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Abstract: The wastewater treatment plant of Agnita, Romania was designed with a rotational biologi-
cal contactor system for a population of approximately 9500, but for environmental protection reasons
it must comply with regulations concerning nitrogen and phosphorus designed for larger communi-
ties. In order to achieve the prescribed limits for these pollutants, we have used a 40% FeCl3 solution,
continuously added to the distributor, without changes in flow or equipment. Its use boosts the
removal of ammonia nitrogen, and phosphorus, bringing them within the limits and with reasonable
cost. To determine the ferric chloride to be used we considered, aside from the pollutant load,
the water temperature, and introduced a new parameter: specific removal power that enabled us
to optimize the volume of FeCl3. A major contribution to nitrogen removal was achieved by the
denitrification bacteria favored by the presence of ferric ions, which also precipitate phosphorus. The
results of this study, performed since September 2021, enable us to continue to use this method and
enlarge its application to other plants owned by the local operator.

Keywords: RBC; ammonia; nitrification; denitrification; continuous dripping; ferric chloride; specific
removal power

1. Introduction

To demonstrate the importance of clean water in the 21st century, for mankind and
nature, is almost a tautology due to mankind’s awareness and the huge number of norms,
regulations, and papers on this theme [1], but efforts are still needed to keep waters clean.
Regulators all over the world have issued norms and standards for water quality, and
in Europe they are grouped under the umbrella of Council Directive 91/271/EEC [2]
with its multiple amendments; in Romania it is implemented by the new Law of the
Environment [3], also with multiple amendments and subsequent norms for wastewater
treatment [4,5], which include permitted concentrations when using wastewater treatment
plants (WWTPs) [6], as well as the disposal of the resulting sludge [7].

There are multiple ways of treating wastewater [1]. The core of each plant is the
biological reactor, which mainly converts organic pollutants into harmless compounds,
usually found in sewage sludge [8]. Each approach has its advantages and disadvantages
in terms of cost and efficiency [9,10].

Among the possibilities for treating wastewater, rotating biological contactors (RBCs)
are used mainly for communities with population equivalents (PEs) ranging from 100 to
10,000, but they can also be used for treating several million liters per day [11,12].

For communities larger than 1000 inhabitants modular RBCs are used [13], which
consist of several modules of biodiscs that usually work in parallel.

The efficiency of primary pollutant removal, expressed as biological oxygen demand
(BOD), chemical oxygen demand (COD), and total suspended solids (TSS), depends on
the ability to provide oxygen to the active microorganisms (aeration). In RBCs, the oxygen
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transfer is achieved using cyclical air exposure and renewal of the air–water interfaces
(biofilm), as well as by water trickling back into the tank [14].

Disc rotation mixes the liquid and in addition to oxygen provides the nutrients for the
development of the microorganisms that form the biofilm as well as breaking the biofilm
due to friction, thus resulting in sludge [15].

The advantages of RBCs compared to activated sludge (aeration) equipment are: small
space requirement, simple monitoring and process control, low operational and mainte-
nance costs, high biomass concentration, low excess sludge production, short hydraulic
retention time, high oxygen transfer efficiency, no need for sludge recirculation, resistance
to shock and toxic loads, and compact design [16].

Usually, RBCs are used in communities with less than 10,000 PE, so, at least in Europe,
these WWTPs are not required to comply with regulations regarding the maximum permit-
ted values for nitrogen and phosphorus. The removal of these two pollutants can easily be
achieved in conventional activated sludge plants, where anoxic zones can be designed and
operated [17], but in typical RBCs, achieving this is more complicated, although on the same
disc nitrifying (aerobic) Betaproteobacteria Nitrosomonas and Nitrospira [18] can coexist with
anaerobic ones at the contact zone with the water, closer to the disc surface [19,20]. Re-
garding the populations of anaerobic microorganisms, the literature presents many species
and genera, depending on the type of wastewater and environmental conditions [21]: Co-
mamonas denitrificans [22,23], Acinetobacter sp., Bacillus sp., Diaphorobacter sp., Pseudomonas
sp., Rhodococcus sp., Zobellella sp. [24], Tetrasphaera (which besides denitrification is also a
good phosphate remover) [25], Riemeralla sp., Parabacterioides sp., Candidatus, Accumulibacter
phosphatis [26], Thauera sp., and Paracoccus sp. [27].

