameters of statistical
distributions are those of the annual maximum series (AM). A disadvantage of this series
is that the values resulting from the theoretical distributions are conservative and, in some
cases, exaggerated, especially in the field of low probabilities, and there are underestimated
values for exceeding probabilities higher than 80%. The probability of exceeding 80%
has a special importance because, according to Romanian legislation Order no. 326/2007,
it represents a criterion for determining the bankfull channel. Currently, according to
Romanian legislation Order no. 2.115/2021, the annual probability of exceeding 50% is
used, but it is too high for mountain river areas.

The annual maximum series consists of the values of the maximum flows charac-
terizing each hydrological year. The advantage of this analysis is the certainty of data
independence. Large datasets with length n ≥ 20 [12–15] are required for these analy-
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ses. Based on these considerations, it is necessary to impose an analysis based on the
L-moments method.

The determination of the maximum flows was carried out in stages, according to
Figure 1. The verification of the character of outliers, normality and homogeneity were
carried out in the data-curation phase.
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Figure 1. Methodological approach.

In the next section, the theoretical distributions used in this article for the calculation
of the maximum flows are presented [5,16,17,19]. Only the notation of MOM and L-
moments will be used to represent the two methods of estimating the parameters of
statistical distributions.

2.1. Pearson III Distribution (PE3)

Pearson III distribution is a particular case of the four-parameter exponential gamma
distribution (FPEGD) under the condition of b = 1. The probability density function of
FPEGD is [20]:

f(x) =
βα(x− γ)

α
b−1

β · Γ(α) · exp
(
−x− γ

β

) 1
b

(1)
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The probability density function, f(x); the complementary cumulative distribution
function, F(x), and quantile function, x(p), of the Pearson III distribution are:

f(x) =
(x− γ)α−1

βα · Γ(α) · exp
(
−x− γ

β

)
=

1
β
· dgamma

(
x− γ

β
,α
)

(2)

F(x) = 1− 1
β · Γ(α) ·

x∫
γ

(
x− γ

β

)α−1

· exp
(
−x− γ

β

)
dx =

Γ
(
α, x−γ

β

)
Γ(α)

(3)

F(x) = 1− pgamma
(

x− γ

β
,α
)
= 1− pchisq

(
2 · x− γ

β
, 2 · α

)
(4)

x(p) = γ+ β · qgamma(1− p,α) = µ+ σ · qgamma(1−p,α)−α√
α

= γ+ β · qchisq(1− p, 2 · α) = µ+ σ ·
(

qchisq(1−p,2·α)
2·
√
α

−
√
α
) (5)

where α,β,γ are the shape, the scale and the position parameters, with conditions
γ < x < ∞ if β > 0 or −∞ < x < γ if β < 0 and α > 0; µ,σ represent the mean
and standard deviation.

Appendix C presents the built-in mathematical functions in Mathcad.

2.2. LogPearson Distribution (LP3)

The probability density function, f(x); the complementary cumulative distribution
function, F(x), and the quantile function, x(p), of the LogPearson distribution are:

f(x) =
(ln(x)− γ)α−1

x · βα · Γ(α) · exp
(
− ln(x)− γ

β

)
=

1
β · x · dgamma

(
ln(x)− γ

β
,α
)

(6)

F(x) =
Γ
(
α, ln(x)−γ

β

)
Γ(α)

= 1− pgamma
(

ln(x)− γ

β
,α
)

(7)

x(p) = exp(γ+ β · qgamma(1− p,α)) (8)

where α,β,γ are the shape, the scale and the position parameters. For case β > 0, the
quantile takes the form of x(p) = exp(γ+ β · qgamma(p,α)).

2.3. Generalized Extreme Value Distribution (GEV)

The probability density function, f(x); the complementary cumulative distribution
function, F(x), and the quantile function, x(p), of the GEV distribution are [17]:

f(x) =
(

1− α

β
· (x− γ)

) 1
α−1
· 1
β
· exp

(
−
(

1− α

β
· (x− γ)

) 1
α

)
(9)

F(x) = 1− exp

(
−
(

1− α

β
· (x− γ)

) 1
α

)
(10)

x(p) = γ+
β

α
· (1− (− ln(1− p))) (11)

where α,β,γ are the shape, the scale and the position parameters; x <
(
γ+ β

α

)
if α > 0,

and x >
(
γ+ β

α

)
if α < 0.
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2.4. LogNormal Distribution (LN3)

The probability density function, f(x); the complementary cumulative distribution
function, F(x), and the quantile function, x(p), of the LN3 distribution are:

f(x) =
exp

(
− (ln(x−γ)−α)2

2·β2

)
(x−γ)·β·

√
2·π = 1

x−γ · dnorm(ln(x− γ),α,β)

= dlnorm(x− γ,α,β)
(12)

F(x) = 1− 1
2 ·
(

erf
(

1√
2·β · (ln(x− γ)− α)

)
+ 1
)
= 1− pnorm(ln(x− γ),α,β)

= 1− cnorm
(

ln(x−γ)−α
β

)
= 1− plnorm(x− γ,α,β)

(13)

x(p) = γ+ exp(α+ β · qnorm(1− p, 0, 1)) = γ+ qlnorm(1− p,α,β) (14)

where α,β,γ are the shape, the scale and the position parameters; µ,σ represent the mean
and standard deviation. There are also other forms of expression of the functions [16,17,19].

