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Abstract: Facing the challenge of the degradation of global water quality, it is urgent to realize the
Sustainable Development Goal 6.3.2 (SDG 6.3.2), which focuses on improving global water quality.
Currently, remote sensing technology is widely used for water quality monitoring. Existing water
quality-monitoring studies have been conducted based on quantitative water quality inversion. It
requires a high degree of the synchronization of the time and location of the collection of station
monitoring data and remote sensing data (air–ground spatiotemporal synchronization), which can be
resource intensive and time consuming. However, policymakers and the public are more interested
in the quality of water (good or poor) than in the specific values of the water quality parameters, as
evidenced by the emergence of SDG 6.3.2. In this study, we change the traditional idea of quantitative
water quality research, focus on water quality qualitative research combined with the characteristics
of water pollution, propose a remote sensing water quality sample enhancement method under
the condition of “air–ground spatiotemporal asynchrony”, and construct a remote sensing water
quality sample library. On the basis of this sample library, a random forest water quality classification
model was constructed to classify water quality qualitatively. We obtained the distribution of good
water bodies in Deqing County, China, for example, from 2013 to 2022. The results show that the
model has high accuracy (Kappa = 0.6004, OA = 0.8387), and we found that the water quality in
Deqing County improved in the order of “major rivers, lakes, and tributaries” during the period
from 2013 to 2015. This also verifies the feasibility of using this sample enhancement method to
conduct qualitative research on water quality. Based on this water quality classification model, a
set of spatial-type evaluation processes of SDG 6.3.2 based on image elements was designed. The
evaluation results show that the water quality situation in Deqing County can be divided into two
stages: there is a trend of substantial improvement from 2013 (evaluated value of SDG 6.3.2 = 63.25) to
2015 (evaluated value of SDG 6.3.2 = 83.16); and it has remained stable and fluctuating after reaching
the good environmental water quality since 2015. This study proposes a simple method for rapidly
evaluating SDG 6.3.2 via utilizing easily accessible Landsat 8 and water quality-monitoring data to
classify water quality. The method can directly obtain water quality category information without the
need for additional sampling, thus saving costs. It is a very simple process that is easy to implement,
while also providing a high level of accuracy. This significantly reduces the barriers to evaluating
SDG 6.3.2, supports the realization of the sustainable management of water resources globally, and is
highly generalizable.

Keywords: SDG 6.3.2; Landsat 8; water quality classification; remote sensing; air–ground spatiotem-
poral synchronization; sample enhancement
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1. Introduction

Water is a vital component of ecosystems and is essential for human survival and
civilization, and it has played a pivotal role throughout human history. Over the past four
decades, global water consumption has grown exponentially, a trend that is expected to
continue over the next 30 years [1]. Along with the rapid increase in water consumption
and demand, water scarcity and pollution problems have also expanded rapidly, affecting
regions in both developing and developed countries [2,3]. According to the United Nations
World Water Development Report 2023, only 60% of the world’s known water bodies are
currently classified as good quality, making the sustainable development of water resources
an urgent matter [4]. In September 2015, the United Nations Sustainable Development
Summit launched “Transforming Our World: The 2030 Agenda for Sustainable Develop-
ment”, which established 17 Sustainable Development Goals (SDGs) and 169 targets [5].
Indicator SDG 6.3.2, which represents the “Proportion of bodies of water with good ambi-
ent water quality”, reflects the overall level of environmental water quality in the study
area, and is a key metric that is continuously monitored by governments and research
institutions worldwide. For SDG 6.3.2 water quality evaluations, UN-Water proposed an
internationally accepted monitoring methodology with five core water quality parameters,
namely nitrogen, phosphorus, pH, dissolved oxygen, and electrical conductivity [6]. The
collection of these water quality parameters is largely dependent on in situ measurements
and laboratory analysis. Moreover, due to the limited number of monitoring stations and
the high cost of analysis, most countries and regions often fail to meet monitoring and
evaluation requirements at specific spatial scales, hindering the support and completion of
SDG 6.3.2 evaluations [7–9]. Globally, “missing water quality data” due to the insufficient
number of monitoring stations and monitoring frequency is an objective problem [10–12].