Among the best technologies used for nitrogen removal are: moving bed biofilm
reactors (MBBRs), moving bed biofilm reactor-membrane bioreactors (MBBR-MBRs), mov-
ing bed membrane bioreactors (MB-MBRs) and the integrated fixed-film activated sludge
(IFAS) process [28–31]. Recently, a novel technology—anaerobic membrane bioreactors
(AnMBRs)—has gained momentum, with good results in nitrogen removal [32,33].

For the improvement of N removal in RBCs, special techniques and equipment were
conceived, i.e., submerged discs [34,35], transformation into an electrochemical reactor
with heterotrophic–autotrophic denitrification [36], Donnan dialysis [37], or the use of
certain microorganisms, such as the mixotrophic Paracoccus denitrificans that can undertake
simultaneous aerobic carbon oxidation, nitrification, and denitrification [38], or other
autotrophic microorganisms [16]. Good results in denitrification within RBCs have been
demonstrated by processes like anaerobic ammonium oxidation (AnAmmOx) coupled
with nitrite reduction and denitrifying anaerobic methane oxidation (DAMO) [17].

Regardless of the biological reactor type, a WWTP is a “captive customer” having
almost no means to control the influent, which continuously changes day by day and even
hour by hour. On the other hand, strictly regulated effluent parameters require a thorough
operation of the plant, with reduced costs. Thus, the operators are supposed to maintain the
plant in continuous function and, if possible, to improve its economic and environmental
efficiency, and this is what we have tried at Agnita.

2. Materials and Methods

The town of Agnita is situated in the middle of Romania (Sibiu County), on the banks
of the Hartibaciu River, at an altitude of 490 m (GPS coordinates 45◦58′23′′ N, 24◦37′2′′ E),
with a population of 8732 inhabitants according to the 2011 census, a decrease from the
2002 census value of 10,894.

For environmental protection, and in accordance with European and Romanian laws,
in 2010 the design and construction of a new WWTP started on behalf of the local operator,
Apa Tarnavei Mari S.A. (English: Water of Tarnava Mare River Co.) in Medias. The plant
was planned for 9500 PE, on the right bank of the Hartibaciu, at the southwestern town
limits, and was commissioned in June 2014. From the very beginning, the WWTP was
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equipped with a supervisory control and data acquisition (SCADA) system that monitors
the main parameters and acts accordingly.

The only major non-residential wastewater generators are a company manufacturing
charging cables and solenoid systems, a producer of wood parquet flooring, and the city
hospital. Their average cumulative outflow is 64.8 m3/day (2000 m3/month), which is less
than 7% of the treated wastewater (data not shown). According to the reports, only the
wastewater generated by the hospital sometimes exceeds the maximal permitted limits for
BOD and nitrogen, but the situation is known, and it will be remediated.

The main parameters for the design and operation of the WWTP were:

• Daily average inflow: 2607 m3 (dry weather);
• Daily maximal inflow: 2971 m3 (35 L/s);
• Q max during rain: 540 m3/h (150 L/s);

For planning the multi-annual inflow, concentration and load values were considered.
Their mean values [39] are shown in Table 1.

Table 1. Means of the multi-annual inflow concentration and load values.

Inflow Concentration Inflow Load

BOD 220 mg/L 573 kg/day
COD 440 mg/L 1147 kg/day
TSS 256 mg/L 667 kg/day

TKN 45 mg/L 118 kg/day
Total P 9 mg/L 24 kg/day

The schematic flow of this WWTP is presented in Figure 1.
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Sewage water is pumped into the WWTP and then it flows gravitationally until it is
discharged in the Hartibaciu River.
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The screen, the sand and fat remover, and the primary clarifier act as mixers and
buffers, hence the load (concentration × flow) of the water entering the RBCs is quite
constant over time.

The FeCl3 solution is added before distribution; it then enters the biodiscs, which have
the main characteristics presented in Table 2.

Table 2. Biodisc characteristics.

Characteristic Value Characteristic Value

Type of RBC Modular Disc diameter (mm) 3000
Number of lines 4 Disc thickness (mm) 1.5

Line volume (m3) 58.87 Distance between discs (mm) 20
Number of modules per line 2 Disc material HDPE

Number of biodisc sets per module 2 Rotation speed (min−1) 2
Number of individual discs per set 103 (each of 10 sectors) Water retention time (hours) 2.17

The rotation speed was set after multiple tests at 2 min−1, less than in other cases [40].
Considering the multi-annual data, the minimal water temperature during the plant

operation was 10 ◦C, which during the years of operation was reached only in very few and
short periods. In the RBC biofilm, the metabolic processes are less temperature-dependent
than in activated sludge, one reason being the polycarbonate casing that provides some
thermal insulation. The RBCs of Agnita are presented in Figure 2.
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Figure 2. The RBCs of Agnita: the modules (left), and discs (right).