2.5. Four-Parameters Wakeby Distribution (WK4)

The four-parameters Wakeby distribution represents an alternative to the LogNor-
mal distribution. The four-parameters Wakeby distribution has no form for density and
cumulative function, being classified as a quantile function.

The quantile function of WK4 distributions is [5,17]:

x(p) =
α

β
·
(

1− pβ
)
− γ

δ
·
(

1− p−δ
)

(15)

where α,γ are the scale parameters, and β, δ are the shape parameters.

3. Method of Parameters Estimation

In this article, two methods of parameters estimation are studied: the MOM and
L-moments methods.

3.1. Method of Ordinary Moments (MOM)

In the MOM, the function parameters are obtained from the formulas expressed for
the expected value, variance and skewness. In the case of the four parameters Wakeby
distribution, it is necessary to express kurtosis as an additional condition.

The formulas for these indicators can be obtained according to the central moments or
depending on the raw moments, as follows [17,21,22]:

expected value : µ = m1 = m′1 (16)

variance : σ2 = m2 = m′2 −
(
m′1
)2 (17)

skewness : γ1 =
m3

m23/2 =
m′3 − 3 ·m′2 ·m′1 + 2 ·

(
m′1
)3[

m′2 −
(
m′1
)2
]3/2 (18)

kurtosis : γ2 =
m4

m22 =
m′4 − 4 ·m′3 ·m′1 + 6 ·m′2 ·

(
m′1
)2 − 3 ·

(
m′1
)4[

m′2 −
(
m′1
)2
]2 (19)

E[xr] = m′r =
∞∫
−∞

xr · f(x)dx, which represents the raw moment of the r order, and

γ1 = ξ · Cv, in which ξ is chosen depending on the origin of the flows, namely, 2 if
the flows come exclusively from the melting of snow, 3 if the flows have a mixed origin of
melting snow and rain and 4 if the flows come exclusively from rain [13–15].
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3.1.1. Pearson III Distribution

The formulas for expected value, variance and skewness are as follows [10,16,17]:

expected value : µ = γ+ α · β (20)

variance : σ2 = α · β2 (21)

skewness : γ1 =
2√
α

(22)

3.1.2. LogPearson Distribution (LP3)

The formulas for expected value, variance and skewness are [16]:

expected value : µ =
exp(γ)
(1− β)α

(23)

variance : σ2 = exp(2 · γ) ·
(

1
(1− 2 · β)α

− 1

(1− β)2·α

)
(24)

skewness : γ1 =

1
(1−3·β)α

− 3
(1−2·β)α·(1−β)α

+ 2
(1−β)3·α(

1
(1−2·β)α

− 1
(1−β)2·α

) 3
2

(25)

3.1.3. Generalized Extreme Value Distribution (GEV)

The formulas for expected value, variance and skewness have the following expres-
sions [6,17]:

expected value : µ = γ+
β

α
· (1− Γ(α+ 1)) (26)

variance : σ2 =
β2

α2 ·
(

Γ(2 · α+ 1)− Γ(α+ 1)2
)

(27)

skewness:

γ1 = sign(α) · 3 · Γ(2 · α+ 1) · Γ(α+ 1)− Γ(3 · α+ 1)− 2 · Γ(α+ 1)3√(
Γ(2 · α+ 1)− Γ(α+ 1)2

)3
(28)

3.1.4. LogNormal Distribution (LN3)

The formulas for expected value, variance and skewness are [6,16,17]:

expected value : µ = γ+ exp
(
α+

1
2
· β2

)
(29)

variance : σ2 = exp
(
β2 + 2 · α

)
·
(

exp
(
β2
)
− 1
)

(30)

skewness : γ1 = 3 ·
√

exp
(
β2
)
− 1 +

(√
exp

(
β2
)
− 1

)3

(31)

3.1.5. Wakeby Distribution (WK4)

Due to complicated expressions, only the formulas for expected value and variance
are presented in this section [17].

The expression for skewness is presented in Appendix B.
The expression for kurtosis is obtained based on the raw moments presented in

Appendix B.
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The WK4 equations are:

expected value : µ =
α

β+ 1
− γ

δ− 1
(32)

variance:
σ2 = 2·α2

(β+1)·(2·β+1) −
(

α
β+1 −

γ
δ−1

)2

− 2·γ·(2·α·δ2−((β+1)·γ+2·α·β+5·α)·δ+(β2+2·β+1)·γ+α·β+2·α)
(β+1)·(δ−(β+1))·(δ−1)·(2·δ−1)

(33)

3.2. Method of L-Moments

Method of L-Moments is based on linear combinations of probability-weighted mo-
ments [5,17]. The flow data must be in ascending order. The formulas for sample L-
moments are defined in Appendix A.