With the development of satellite remote sensing technology, a large number of studies
have been conducted to measure water quality parameters via satellite remote sensing
technology in various water quality pollution-monitoring activities [13,14]. These water
quality parameters are broadly classified into two categories; one consists of water quality
parameters with optical properties that can be directly inverted with remote sensing,
including chlorophyll-a (Chl-a), the total suspended solids (TSSs) concentration, colored
dissolved organic matter (CDOM), and total dissolved solids (TDSs), etc. [15–19]. Currently,
research using remote sensing technology to support SDG 6.3.2 relies mainly on water
transparency to determine the water quality [8,10,20]. However, transparency alone cannot
fully assess the water quality. For instance, it is less sensitive to water quality parameters
such as COD [21]. Moreover, water transparency is affected by various factors, including
climate, season, and substrate [22–25]. The specific relationship between transparency
and the water quality parameters it reflects remains unclear. The other category is non-
optically active water quality parameters, which are obtained indirectly through available
knowledge using remote sensing methods, including total nitrogen (TN), total phosphorus
(TP), ammonia nitrogen (NH3-N), chemical oxygen demand (COD), dissolved oxygen
(DO), fluoride, and petroleum species [26–29]. By using the satellite inversion of water
quality parameters to support water pollution detection, we can compensate for the lack of
station water quality-monitoring data, reduce the related costs, and improve the efficiency
of water quality monitoring. At the same time, it extends the traditional “point” water
quality monitoring to “surface” monitoring, providing the comprehensive information
needed for large-scale continuous spatial monitoring, which helps to analyze the detailed
spatial and temporal changes [13,30]. However, remote sensing water quality modeling
and inversion methods have high requirements regarding the quantity and quality of
water samples, especially in terms of data “air–ground spatiotemporal synchronization”
consistency (i.e., a high degree of synchronization between the acquisition time and the
location of water quality data from ground-based monitoring stations and remotely sensed
data) [31,32]. However, in actual remote sensing water quality-monitoring work, due to the
small number of monitoring stations, low monitoring frequency, and the time resolution
limitations of remote sensing images, the phenomenon of “air–ground spatiotemporal
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asynchrony” prevails, which has become a bottleneck, limiting the application of remote
sensing water quality monitoring [33]. Most researchers circumvent this phenomenon via
obtaining data from a large number of water quality samples through human field sampling
during satellite transits (i.e., increasing the frequency of in situ measurements) [34]. This
method requires large human resources and equipment, and is costly to implement [9,35,36].
Some researchers have also used the fusion of remote sensing data from multiple sources to
obtain remote sensing images with higher temporal resolutions to minimize the occurrence
of the “air–ground spatiotemporal asynchrony” phenomenon [37]. However, the quality of
the fused data is inevitably unstable, and the process is complicated.

By interpreting the connotation of SDG 6.3.2, we can clearly see that the focus is on
the quality of water (good or poor) rather than the values of water quality parameters.
Thus, this study departed from the conventional quantitative research approach to water
quality, and instead focused on qualitative research. To solve the issue of “air–ground
spatiotemporal asynchrony”, we propose a method for enhancing remote sensing water
quality samples through integrating multiple water quality parameters. This method is
then applied to water quality classification, and a random forest water quality classification
model is constructed. The remote sensing water quality sample enhancement method
is based on the following assumptions: water pollution is a continuous state, which can
occur suddenly, but the disappearance of pollution often takes a long time, and the degree
of pollution (numerical value) may change in the neighboring time period, but the state
of pollution will not change [38]. Based on this remote sensing water quality sample
enhancement method, this paper proposes a spatial-type evaluation method for SDG 6.3.2
based on image elements, drawing on the SDG 6.3.2 evaluation process provided by UN-
Water, and combining this with the results of the classification of good water bodies for
environmental water quality, to form a complete set of processes for the rapid detection
and remote sensing evaluation of good water bodies. It can provide an innovative idea
and a low-cost, high-efficiency water quality holistic evaluation program for researchers,
policymakers, and related parties involved in water quality monitoring and management
in the fields of environmental science and remote sensing, which is of great significance
in promoting the realization of the goal of the sustainable development of the water
environment. The specific objectives of this study are as follows: (1) To construct a remote
sensing water quality sample library under the uncoordinated conditions of space and
land using Landsat 8 data and station water quality-monitoring data, and to construct a
classification model of good environmental water quality water bodies. (2) To conduct a
detailed analysis of the spatial and temporal distribution of water quality in Deqing County
from 2013 to 2022. (3) To apply the image element-based SDG 6.3.2 spatial-type evaluation
method to evaluate the SDG 6.3.2 specific situation in Deqing County from 2013 to 2022.

2. Study Area and Datasets
2.1. Study Area

The study area is Deqing County (30◦26′~30◦42′ N, 119◦45′~120◦21′ E, ~936 km2),
Zhejiang Province, which is located in the hinterland of the Yangtze River Delta region
in the eastern part of China. The terrain in Deqing County is high in the west and low
in the east, with the remnants of Tianmu Mountain in the west, a plain area interspersed
with river networks in the east, and a valley area formed by Xiangxi, Yuyingxi, and Fuxi
in the center. The water system and river network in Deqing County is complex, with a
total length of about 1350 km, belonging to the Taihu Lake Basin in the lower reaches of
the Yangtze River, with a dense river network, divided into two major water systems in
the east and west, with the East Campsis Creek in the middle as the boundary, the Canal
System in the east for the plains, and the East Campsis Creek System in the west for the hill
water system. There are 16 major rivers and many tributaries in Deqing County, of which,
the river width of less than 60 m accounted for about 50% of the total length of the river,
less than 80 m of the river accounted for about 70% of the total length of the river, and, at
the same time, there are more than 120 lakes of various sizes. The region is located in the
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subtropical monsoon climate zone, with abundant rainfall and a humid climate, and the
rainfall is relatively concentrated in June–August, with an average annual rainfall of about
1400 mm. As an excellent case of SDGs in the United Nations, Deqing County’s practice of
SDG 6.3.2 has attracted much attention.