From the secondary clarifier, the treated water is discharged into the Hartibaciu River,
while the resulting wet sludge is pumped onto the sludge-reed (genus Phragmites) beds,
a simple and cost-effective dehydration process (air-drying) [41]. Reeds have an active
growth and use the sludge nutrients and water; the resulting biomass is harvested every
year and used for composting.

Analysis

The analyses performed in the WWTP are the usual ones. The standards in force
according to the requirements and the authorization issued by the Olt River Catchment
Administration No. 43 of 13 May 2020 (and those before it) for determination of the main
parameters, the equipment, and the method as well as the maximal permitted limits (MPLs)
(as daily averages) are presented in Table 3. All values are the mean of three determinations.
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Table 3. Parameters and their analytical methods used in the Agnita WWTP.

Parameter Analytical Standard or Method Equipment Maximal Permitted
Limits mg/L

pH SR ISO 10523/2012, PO-01 WTW pH/Conductivity Multimeter model 330i
with SENTIX® 41 electrode 6.5–8.5

COD SR ISO 6060/1996 Velp eco 16 thermoreactor
Merck Spectroquant® Multy Spectrophotometer 125.0

BOD SR EN ISO 5815-1/2020
Method WTW 997,230 OxiTop, PO-07

WTW incubator model TS 606/2-i
WTW OxiTop® bottles 25.0

NH4
+ SR ISO 7150-1/2001 WTW PhotoLab S6 Spectrophotometer Not yet

Total N SR EN 25,663:2000
Method WTW Ntot TC LR 251995, PO-09

WTW Thermoreactor CR 2200,
Merck Spectroquant® Multy Spectrophotometer 15.0

Total P SR EN ISO 6878/2008 WTW Thermoreactor CR 2200,
Merck Spectroquant® Multy Spectrophotometer Not yet

TSS SR EN 872/2009 Classical filtration equipment 35.0

The morphological cluster analysis and identification of aerobic and anaerobic mi-
croorganisms were performed with an Olympus BX40 microscope (Olympus Corporation,
Shinjuku City, Tokyo) with a digital camera and phase contrast, as prescribed by Eikel-
boom [42]. Both fresh samples and those after Gram staining were observed in a clear field,
with 100×magnification [43]. Cluster dimensions and filament thickness were measured
using Micro Image 4.0 software.

It is noteworthy that the Olt River Catchment Administration imposed a limit for total
nitrogen, although this is not required to be determined by the laws in force; however they
argued that the number of inhabitants is close to 10,000, so they applied the precautionary
principles for environmental protection. Moreover, in 2022 a national census took place
and there is the possibility the population could exceed 10,000 inhabitants, thus driving
the town and the WWTP into another category where total phosphorous must be below
2 mg/L [44] and the minimal elimination efficiency, according to the aforementioned norm,
has to be 80% for total phosphorus and 70–80% for total nitrogen.

The WWTP operators take samples every day at 8 in the morning from both the
influent and the effluent and perform the required analyses, the inflow results being
used for setting the operational parameters and the outflow results being reported for the
previous day.

Sampling points are placed before the grids and after the secondary settler, where the
water flow is measured as well. For operational reasons, there are sampling points after
each piece of equipment.

In time, we observed that there are good correlations between the loads of influent
ammonia nitrogen (N-NH4

+), total nitrogen (total N), and total phosphorus as presented in
Supplementary Material S1. Because of this observation, for operational reasons we have
decided to calculate the volume of 40% FeCl3 solution to be dripped during the next 24 h
considering the (N-NH4

+) load in the influent, as it is much simpler and cheaper.
The operator has the possibility of varying the flow of the respective peristaltic pump

in case outstanding inflows are presented, exceeding the storage capacity of the primary
settler, and thus increasing the flow in the RBC as well. By entering the inflow and the
concentration into an Excel form, the total load (for all pollutants, total nitrogen and
phosphorus included) as well as the elimination power required for their removal can
be calculated.