3.2.1. Pearson III Distribution

The equations necessary to obtain the exact solution for the parameters of the PE3
function are the following:

L1 = γ+ α · β (34)

L2 =
β · Γ

(
α+ 1

2

)
√
π · Γ(α)

(35)

τ3 = 3 ·
(

2 · ibeta
(

1
3

,α, 2 · α
)
− 1
)

or τ3 = 3 ·
(

2 · pbeta
(

1
3

,α, 2 · α
)
− 1
)

(36)

where ibeta(a, x, y) and pbeta(x, s1, s2) are explained in Apendix C.
An approximate solution of the parameters depending on the parameter α can also be

adopted, obtained based on the solution presented by Hosking [5] and RAO [17].

3.2.2. LogPearson Distribution (LP3)

The exact estimation of the parameters is done based on the following system of
equations, solvable based on the Gauss–Quadrature method:

L1 =

1∫
0

exp(γ+ β · qgamma(1− p,α))dp (37)

L1 − L2

2
=

1∫
0

exp(γ+ β · qgamma(1− p,α)) · pdp (38)

2 · L1 − 3 · L2 + L3

6
=

1∫
0

exp(γ+ β · qgamma(1− p,α)) · p2dp (39)

For β < 0, the inverse form will be qgamma(p,α).

3.2.3. Generalized Extreme Value Distribution (GEV)

The three equations necessary to obtain the exact solution for the parameters of the
GEV function are the following:

L1 = γ− β

α
· (Γ(1 + α)− 1) (40)

L2 = Γ(α) ·
(
1− 2−α

)
· β (41)

L3 = Γ(α) ·
(
1− 2−α

)
· β ·

(
(1− 3−α) · 2

1− 2−α
− 3
)

(42)
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An approximate solution of the parameters depending on the parameter α can also be
adopted, obtained based on the solution presented by Hosking [5] and RAO [17].

3.2.4. LogNormal Distribution (LN3)

The exact estimation of the parameters is performed based on the following system
of equations:

L1 =

1∫
0

γ+ q ln orm(1− p,α,β)dp (43)

L1 − L2

2
=

1∫
0

(γ+ q ln orm(1− p,α,β)) · pdp (44)

2 · L1 − 3 · L2 + L3

6
=

1∫
0

(γ+ q ln orm(1− p,α,β)) · p2dp (45)

An approximate solution of the parameters depending on the parameter β can also be
adopted, obtained based on the solution presented by RAO [17]:

β = 0.999281 · z− 0.006118 · z3 + 0.000127 · z5

unde z =
√

8
3 · qnorm

(
1+τ3

2 , 0, 1
) (46)

α = ln
(

L2
erf(0.5·β)

)
− β2

2 (47)

γ = L1 − exp
(
α+ 0.5 · β2

)
(48)

3.2.5. Wakeby Distribution (WK4)

The WK4 parameters are obtained based on the following formulas [5]:

L1 =
α

β+ 1
− γ

δ− 1
(49)

L2 =
α

(β+ 1) · (β+ 2)
+

γ

(δ− 2) · (δ− 1)
(50)

L3 = − γ · (δ+ 1)
(δ− 3) · (δ− 2) · (δ− 1)

− α · (β− 1)
(β+ 1) · (β+ 2) · (β+ 3)

(51)

L4 = − γ · (δ+ 1) · (δ+ 2)
(δ− 4) · (δ− 3) · (δ− 2) · (δ− 1)

+
α · (β− 2) · (β− 1)

(β+ 1) · (β+ 2) · (β+ 3) · (β+ 4)
(52)

4. Confidence Intervals

In the previous Romanian normatives, the statistical distributions were selected that
for probabilities of exceeding less than 0.1%, the values did not exceed ±20% of the value
determined by genetic methods [1]. This approach is difficult to apply, because there are no
well-founded hydrological syntheses and regionalizations that are valid for this domain
of small probabilities. Thus, it is recommended to use a reference distribution, which is
scientifically confirmed over time, and to report on it using the confidence interval. The
confidence interval for the MOM is defined, in the World Meteorological Organization
(WMO 718) [10], for a statistical distribution, as the 90% confidence level. This assumes that
the confidence interval is variable depending on the exceedance probability and standard
error specific to each statistical distribution. The confidence limits represent the upper and
lower bounds of the interval. The confidence interval can be expressed in three ways: with
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the frequency factor (KT), with the standard error of the theoretical distribution or based
on the Kite equation [17].

In this article, only the confidence interval based on the frequency factor is analyzed,
due to the ease of application in a normative.

x(p,α, KT) = µ+


KT ±

√
KT

2 −
(

1− qnorm( 1−α
2 ,0,1)

2

2·(n−1)

)
·
(

KT
2 − qnorm( 1−α

2 ,0,1)
2

n

)
1− qnorm( 1−α

2 ,0,1)
2

2·(n−1)

 · σ (53)

where KT is the frequency factor of the theoretical distribution, and α is the confidence
level; µ represents the arithmetic mean, and σ is the standard deviation.