2.2. Datasets and Preprocessing
2.2.1. Measured Water Quality Data

This article obtained 556 water quality sampling datasets from 18 monitoring stations
in Deqing County from 2013 to 2017 (Figure 1). The data include station name, geographical
coordinates (latitude and longitude), sampling date, and 18 water quality parameters (pH,
DO, CODMn, CODCr, BOD5, NH3-N, Volatile phenols, Cyanide, Pb, Cd, Zn, Cu, Cr 6+,
Se, As, Petroleum, Fluoride, TP). The scattered water quality data were standardized to
form a comprehensive dataset of water quality samples from Deqing’s monitoring stations
for the years 2013–2017, as well as datasets for the water quality samples from Deqing’s
monitoring stations for each individual year.
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2.2.2. Landsat 8 Data and Preprocessing

Based on the Google Earth Engine (GEE) platform, all Landsat 8 data with less than
90% cloud coverage in the Deqing County region for the period of 2013–2022 were acquired,
totaling 102 images. The obtained Landsat 8 data has been pre-processed (radiometric
calibration and atmospheric correction), is free from geometric distortions, and can be
used directly. This dataset includes four visible light bands, one near-infrared band, two
short-wave infrared bands, and one thermal infrared band.

When utilizing this data for classification research, it is necessary to mask out un-
necessary observation conditions, such as sunlight, clouds, land pixels, mixed pixels, and
seasonal variations in rivers, etc. (Figure 2). The processing flow is as follows:
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1. First, utilize the quality evaluation band that comes with the dataset, employing GEE’s
built-in band logic operation function to perform cloud removal from the images.

2. Through the mixed pixel decomposition method, mixed pixels with mixed features
are removed to extract relatively pure water pixels. Mixed pixels contain multiple
features, which makes it difficult for classifiers to decide which category to assign
them to, thus lowering the accuracy of classification results [31,39]. The impurity of
the pixel features interferes with data statistics and analysis, making it difficult to
accurately reflect the actual situation. By using mixed pixel decomposition techniques
to eliminate mixed pixels, we extract purer water body pixels, which improves the
accuracy and scientific validity of the subsequent classification results [40].

3. Permanent water bodies can be extracted using the time-spectral characteristics of
surface features (periodic changes of spectral features in the time dimension) [41].
Seasonal changes in water bodies will cause some areas to alternate between water
and land within a year, resulting in an extreme data imbalance, where some areas have
less available data than other areas, affecting the accuracy of the SDG6.3.2 evaluation.
By masking seasonal water bodies, this can be avoided, while also improving the
accuracy of the evaluation results.

3. Methods

The technical route of this research is as follows (Figure 3): It mainly consists of three
parts. First, the remote sensing water quality sample-enhancement method is used to
collaborate with Landsat 8 data and station water quality-monitoring data to build a remote
sensing water quality sample library under uncoordinated open-space conditions. This
sample library is then used to build a random forest excellent water quality classification
model. Finally, the SDG 6.3.2 pixel-based spatial evaluation method was designed, and the
classification results were used for evaluation.

3.1. Remote Sensing Water Quality Sample-Enhancement Method for Synergizing Remote Sensing
Data with Ground Monitoring Station Data
3.1.1. Remote Sensing Water Quality Sample Expansion Based on Rule Generation

Water pollution is a persistent condition that may occur suddenly, but it often takes
a long time for the pollution to dissipate. The degree (value) of pollution may change in
adjacent time periods, but the pollution state will remain constant. Based on this scientific
premise, we expand the temporal dimension of monitoring data sampling from a single
point to a time window from 1 to 8 days before and after the sampling time. Subsequently,
we match the two datasets (Figure 4) and establish the criteria (Figure 5) for retaining or
discarding the matched data as follows:

1. Retain expanded sampling points when the water quality category of the sampling
time points before and after the imaging time point is consistent;
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2. If there is a change in the water quality category of the sampling time points before
and after the imaging time point, and if the imaging time point is after the matched
sampling time point and the water quality of the sampling time point is poor, retain
the expanded sampling points;

3. If there is a change in the water quality category of the sampling time points before
and before the imaging time point, and the imaging time point is after the matched
sampling time point and the water quality of the sampling time point is good, retain
the expanded sampling points;

4. In other cases, the expanded data will not be retained.
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Figure 4. Schematic diagram of remote sensing water quality sample data expansion method under
the condition of air–ground spatiotemporal asynchrony.

In the collection of the water quality data measured at the monitoring stations, which
includes twenty-one parameters, seven commonly utilized parameters that can be directly
or indirectly inferred through remote sensing techniques were selected. These include
dissolved oxygen (DO), the permanganate index (CODMn), the dichromate index (CODCr),
total phosphorus (TP), ammonia nitrogen (NH3-N), petroleum, and fluorides [36].