3. Results and Discussion

The first two years (June 2014–December 2016) were dedicated to testing and fixing the
WWTP, to adjust to real work conditions. After this period, noting that the total nitrogen
reduction was low and the concentrations were above permitted levels, in January 2017
we decided to add 40% FeCl3 solution, taking into account both the literature [45,46] and
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the good results we already had at the conventional (with activated sludge) WWTP in
Medias [47,48] where, besides coagulation, FeCl3 had been used for phosphorus removal,
too. Other reasons we used FeCl3 were because ferric ions, in small amounts, are beneficial
for bacterial metabolism [49], as a coagulant, increase the agglomeration and deposition of
sludge, and last but not least, because the resulting sewage sludge was to be landfilled on a
reed bed, and we did not want the addition of Al in it.

The in- and outflow values allowed us to calculate both the pollutant removal, as the
difference between the initial and final loads, and the removal efficiency (RE) with the
classical (Equation (1)):

RE =
Loadin − Loadout

Loadin
× 100 (%) (1)

where:
Loadin = inflow amount of a certain pollutant (COD, BOD, TSS, total N, or Total P) for

a certain time period (kg); and
Loadout = outflow amount of the same pollutant for the same period (kg).
The data for the years 2015–2021 are presented in Supplementary Material S2; the

removal efficiency is shown in Figure 3.
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Figure 3. Removal efficiency for the main pollutants during the period 2015–2021.

A good removal efficiency may be seen for COD, BOD, and TSS, and increased
efficiency of total nitrogen after the addition of FeCl3 (January 2017). The addition of FeCl3
was beneficial for the removal of phosphorus, which gets closer to the permitted limits, as
seen in Table 4.

Table 4. Phosphorus removal after the use of FeCl3.

Year Inflow
m3

Total P, mg/L Elimination
Efficiency, %Influent Effluent

2016 419,271 5.83 3.52 39.62
2017 351,662 5.76 3.38 41.32
2018 382,011 4.48 2.09 53.35
2019 335,185 5.54 2.7 51.26
2020 253,793 6.65 2.72 59.10
2021 307,925 6.67 3.03 53.46

It may be seen that the addition of FeCl3 improves phosphorus removal, although the
effluent concentration is above the MPL. Preliminary tests (data not shown) have proven
that the supplementation with 40–50% of the amount of FeCl3 will reduce the effluent
concentration below the prescribed values for a WWTP serving more than 10,000 PE, but
with higher costs, and so it was decided not to use additional FeCl3.
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When performing the microscopic determination of the existing bacterial colonies
within the RBC at the laboratory of the Apa Tarnavei Mari Co. in Medias, we found
predominantly aerobic microorganisms, responsible for the transformation of ammonia
nitrogen into nitrates, as seen in Figure 4.
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Figure 4. Microscopic image of aerobic microorganisms (magnification 100×).

After the first two years of its commissioning, we also found anaerobic microorganisms
in the RBC that transform nitrates into gaseous nitrogen, thus reducing the amount of total
nitrogen in the effluent, as seen in Figure 5.
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Their presence is beneficial for the WWTP because they provide the release of nitrogen
into the air, thus allowing us to achieve the prescribed values for total nitrogen.

When analyzing their distribution, we found (as expected) more nitrifying microor-
ganisms on the external disc surface, while the denitrifying ones were present in the water
and near the disc surface.

To determine the efficiency of the major treatment steps for the removal of nitrogen,
we measured the values of ammonium and total nitrogen (mean of determinations made
every other month) between September 2021 to August 2022 (the period considered in this
paper), which are presented in Table 5.

This determination showed that the nitrogen removal takes place mainly in the RBC,
but it continues in the secondary settler as well.

Starting in January 2017, the required volume of ferric chloride was divided into three equal
portions, all manually added at 8 a.m., 4 p.m., and midnight. This proactive attitude provided
the good results presented in Figure 3 and detailed in Supplementary Materials S1 and S2.

In June 2021, we decided not to manually add the coagulant, but automatically, using
a dosing system built in-house. The results reflected better compliance with the permitted
discharge limits and keeping the amount of FeCl3 within reasonable limits.