The frequency factor of theoretical distributions analyzed for MOM is:

- Pearson III:

KT =
qgamma(1− p,α)− α√

α
(54)

The frequency factor can also be expressed with the qchisq function or, for approximate
solutions, using the Kite, Wilson Hilferty of Cornish–Fisher frequency factor [17].

- LogPearson:

KT =
exp(γ+ β · qgamma(1− p,α))− exp(γ) ·

(
1

(1−β)α

)
√

exp(2 · γ) ·
(

1
(1−2·β)α

− 1
(1−β)2·α

) (55)

- Generalized extreme value distribution (GEV):

KT = sign(α) · (Γ(1 + α)− (− ln(1− p))α)

(Γ(1 + 2 · α)− Γ(1 + α))0.5 (56)

- LogNormal distribution (LN3):

KT =
q ln orm(1− p,α,β)− exp

(
α+ 1

2 · β
2
)

√(
exp

(
β2
)
− 1
)
· exp

(
β2 + 2 · α

) (57)

- Wakeby distribution (WK4):

KT =
α ·
(

1−pβ

β − 1
β+1

)
− γ ·

(
1−p−δ

δ − 1
δ−1

)
√√√√√√γ·


4 · α · δ2 − [γ · (β+ 1) + 6 · α] · δ+

γ ·
(
β2 + 2 · β+ 1

)
+ 2 · α


(β+1)·(δ−β−1)·(δ−1)2·(2·δ−1)

+ α2

(β+1)2·(2·β+1)

(58)

For situations where the quantile is derived by only two parameters, which generally
refer to the mean and the dispersion, a standard error is obtained depending on the CV. The
confidence interval obtained is a simplification, being easy to determine and narrow (small).
The confidence interval with the derivation of skewness is very wide for low probabilities.
Because, in Romania, the skewness is chosen according to the genesis of the maximum
flows, it is recommended to apply the confidence interval that does not take into account
the errors given by the skewness. In Romania, the confidence interval (depending on the
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standard error) can be defined with the Pearson III distribution by choosing the skewness
coefficient from regionalization studies regarding the origin of the maximum flows.

5. Case Studies

The case studies presented (Figure 2) consist of determining the maximum flows in
two rivers with different geneses of maximum flows. The study on the Ialomita river uses
data from the Romanian legislation NP 129/2011 [4], because the influence of the proposed
improvements on official data can be observed.
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The verification of the proposed solutions was performed on other data series, espe-
cially on mountain rivers that have a natural regime of high flows, represented by case
study number 2 on the Prigor river.

The distribution functions presented in the NP 129/2011 were used and added to
the distributions frequently used in international recommendations [10–12,23–27]. All
the calculations were performed in Mathcad Prime 7 for the transparency of algorithms
and methods.

5.1. Tandarei Section, Ialomita River, Romania

The Ialomita river, code XI, is part of the Danube river basin, being its left tributary.
Located in the southern part of Romania, it has a total length of 417 km, a river basin area
of 10,350 km2 and an average slope of 15%, an average altitude of 327 m and a sinuosity
coefficient of 1.88 [28]. The Tandarei section is situated about 20-km upstream of the
confluence with the Danube river.

In Table 1, the data series (observed data) is presented. The data series has a length
of 33 records. The mean (µ), the standard deviation (σ), the coefficient of variation (Cv),
the skewness (γ1) and the kurtosis (γ2) for observed data were 224 m3/s, 118 m3/s, 0.527,
0.327 and −0.926. The sample L-moments ratio L-Cv, L-skew and L-kurt were 0.306, 0.089
and 0.025.

Table 1. Observed data from the Tandarei station.

Data [yr] 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
Flow [m3/s] 220 136 152 381 401 273 159 405 346 161 89
Data [yr] 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
Flow [m3/s] 106 308 47.5 65.3 306 85 228 72 224 317 424
Data [yr] 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
Flow [m3/s] 341 180 94.5 270 192 103 251 468 237 249 104
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Taking into account the origin of the flows, a coefficient of 2 (γ1 = 2 ·Cv = 1.054) was
used to establish the skewness for estimating the parameters with the MOM. Table 2 shows
the values of the distributions parameters.

Table 2. Parameter estimates by the MOM and L-moments.

Frequency Distribution
MOM L-Moments

α β γ δ α β γ δ

Pearson III 3.602 62.2 0 - 13.36 33.6 −224.2 -
LogPearson 18.243 −0.131 7.65 - 2.852 −0.412 −6.396 -

GEV 0.015 93.8 171 - 0.129 110 173.2 -
LogNormal 5.801 0.329 −124 - 6.48 0.183 −440.7 -

Wakeby 117 0.063 1187 −9.49 3.06 × 102 0.672 3.8 × 1011 −8.5 × 109

Figures 3–7 show the frequency curves using the annual maximum flow for the
Ialomita river. For plotting positions, the Nguyen formula was used [29].
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In Table 3, the values for the frequency distribution are estimated for the two
methods analyzed.