Water 2024, 16, 1319 7 of 23

Water 2024, 16, x FOR PEER REVIEW 7 of 24 
 

 

 
Figure 4. Schematic diagram of remote sensing water quality sample data expansion method under 
the condition of air–ground spatiotemporal asynchrony. 

 
Figure 5. Expanded standards. 

In the collection of the water quality data measured at the monitoring stations, which 
includes twenty-one parameters, seven commonly utilized parameters that can be directly 
or indirectly inferred through remote sensing techniques were selected. These include dis-
solved oxygen (DO), the permanganate index (CODMn), the dichromate index (CODCr), 
total phosphorus (TP), ammonia nitrogen (NH3-N), petroleum, and fluorides [36]. 

The measured values for each sample were classified according to the ‘Environmen-
tal quality standards for surface water’ (GB3838-2002). Water quality parameters meeting 
Class I to III standards were categorized as ‘Good’, while those failing to meet these stand-
ards were categorized as ‘Poor’. The water quality category is determined with the ratio 
of the number of good parameters to the total number of parameters, with a threshold of 
80%. If 80% or more of the parameters meet the standard, the water quality is considered 
‘Good’ and assigned a value of ‘1’. Otherwise, it is classified as ‘Poor’ and assigned a value 
of ‘0’. 

3.1.2. Sample Augmentation Dataset Optimization Based on Anomaly Detection 
On one hand, due to potential errors in field sampling and laboratory analyses, the 

accuracy and precision of the collected field data might be compromised [13]. On the other 
hand, despite the existence of screening rules, there remains a slight possibility that the 
expanded point water quality category may not align with the actual water quality cate-
gory. Given these two considerations, it is essential to perform outlier removal on the ex-
panded sample dataset. Firstly, a good water quality sample must be a relatively isolated 
presence in a collection of bad water quality samples, and vice versa. Secondly, through 
our preliminary screening, there should be very few inconsistencies between the water 
quality sample categories and the actual categories. Therefore, this paper will utilize the 
isolated forest outlier detection method. 

Isolation Forest [42] is an unsupervised machine learning algorithm used to detect 
outliers. It constructs a random tree, and measures the degree of anomalous data points 

Figure 5. Expanded standards.

The measured values for each sample were classified according to the ‘Environmental
quality standards for surface water’ (GB3838-2002). Water quality parameters meeting Class
I to III standards were categorized as ‘Good’, while those failing to meet these standards
were categorized as ‘Poor’. The water quality category is determined with the ratio of the
number of good parameters to the total number of parameters, with a threshold of 80%. If
80% or more of the parameters meet the standard, the water quality is considered ‘Good’
and assigned a value of ‘1’. Otherwise, it is classified as ‘Poor’ and assigned a value of ‘0’.

3.1.2. Sample Augmentation Dataset Optimization Based on Anomaly Detection

On one hand, due to potential errors in field sampling and laboratory analyses, the
accuracy and precision of the collected field data might be compromised [13]. On the
other hand, despite the existence of screening rules, there remains a slight possibility that
the expanded point water quality category may not align with the actual water quality
category. Given these two considerations, it is essential to perform outlier removal on the
expanded sample dataset. Firstly, a good water quality sample must be a relatively isolated
presence in a collection of bad water quality samples, and vice versa. Secondly, through our
preliminary screening, there should be very few inconsistencies between the water quality
sample categories and the actual categories. Therefore, this paper will utilize the isolated
forest outlier detection method.

Isolation Forest [42] is an unsupervised machine learning algorithm used to detect
outliers. It constructs a random tree, and measures the degree of anomalous data points
based on their path length within the tree. Since anomalies typically require fewer splitting
steps to isolate, Isolation Forest can identify outliers relatively quickly [43]. It is well
suited for high-dimensional data, and can efficiently identify outliers in a short period [44].
When using this method, it is crucial to adjust the ‘contamination’ parameter to accurately
reflect the proportion of outliers present. This will ensure stable algorithm performance,
particularly on small-scale datasets.

In this study, the Isolation Forest algorithm from the Python sklearn library is utilized
for conducting outlier detection on a sample dataset expanded, based on predefined rules
and categorized by water quality, followed by the computation of outlier detection scores.
The sklearn implementation of the Isolation Forest algorithm incorporates a modification to
the anomaly score, where outliers are typically represented by negative scores, indicating
that lower scores correspond to greater anomalies. Herein, we aim to refine the dataset
by targeting the removal of the bottom 10% of data based on the outlier detection scores,
thereby optimizing the dataset for subsequent analyses.

3.2. Water Quality Classification Feature Selection and Model
3.2.1. Construction and Selection Methods of Feature Variables

Based on existing research results [15,45], this study fully utilizes information from
various bands. The construction of classification features mainly includes four parts
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(Table 1). The first part consists of eight spectral bands from Landsat 8, namely B1, B2,
B3, B4, B5, B6, B7, and B10. The second part includes 28 features representing the band
differences of these eight bands. The third part comprises 28 features representing the
band ratios of the eight bands. Lastly, the fourth part includes 28 features representing the
normalized band ratios of the eight bands.