It is also noteworthy that since June 2021, the average concentration of FeCl3 in the
water was 37.0357 ± 10.098 µM, ten times less than the 400 µM stated by Kim et al. [50] to
be toxic for microorganisms (complete data in Supplementary Material S1), thus preventing
any “ferric shock”.
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The good results after one year of application of this method (September 2021–August
2022), presented in detail in Supplementary Material S1, are very consistent with those
of Hassard et al. [16], Ni et al. [17], and Mizyed [20], and are comparable with those of
Waquas et al. [51] and Cvetkovic et al. [52].

As expected, a reverse dependency may be seen between the volume of added FeCl3
and water temperature (Figure 6). In the same figure we have also represented the specific
removal power for nitrogen, which has a similar rise as the water temperature variation.
This is normal because bacterial activity is stimulated by temperature increase [12] and we
have already proven this in an activated sludge reactor [45].
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Considering that ferric chloride boosts the removal of ammonia nitrogen, total ni-
trogen, and phosphorus, we introduced a new parameter, specific removal power (SRP),
i.e., the volume of 40% FeCl3 required for the elimination of 1 kg of the N or P, defined
(Equation (2)) as:

SRP =
VFeCl3

Mx
(2)

where:
VFeCl3 = the volume of 40% ferric chloride solution (m3);
x = the parameter considered for determination of the SRP (ammonia nitrogen, total N

or total P); and
Mx = the total inflow load (kg) for this parameter for a certain time period.
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Table 5. Removal efficiency of the major equipment.

Parameter
Sampling Place

2021 2022

NH4
+

mg/L
Total N

mg/L
NH4

+

mg/L
Total N

mg/L

Influent 45.35 47 40.54 53.09
After primary settler 33.2 39 35.22 46.08

Removal efficiency—primary settler 26.79 17.02 13.12 13.20
After biodiscs 5.01 13.50 3.80 15.00

Removal efficiency biodiscs 84.91 65.38 89.21 67.45
After secondary settler 4.16 10.79 2.38 11.75

Removal efficiency—secondary settler 16.97 20.07 37.37 21.67
Total removal efficiency 90.83 77.04 94.13 77.87

A strong relationship between water temperature and bacterial activity, expressed by
nitrogen removal when adding FeCl3, was also observed (Figure 6, right OY axis).

In addition, we noticed that there are similarities between the shapes of the SRP
curves (Figure 7).
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These similarities will allow us to consider ammonia nitrogen as a control parameter
for the future development of an automated continuous dripping system.

When plotting the specific removal powers and water temperature, the results are
shown in Figure 8.
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When using this concept, the resulting diagrams (Figure 8) more explicitly show the
pollutant removal after FeCl3 addition correlated with the inflow load and temperature.

Furthermore, Figure 8 shows that the specific removal power for the studied pa-
rameters has a similar shape, and the diagrams can give valuable information to the
plant operators.

Knowing the temperature and the inflow parameters (volume and pollutant concen-
tration), the total daily load is calculated, and the operator can easily determine the volume
of 40% FeCl3 solution to be used for the next 24 h. This is performed manually at this
moment, taking into account the diagram in Figure 8 and the season. For instance, if the
water temperature is 15 ◦C in autumn, the SRP is 2.8 L 40% ferric chloride for 1 kg of total
nitrogen, but in spring, for the same temperature, the SRP is 4 L/kg total N (i.e., for the
same nitrogen load a smaller volume of FeCl3 is required).

Although fast, this approach is not the best one, and in the future (2024) we intend to
upgrade the WWTP with a system that will continuously measure the inflow load of ammo-
nium and will automatically determine the FeCl3 volume, considering the proportionality
between the ammonia and total nitrogen, as presented in Supplementary Material S1 (in
our case, on average, the total nitrogen is 1.24 times more than ammonia nitrogen).

4. Conclusions

Although the existing regulations do not oblige WWTPs operating for communities
with less than 10,000 PE to comply with discharge limits for nitrogen and phosphorus,
environmental protection and common sense require their removal at affordable cost.

Our method, new in the literature, is the addition of 40% FeCl3 solution, without
changing the design and operating parameters of our WWTP. The presence of ferric ions
in water boosts the development of the microbiota responsible for both nitrification and
denitrification, as well as phosphorus removal, discharging cleaner water.

For the quantification of the required FeCl3 volume, we introduced a new parameter,
the specific removal power, which is easy to calculate and very helpful in determining the
volume of ferric chloride at different seasonal temperatures.

This method is simple to use, and the good results at Agnita have encouraged us to
extend it to other wastewater treatment plants operated by the Apa Tarnavei Mari Co.
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