Table 3. Comparison of the estimated values for the usual probability for the Ialomita river.

P

Frequency Distributions

Pearson III LogPearson GEV LogNormal Wakeby

MOM L MOM L MOM L MOM L MOM L

[%] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s]

0.01 941 828 909 582 979 765 999 851 948 495
0.1 768 699 757 560 787 675 789 711 785 492
1 585 557 585 511 588 554 586 560 596 475
5 446 443 448 441 443 444 443 443 446 435

40 233 244 232 247 234 244 234 244 230 250
80 123 118 123 111 126 119 126 120 136 104
95 70.1 43.1 72.5 49.1 67.5 43.5 67.4 42.8 54.3 56.3

5.2. Prigor Section, Prigor River, Romania

The Prigor river is a tributary of the Nera river, code VI, which is part of the Danube
river basin, being its left tributary. Located in the southwestern part of Romania, the
Nera river has a total length of 143 km, a river basin area of 1380 km2 and an average
slope of 0.9%. The Prigor river has a length of 33 km, with an average slope of 22 ‰, a
sinuosity coefficient of 1.83, an average altitude of 713 m and a hydrographic basin area
of 153 km2 [28]. In Table 4, the observed data for the Prigor river are presented. The data
series has a length of 21 records. The mean (µ), the standard deviation (σ), the coefficient of
variation (Cv), the skewness (γ1) and the kurtosis (γ2), are 33.9 m3/s, 23.0 m3/s, 0.679, 1.19
and 0.592. The sample L-moments ratio L-Cv, L-skew and L-kurt are 0.370, 0.312 and 0.153.
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Table 4. Observed data from the Prigor station.

Data [yr] 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
Flow [m3/s] 35 19.9 22.1 11.6 80.3 88 51.6 72.2 16.2 42.6 28.5
Data [yr] 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Flow [m3/s] 12.8 31.2 24.1 52.2 20.2 18.9 6.49 24.9 15 36.6

In Table 5, the values of the parameters for each frequency distribution for the two
methods of estimation are displayed. Taking into account the mixed origin of the flows, a
coefficient of 3 (γ1 = 3 ·Cv = 2.04) was used to establish the skewness.

Table 5. Parameter estimates by the MOM and L-moments.

Frequency Distribution
MOM L-Moments

α β γ δ α β γ δ

Pearson III 0.964 23.4 11.3 - 1.139 23.1 7.5 -
LogPearson 187 −0.047 12.1 - 3461 0.012 −36.6 -

GEV −0.112 15.1 23.3 - −0.210 14.3 21.9 -
LogNormal 3.482 0.559 −4.13 - 3.35 0.654 −1.27 -

Wakeby 299 23.7 21.1 0.03 3776 453 26.7 −0.044

Figures 8–12 show the frequency curves using the annual maximum flow for the Prigor
river. For plotting positions, the Weibull formula was used.
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In Table 6, the estimated values for the frequency distribution are displayed, for the
two methods analyzed.
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Table 6. Comparison of the estimated values for usual probability for the Prigor river.

P

Frequency Distributions

Pearson III LogPearson GEV LogNormal Wakeby

MOM L MOM L MOM L MOM L MOM L

[%] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s] [m3/s]

0.01 224 229 249 352 266 424 255 322 226 210
0.1 170 176 177 226 180 243 178 213 171 167
1 117 121 116 132 114 132 115 129 117 119
5 79.8 82.9 77.7 82.6 76.5 80.8 77.4 81.9 79.6 83.2

40 31.8 32.3 33.0 31.8 33.8 32.2 33.3 32.2 32.9 32.3
80 16.1 14.4 16.2 15.2 16.3 15.5 16.2 15.1 16.2 14.3
95 12.3 9.34 9.35 8.85 7.72 7.94 8.84 8.40 12.8 9.70

6. Discussion

For the current situation of hydrology in Romania, it is recommended to estimate the
parameters by the MOM, because there are studies, including regionalization, based on the
coefficient of variation and skewness. The transition to L-moments or LH-moments [30]
can only be done after regionalization studies are conducted based on the L-moment ratio
diagrams, which requires considerable but necessary efforts.

In this article, the maximum flows were determined for two rivers that have different
origins of their maximum flows, through the MOM and L-moments, using statistical
distributions suitable for Romania. The data series of maximum annual flows, according to
Bulletin 17C [12], must have a minimum of 20 records. In the case of the Prigor river, the
data series has a length of 21 records, and in the case of the Ialomita river, the data series
has a length of 33 records.

Pearson III was chosen as the reference statistical distribution for the case studies.
This was chosen for two reasons: the long-term use in Romania and the values close to
the L-moments method with the MOM. The relative mean error (RME) and the relative
absolute error (RAE) criteria [31] were used to compare the results, as well as the framing
of the quantile values in the confidence interval of the reference distribution.