Table 1. Classification feature set.

Feature Calculation Formula Amount

Single band Bi 8
Band difference Bi − Bj 28

Band ratio Bi/Bj 28
Normalized band ratio (Bi − Bj)/(Bi + Bj) 28

Conducting correlation analysis between water quality parameters and characteristic
parameters is crucial to identify characteristics with significant correlations. Although
building a comprehensive set of feature parameters can improve accuracy to a certain extent,
too many such parameters may lead to information redundancy, negatively affecting the
efficiency and accuracy of the classification model [46]. This article adopts three methods
of feature parameter selection and combination as follows:

1. Random forest sampling: This approach generates multiple decision trees to classify
objects sequentially. The aggregated result of each decision tree’s classification con-
tributes to the final category predicted by the random forest, thereby improving the
classification accuracy. This process also evaluates the importance of different features
bing involved in the classification [47,48]. Features whose cumulative weight are in
the top 60% are selected;

2. ReliefF feature selection: The ReliefF method is used for feature selection [49,50]. It
starts by randomly selecting a sample, R from all training samples, then extracting k
nearest neighbors from samples within the same category as R. For samples in different
categories from R, k nearest neighbors are also selected. The feature’s classification
ability is determined by calculating the maximum distance moved by samples of the
same and different categories. Features with higher weights are considered more
significant in classification. The top 60% of features, whose cumulative weight is
reached, are chosen.;

3. Pearson correlation coefficient: Use the Pearson correlation coefficient to screen feature
parameters [51]. Calculate the person correlation coefficient between each characteris-
tic parameter and the water quality parameter [52]. The larger the absolute value of
the Pearson correlation coefficient, the stronger the correlation between the two [53].
Among the correlation coefficients between water quality parameters and features, the
top ten features among each water quality parameter are selected as feature variables.

By applying these selection methods, the study aims to balance the trade-off between
including sufficient feature parameters for accurate classification and avoiding redundancy
that can degrade model performance.

3.2.2. Model Construction

The random forest (RF) algorithm, a cornerstone in ensemble machine learning, finds
extensive application across various image classification domains [54,55]. As a classical
model, RF operates through a collection of numerous classification and regression trees,
each weighing the importance of variables, which are identifiable post training. RF inte-
grates bagged ensemble learning and stochastic sub-space methodologies, facilitating a
comprehensive analysis of variable characteristics within the training dataset. RF boasts
considerable advantages over alternative algorithms, displaying a robust performance.
Its unbiased estimation ensures excellent model generalization [56]. Numerous studies
have validated RF’s effectiveness in tackling nonlinear challenges and processing high-
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dimensional data in remote sensing image classification, establishing it as a potent solution
in the field [57–60].

In this study, the random forest classifier provided on the Google Earth Engine plat-
form was used to train the model using eight input datasets, and the model with the
best performance was selected. These datasets are combinations of the constructed sam-
ple sets from 5 days and 8 days around the sampling event, along with various feature
variable groups. The number of regression trees within the random forest classifier is a
critical parameter when defining the RF model structure. After extensive experimenta-
tion and optimization, this number was set to 300. Other parameters were kept at their
default values.

3.2.3. Accuracy Evaluation Method

Stratified k-fold cross-validation is an enhanced variant of k-fold cross-validation,
particularly beneficial for datasets with imbalanced classes [61,62]. This study employs
stratified k-fold cross-validation with the k set to 10, dividing the data into 10 mutually
exclusive subsets. Sequentially, one subset is chosen as the validation set, and the remaining
nine subsets serve as the training set to train the model. The discrepancies between the
field measurement data and the model data are evaluated using a confusion matrix along
with various statistical indicators. The average of the 10 performance evaluation metrics
serves as the final performance evaluation of the model. The formulas for calculating the
overall accuracy (OA) and Kappa coefficient are as follows:

OA(%) =
∑n

i=1 Pii

N
× 100% (1)

Kappa =
N∑n

i=1 Pii − ∑n
i=1(Pi+ × P+i)

N2 − ∑n
i=1(Pi+ × P+i)

(2)

where n is the number of categories; N is the total number of validation samples; Pii is
the number of correctly classified samples for each category, found on the diagonal of
the confusion matrix; Pi+ is the total number of samples classified into a category by the
classifier; and P+i is the total number of validation samples for a category.

3.3. Sustainable Development Goal 6.3.2 Evaluation Using Remote Sensing Water Quality
Classification Results
3.3.1. Constructing Water Body Unit to Support Evolution

UN-Water defines a water body as a distinct portion of surface water that is considered
relatively independent, typically classified as lakes or river segments delineated by end-
points or nodes. However, applying this definition directly to Deqing County is challenging
due to its complex water system and sparse monitoring stations. In this study, we delineate
water body units in Deqing County based on the connotation of water bodies, aiming to
maintain consistency with UN-Water’s SDG 6.3.2 Tier 2 monitoring method in terms of the
scale in subsequent studies [63]. By definition, a water body unit should also be a relatively
independent area.