RME =
1
n
·

√√√√ n

∑
i=1

(
xi − x(p)

xi

)2

(59)

RAE =
1
n
·

n

∑
i=1

∣∣∣∣xi − x(p)
xi

∣∣∣∣ (60)

where n, xi, x(p) represent the sample size, the observed value and the estimated value for
a given probability.

The results for the RME and RAE are presented in Tables 7 and 8.

Table 7. RME and RAE score values for the Ialomita river.

Frequency Distribution
RME RAE

MOM L-Moments MOM L-Moments

Pearson III 0.0205 0.0338 0.0934 0.1038
LogPearson 0.0208 0.0191 0.0969 0.0643

GEV 0.0227 0.0340 0.0233 0.0183
LogNormal 0.0219 0.0349 0.0990 0.1067

Wakeby 0.0332 0.0103 0.1426 0.0418
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Table 8. RME and RAE score values for the Prigor river.

Frequency Distribution
RME RAE

MOM L-Moments MOM L-Moments

Pearson III 0.0473 0.0262 0.1039 0.0759
LogPearson 0.0280 0.0213 0.0893 0.0673

GEV 0.0237 0.0204 0.0149 0.0175
LogNormal 0.0258 0.0211 0.0900 0.0670

Wakeby 0.0284 0.0318 0.0770 0.1047

The validation of some distributions using these two criteria is not recommended,
because they are determined by the differences only in the probability domain of the
observed values, so it is recommended to approach validation with the criterion of the
confidence interval for the MOM. The results of the performance indicators for L-moments
were presented to note that their values were very small, but the significance was not valid.

For the Prigor river, where there is certainty of the natural registration of hydrometric
data, the results were similar in the case of estimating the parameters with the MOM,
with all distributions falling within the confidence interval of the reference distribution.
For the L-moments method, all distributions fell within the confidence interval up to the
probability of exceeding 0.1%, except for the GEV, which fell within 0.5%. Poor results for
low probabilities are too influenced by small annual maximum flows in the case of a short
data series [30].

Figure 13 shows the statistical distributions analyzed compared to the chosen reference
distribution for the Prigor case study.
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For the Ialomita river (Tandarei hydrometric station), the observed data were in the
influenced regime, and the reconstruction of the data in the natural regime was with
relatively large errors. In general, for large river basins and long river lengths, especially in
low-altitude areas, there is also a high degree of natural attenuation of maximum flows.
Furthermore, in this case, the results with the MOM were in accordance with NP 129/2011,
all falling within the confidence interval of the reference distribution. For the L-moments
method, the Wakeby, Log-Pearson and GEV distributions gave different shapes, possibly
due to the high degree of attenuation of the maximum flows, with there being a threshold
of the maximum values at low probabilities.

Figure 14 shows the statistical distributions analyzed compared to the chosen reference
distribution for the Ialomita case study.
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In the case of the Prigor river, the L-skewness (τ3) and L-kurtosis (τ4) values of the
observed data did not differ much from those of the characteristic values of the τ4–τ3 varia-
tion of the analyzed theoretical distributions (Figure 15). Thus, all analyzed distributions
had a similar graphic appearance.
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L-skewness.

The resulting values for τ3 and τ4 for the two rivers are presented in Table 9.

Table 9. The resulting values for τ3 and τ4.

Distributions
Prigor Ialomita

τ3 τ4 τ3 τ4

PE3 0.312 0.160 0.089 0.125
LPE3 0.312 0.196 0.089 0.070
GEV 0.312 0.222 0.089 0.124
LN3 0.312 0.199 0.089 0.129
WK4 0.312 0.153 0.089 0.025
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In the case of the Ialomita river, the τ3 and τ4 values of the observed data differed
greatly from those of the characteristic values of the τ4–τ3 variation of the analyzed theoret-
ical distributions. Thus, for the three-parameter distributions, with the calibration being
done only as a function of τ3, the L-kurtosis τ4 took values consistent with the variation of
τ4–τ3 of the theoretical distribution, disregarding the τ4 of the observed data, because for
larger moments, they became unstable, making the resulting values unrealistic [32]. The
Wakeby distribution is a distribution that was introduced in the flood frequency analysis
in order to fulfil the “separation effect”, described by Matalas et al. 1975 [33], as much as
possible, namely, to carry out an analysis so that the maximum flows were not excessively
influenced by much of the small flows. The Wakeby distribution separates the right-hand
side from the left-hand side of the distribution [33]. The Wakeby distribution has the prop-
erty of a very thick left-hand tail (high flows) and a right-hand tail that is thick (small flow)
enough to decrease the average skew [33], which makes the middle part of the distribution
steeper than traditional skewed curves.

In the case of the four-parameter Wakeby distribution, the resulting values of the
parameters matched those of a particular case of the distribution, namely, the generalized
Pareto [17]. Thus, in the particular case of the Ialomita river dataset, the Wakeby distribution
turned into the generalized Pareto distribution, which has the expression of the quantile
function, as follows:

x(p) = γ+
β

α
· (1− pα) (61)

The term on the right of the Wakeby quantile has a constant value of −40.9 m3/s,
which, due to the “–“ sign in front of the term, acquires positive values. The value of this
term represents the value of the position parameter γ from the Pareto quantile, with the
rest of the terms remaining unchanged. It can also be seen on the graph that the value of τ4
corresponding to τ3 is that of the particular Wakeby distribution, namely, the generalized
Pareto, respecting the τ4 of the observed data.

In the case of the Log-Pearson distribution, calculated based on the moments obtained
from the density function, it had a similar appearance to the Wakeby distribution, but
the latter had, in some cases, better results [32]. The τ4–τ3 variation in the case of the
LogPearson (Figure 16) distribution was varied depending on the asymmetry values in the
log space [34].
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The graphs between τ3 and τ4 also represent a criterion for choosing the best distribu-
tions to use in achieving a regionalization based on L-moments [5,17].

7. Conclusions

This article briefly described the most used statistical distributions for the maximum
discharge and the latest methods for estimating the distribution parameters using engineer-
ing mathematical software.

The use of the Pearson III distribution in Romania must be maintained for the MOM,
because the estimation of the parameters was simple and gave good results. A statistical
distribution that can be a good alternative to Pearson III is LogNormal (LN3), being the
most widely used distribution in Europe for maximum flows [10,24].

The introduction of other statistical distributions should be done after the regional-
ization studies are conducted, and it should be a simpler alternative, if this proves to be
the case.

The method of estimating the parameters must remain the method of ordinary mo-
ments, because it has proven to be effective for Romania. The adoption of other estimation
methods (L-moments) is useful but requires a long transition period, in which the two
methods must be used in parallel.

In the regulations for calculating the maximum flows, it is recommended that statistical
distributions should be presented in full, i.e., the functions of density, distribution and
quantile, where they exist, as well as the inclusion of computer applications for estimating
the parameters of statistical distributions and calculation examples.

The calibration of the three-parameter distributions is easy with the method of ordi-
nary moments. Since asymmetry does not characterize short data strings, it is generally
correct, highlighting two methods. A method of correcting the asymmetry according to the
genesis of the data was presented in this article, which is based on choosing the asymmetry
as a multiple of the coefficient of variation. Another method is to use skewness correction
coefficients depending on the relatively short length of the observed data string. A disad-
vantage of this method is that it is not possible to calibrate the kurtosis function (non-linear
function), because it has large differences for a sample compared to that of a population.

The L-moments for the samples were very close to those of the population; thus, no
correction of τ3 and τ4 was necessary, being thus more robust and less influenced by the
effects of sampling variability [5] due to the fact that the L-moments are linear functions.
The use of a four-parameter distribution allows calibration as a function of τ3 and τ4, which
is an advantage in achieving a regionalization based on L-moments.
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Abbreviations

AM annual maximum
POT peaks-over-threshold
MOM method of ordinary moments
L-moments represent a method of parameters estimation; in Tables 3 and 6, they are noted with L.
µ expected value; arithmetic mean
σ standard deviation
CV coefficient of variation
CS coefficient of skewness; skewness
L-CV coefficient of variation based on the L-moments method
L-CS coefficient of skewness based on the L-moments method
PE3 Pearson III distribution
GEV generalized extreme value distribution
LP3 Log-Pearson III distribution
LN3 LogNormal with a three-parameters distribution
WK4 four-parameters Wakeby distribution
ξ coefficient chosen depending on the origin of the flows
FPEGD four-parameter exponential gamma distribution
f(x) probability density function
F(x) complementary cumulative distribution function
x(p) quantile function; p represents the exceedance probability.
RAE relative absolute error
RME relative mean error

Appendix A. The Formula for Sample L-Moments

For calculating the sample L-moments, the observed data, xi, must be in ascending
order.

The sample L-moments are:

L1 = b0¯first L−moment

L2 = 2 · b1 − b0¯second L−moment

L3 = 6 · b2 − 6 · b1 + b0¯third L−moment

L4 = 20 · b3 − 30 · b2 + 12 · b1 − b0¯fourth L−moment

where b0, b1, b2, b3 represent natural estimators, expressed as b0 = 1
n ·

n
∑

i=1
xi

b1 =
1
n
·

n

∑
i=1

xi ·
i− 1
n− 1

b2 =
1
n
·

n

∑
i=1

xi ·
i− 1
n− 1

· i− 2
n− 2

b3 =
1
n
·

n

∑
i=1

xi ·
i− 1
n− 1

· i− 2
n− 2

· i− 3
n− 3

where n is the length of th data series.
Using the L-moments, the coefficients of variation, (τ2), skewness (τ3) and kurtosis

(τ4) are defined as [4,16]:
τ2 = L2

L1
, which is the L-CV;

τ3 = L3
L2

, which is the L-Skewness;