Considering the spatial distribution and source characteristics of the water system in
Deqing County, it is divided into two major basins: the Dongtiaoxi River Basin and the
Beijing-Hangzhou Grand Canal Basin, and further subdivided into various water body
units within these basins (Figure 1). Most water bodies in the Dongtiaoxi River Basin
are natural, and can be clearly delineated using DEM analysis for river flow direction,
with delineation based on river nodes, tributaries, and the presence of water quality-
monitoring stations.

The Beijing-Hangzhou Grand Canal Basin, which is characterized by a dense network
of waterways, including many artificial canals, complicates the application of the previous
delineation method. In this basin, numerous polders are artificially delineated and sepa-
rated by sluices and locks, resulting in limited water exchange and flow between them,
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so that each polder approximates a semi-independent river network system [64]. Water
body units in this catchment can first be subdivided on the basis of major watercourses,
followed by a secondary subdivision on the basis of polder dikes. Units without water
quality-monitoring stations are merged with adjacent units with stations, and efforts are
made to keep monitoring stations away from unit boundaries to better represent water
quality. It is important to ensure that each unit contains at least one monitoring station per
year, as monitoring station locations change over the years.

3.3.2. Evaluation Plan Design

This study draws on the SDG 6.3.2 evaluation methodology provided by UN-Water
to establish a simplified, universally applicable, pixel-based SDG 6.3.2 evaluation scheme
from a remote sensing perspective as follows (Figure 6) [6]:

1. For long-term series data for a given pixel, if the standard time ratio (i.e., duration of
good water quality/total duration) exceeds 80 percent, the water quality for that pixel
is classified as good for the monitoring period;

2. For the long-term series data of a specific water body, if the proportion of good quality
water pixels (number of good quality pixels/total number of pixels) exceeds 80%, then
the water quality of that water body is considered good during the monitoring period.
The water quality score for the water body = (number of good quality pixels/total
number of pixels) * 100;

3. For the long-term series data of a certain area (e.g., a watershed or lake district), if the
average water quality score of all contained water bodies exceeds 80, then the water
quality of that area is considered good during the monitoring period;

4. For the long-term series data of a certain region, if the average water quality score of
all included areas exceeds 80, then the water quality of that region is considered good
during the monitoring period.
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Figure 6. Pixel-based SDG 6.3.2 evaluation method process.

This framework provides a structured approach for evaluating water quality across
different scales using remote sensing data, thus facilitating the evaluation of compliance
with SDG 6.3.2 targets.

4. Results
4.1. Sample Enhanced Statistical Results

The sampling times were selected to extend from 1 day before and after the sampling
time to 8 days before and after the sampling time. A total of eight time windows were
used to extend the water quality samples of collaborative remote sensing data and ground
monitoring station data (Table 2). It can be seen that there are only six sampling dates that
match the acquisition time of the remote sensing data and the sampling time of the ground
monitoring data. However, the time window for matching the ground monitoring data is
gradually expanded, and the number of collected samples increases significantly. When
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the sampling time of the ground monitoring stations was extended to the time window
of eight days before and after, the number of sample data in the sample set reached 144.
Considering the balance between the two categories of samples, the 5 days before and after
and the 8 days before and after datasets were selected as the final results and entered into
the next step.

Table 2. Water quality sample enhancement results.

Extended Time Window Total Amount
of Data

Good Water Quality
Data Volume

Poor Water Quality
Data Volume

The day 6 6 0
±1-day time window 11 11 0
±2-day time window 53 40 13
±3-day time window 67 52 15
±4-day time window 96 71 25
±5-day time window 112 86 26
±6-day time window 116 90 26
±7-day time window 142 110 32
±8-day time window 144 110 34

Meanwhile, in the correlation analysis results between the water quality parameters
and remote sensing image band features (Figure 7), it was found that the water quality
parameters associated with features with higher correlation are generally consistent with
the seven selected water quality parameters. This is consistent with existing research and
knowledge. It indicates that the extended sample set still retains the original water quality
remote sensing feature information, which validates the feasibility of our extension method.
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4.2. Construction of Feature Variables

Based on the results of the sample expansion, feature optimization was performed
separately on the datasets for ±5-day and ±8-day time windows. In addition, the raw
expanded datasets, which were expanded during the sampling process but not optimized,
were used for a control experiment. The results of the feature selection used two approaches,
the random forest feature importance evaluation and the ReliefF filter-based feature selec-
tion method (Figure 8). By performing correlation analysis on the spectral bands and water
quality parameters of the ±5-day and ±8-day datasets before and after, it was found that
the Pearson correlation of the two datasets has a strong similarity (Figure 9). Therefore,
consistent feature variables are used. Pearson correlation feature combinations include
the following: B2/B4, B2 − B4, (B2 − B4)/(B2+B4), B1/B4, B1 − B4, (B1 − B4)/(B1 + B4),
(B3 − B4)/(B3 + B4), B5, B3/B4, B5 − B6, (B5 − B10)/(B5 + B10), B5/B7, B3 − B4, B5 − B7,
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(B5 − B7)/(B5 + B7), B4, B5/B10, B2, B3. Finally, four sample sets with a total of sixteen
combination solutions were obtained (Table 3).
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Table 3. Feature parameter combination scheme.

Feature Optimization Method Sample Expansion Plan Whether to Optimize

Single band ±5-day time window Yes
±8-day time window No

Pearson correlation coefficient
±5-day time window Yes
±8-day time window No

Random forest
±5-day time window Yes
±8-day time window No

ReliefF
±5-day time window Yes
±8-day time window No

4.3. Model Training Results and Accuracy Verification

Judging from the overall classification accuracy and Kappa coefficient (Figure 10),
the overall accuracy and Kappa changes caused by the different combinations of feature
variables between the 5-day original dataset and the 8-day original dataset are very small.
However, the datasets processed for outliers show improvements in both aspects. Both the
5-day and 8-day optimized datasets show significant improvements in the overall accuracy
and kappa coefficient over the original dataset across different feature combinations.

A longitudinal comparison of the datasets shows that outlier removal significantly
improves the overall classification accuracy and Kappa coefficient of the sample datasets.
The 8-day raw dataset exhibited the lowest overall accuracy and Kappa coefficient, but
after the outlier removal, it became the highest of the four datasets. Although the 5-day
raw dataset was superior to the 8-day raw dataset in both the overall classification accuracy
and Kappa coefficient, the 5-day optimized dataset did not perform as well as the 8-day
optimized dataset. This discrepancy can be attributed to the fact that the 5-day raw dataset
had fewer anomalies than the 8-day raw dataset, meaning that the quality of the 5-day raw
dataset was superior. After the outlier removal, the difference in anomalies between the
two datasets decreased significantly, but the 5-day optimized dataset (112 data points) had
fewer data points when compared to the 8-day optimized dataset (144 data points). As a
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result, the 5-day optimized dataset was inferior to the 8-day optimized dataset in terms of
the overall classification accuracy and Kappa coefficient.
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A horizontal comparison of feature combinations shows that combinations that un-
derwent feature optimization had higher overall accuracy and Kappa coefficients when
compared to direct single-band combinations. In particular, the feature combinations se-
lected by the random forest feature importance evaluation method achieved the highest
overall classification accuracy and Kappa coefficient, reaching 0.8387 and 0.5004, respec-
tively, followed by the ReliefF method and the Pearson correlation coefficient method.

In summary, the optimization methods for expanding the datasets have screened and
removed outliers, thereby improving the quality of the dataset, while the feature prioritiza-
tion methods have extracted more useful variables for classification. This demonstrates the
feasibility and scientific value of the dataset expansion and optimization methods proposed
in this study. Both the expanded dataset optimization method and the feature selection
approach contribute significantly to improving the accuracy of the classification models.

4.4. Spatiotemporal Pattern of Water Quality in Deqing County

Through the statistical analysis of water quality classification results at the pixel scale
for Deqing County from 2013 to 2022 (Figure 11), it was found that the water quality in
Deqing County showed an improving trend from 2013 to 2015. In 2013, only 60.25% of the
water body pixels were classified as having good water quality. By 2014, this proportion
increased by 13.65% to 76.9%, and, in 2015, 83.16% of the water body pixels achieved
good water quality. Subsequently, from 2015 to 2022, the proportion of water body pixels
classified as good quality remained stable, maintaining above 80%.

After aggregating the water quality classification results at the pixel scale for Deqing
County from 2013 to 2022 and after conducting spatial analysis (Figure 12), it is observed
that, when compared to the main rivers and lakes, the tributaries in the central and western
parts of the county have a higher distribution of poor-quality water pixels. In the period
from 2013 to 2017 (Figure 12a), most of the main rivers, lakes, and tributaries exhibited
varying degrees of water pollution. However, from 2018 to 2022 (Figure 12b), the water
quality of the main rivers and lakes (areas A, D, E) showed significant improvement, and
most of the tributaries and smaller water bodies (areas A, D, E) also experienced varying
degrees of improvement. In contrast, the water quality in the eastern part of Deqing County
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(areas B, C), especially the northeastern corner region (areas C), did not show significant
changes in either time period.
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Further temporal and spatial analysis (Figure 13) reveals that, in 2013, except for the
western mountainous areas where the water quality was good, other regions of Deqing
County experienced various degrees of water pollution, indicating a severe situation. By
2014, there was a significant overall improvement in water quality, particularly in the main
rivers where the condition of water quality was noticeably enhanced, and the number
of poor water body pixels had substantially decreased. Lakes and tributaries also show
varying degrees of improvement. In 2015, the water quality further improved, with visible
enhancements in the lakes and tributaries. Over the following seven years, the water
quality remained stable, with no significant changes.
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4.5. Deqing County Water System SDG 6.3.2 Evaluation