τ4 = L4
L2

, which is the L-Kurtosis
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Figure A1 shows the variation of kurtosis (excess) depending on the skewness [16],
obtained with the L-moments method, for certain theoretical distributions often used in
hydrology and in this article.
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Appendix B. The First Four Raw Moments for the Wakeby Distribution

The first four raw moments of the WK4 distribution are:

m′1 =
α

β+ 1
− γ

δ− 1

m′2 = 2·α2

(β+1)·(2·β+1)−
2·γ·(2·α·δ2−((β+1)·γ+2·α·β+5·α)·δ+(β2+2·β+1)·γ+α·β+2·α)

(β+1)·(δ−(β+1))·(δ−1)·(2·δ−1)

m′3 = 3·α3

(β+1)·(2·β+1)·(3·β+1) −
6·γ[

(β+ 1)·(2·β+ 1)·(δ− 2·β− 1)·(δ− β− 1)·
(δ− 1)·(2·δ− β− 1)·(2·δ− 1)·(3·δ− 1)

] ·


12·α·δ5 − δ4·
[
γ·(12·α·β+ 6·α) + 42·α2·β+ 52·α2]+

δ3·
[
γ2·
(

4·β2 + 6·β+ 2
)
+ α·γ·(2·β+ 1)·(21·β+ 26) + α2·

(
42·β2 + 143·β+ 91

)]
−

δ2·

 γ2·
(

14·β3 + 31·β2 + 22·β+ 5
)
+ α·γ·(2·β+ 1)·

(
21·β2 + 61·β+ 35

)
+

α2·
(

12·β3 + 83·β2 + 151·β+ 70
) +

δ·

 γ2·(β+ 1)2·(2·β+ 1)·(7·β+ 4) + α·γ·(2·β+ 1)·
(

6·β3 + 28·β2 + 45·β+ 18
)
+

α2·
(

10·β3 + 47·β2 + 63·β+ 24
) −

γ2·(β+ 1)3·(2·β+ 1)2 − α·γ·(2·β+ 1)2·(β3 + 3·β+ 3)− α2·(β+ 1)·(2·β2 + 6·β+ 3)
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m′4 = 24·γ4

(δ−1)·(2·δ−1)·(3·δ−1)·(4·δ−1)−
24·α·γ3·(3·δ−β−2)·(2·δ2−δ·(3·β+6)+β2+2·β+2)

(β+1)·(δ−β−1)·(δ−1)·(2·δ−β−1)·(2·δ−1)(3·δ−β−1)·(3·δ−1)+

24·α2·γ2·


4·δ4 − δ3·(18·β+ 18) + δ2·

(
28·β2 + 66·β+ 33

)
−

δ·
(

18·β3 + 66·β2 + 72·β+ 24
)
+

4·β4 + 18·β3 + 33·β2 + 24·β+ 6


(β+1)·(2·β+1)·(δ−2·β−1)·(δ−β−1)·(δ−1)·(2·δ−2·β−1)·(2·δ−β−1)·(2·δ−1)−

24·α3·γ·(δ−3·β−2)·(δ2−δ·(3·β+2)+2·β2+6·β+2)
(β+1)·(2·β+1)·(3·β+1)·(δ−3·β−1)(δ−2·β−1)·(δ−β−1)(δ−1)+

24·α4

(β+1)·(2·β+1)·(3·β+1)·(4·β+1)

The skewness (γ1) and kurtosis (γ2) are obtained from the formulas presented in
Section 3.1.

Appendix C. Built-In Function Din Mathcad

Γ(x) returns the value of the Euler gamma function of x;
Γ(α, x) returns the value of the incomplete gamma function of x with parameter a;
dgamma(x, s) returns the probability density for value x, for the Gamma distribution;
pgamma(x, s) returns the cumulative probability distribution for value x, for the

Gamma distribution;
qgamma(p, s) returns the inverse cumulative probability distribution for probability

p, for the Gamma distribution;
dnorm(x,α,β) returns the probability density for value x, for the Normal distribution;
pnorm(x,α,β) returns the cumulative probability distribution for value x, for the

Normal distribution;
qnorm(p, 0, 1) returns the inverse standard cumulative probability distribution for

probability p, for the Normal distribution;
cnorm(x) returns the cumulative probability distribution with mean 0 and variance 1,

for the Normal distribution;
dlnorm(x,α,β) returns the probability density for value x, for the LogNormal distri-

bution;
plnorm(x,α,β) returns the cumulative probability distribution for value x, for the

LogNormal distribution;
qlnorm(p,µ,σ) returns the inverse cumulative probability distribution for probability

p, for thee LogNormal distribution;
pchisq(x, d) returns the cumulative probability distribution for value x, for the Chi-

Squared distribution;
qchisq(p, d) returns the inverse cumulative probability distribution for probability p,

for the Chi-Squared distribution;
erf(x) returns the error function;
ibeta(a, x, y), the incomplete Beta function, returns the value of the incomplete beta

function of x and y with parameter a.
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