This article uses the pixel-based SDG 6.3.2 evaluation method to evaluate Deqing
County, and the results are shown in Figures 14 and 15. At the regional scale, the SDG 6.3.2
score (81.63) of Deqing County reached a good level since 2015, and then maintained a
stable state. At the watershed scale, the evaluation scores of RGB1 are slightly higher than
those of RGB2, which means that the water quality condition of RGB1 is better than that of
RGB2. At the same time, the evaluation score curves of the two are similar, indicating that
the water quality changes in the two watersheds in Deqing County are relatively uniform.
Furthermore, the results of the water body unit scale evaluation indicate that the water
quality of Deqing County has improved significantly between 2013 and 2015, and then
maintained a stable improvement trend, and that, by 2022, all of them have reached a good
level, except for area 3 in the center and area 4 in the northwest corner.
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5. Discussion

Current remote sensing studies on water quality focus on inverting water quality
parameters. However, water quality parameters in water bodies are constantly changing in
time and space, requiring a high degree of temporal and spatial synchronization between
satellite remote sensing data and ground data. It is often necessary to spend a significant
amount of money on field sampling to obtain more air–ground spatiotemporal synchro-
nization data before conducting a study. However, interpreting SDG 6.3.2 reveals that the
indicator is only concerned with whether the water quality is good or not, rather than
the values of individual water quality parameters. Under a real situation, decisionmakers
and the general public are primarily concerned with whether the water is polluted or not,
rather than the individual water quality parameters, including SDG 6.3.2. Therefore, we
simplify the complex process of quantitative inversion and the comprehensive evaluation
of multiple water quality parameters into a simple qualitative dichotomous classification
process for conventional water quality classification. Pollution is a persistent condition that
can occur suddenly but does not disappear suddenly. This also reduces the requirement for
satellite remote sensing data and ground data to be highly synchronized in time. Based on
this, this paper proposes a method for enhancing remote sensing water quality samples.
The method involves expanding the time window for matching the two datasets until a
sufficient amount of data is obtained. By establishing correlation rules and outlier detection
methods, this method removes abnormal data to ensure data quality and constructs a
water quality classification model. This approach maximizes the use of existing data, saves
human resources and time costs as compared to existing water quality studies, and is more
suitable for practical applications.

Moreover, the proposed classification model of water quality in this paper can syn-
thesize all remote sensing-reflected water quality parameters. In this classification model,
the relationship between each water quality parameter in the sample and the water quality
category is determined by the surface water environmental standards. The number of
good water quality parameters determines whether the water quality sample is good or
not. Most studies on water quality monitoring using remote sensing focus on medium
and large rivers and lakes, and there are no mature evaluation results for comparative
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validation. This paper focuses on Deqing County, a representative of typical inland small
and medium-sized urban river systems. The study area presents more challenges for
remote sensing-based water quality monitoring than other water systems. Deqing County
has mature SDG 6.3.2 water quality evaluation results that can be compared and verified
with the evaluation results presented in this paper.

Upon comparing the evaluation results presented in this paper with the existing
evaluation results of Deqing County, a high degree of similarity is observed. This similarity
demonstrates the objectivity and accuracy of the evaluation method employed in this paper.
In analyzing the water quality situation in Deqing County by combining the results of
water quality classification and evaluation, we discovered that the change in water quality
can be divided into two phases. The first phase, from 2013 to 2015, showed significant
improvement, while the second phase, from 2015 to 2022, showed stable fluctuation. Our
findings are consistent with the background of water governance in Deqing County. In
2013, Deqing County began implementing the ‘five water governance’ program to rectify
water quality pollution. By 2015, the program had been highly successful. At the same time,
the measured data at the monitoring site also support this result (Table 4). It can be seen
from the table that the annual average values of five water quality parameters in 2013 were
hovering near the target values. Among them, the average values of CODCr and NH3-N
did not reach the target value. In 2014, there were still three water quality parameters that
were very close to the target values. Among them, the average value of NH3-N did not
reach the target value. By 2015, the water quality had improved considerably, with all
water quality parameters far better than the target values. The water quality situation has
remained stable since then. In 2020, due to the COVID-19 pandemic, human production and
operation activities were halted, resulting in the further restoration of river water quality
and a peak in the water quality situation (the ratio of good water body pixels reached
84.6%, and the SDG 6.3.2 spatial type evaluation value reached 83.4). In the following two
years, despite the recovery of human activities and the impact of drought, the water quality
declined. However, the proportion of good water body pixels and the SDG6.3.2 spatial type
evaluation value remained above the good level, respectively, and there was little change
overall. The evaluation results indicate that, while the overall water quality in Deqing
County has reached a good status since 2015, there are still certain water quality problems
in areas No. 2, No. 3, and No. 4. Particularly in the No. 4 area, the water quality situation
did not improve significantly over the past decade. We further analyze the causes based on
the actual situation. The majority of Deqing County’s center is situated in area 3, with a
small portion located in area 2. These areas experience frequent human activity, making
water quality management more challenging than in other regions. Area 2 comprises a
small portion of the central town. Thanks to advancements in water quality management,
the overall water quality of area 2 reached a good level in 2020. The poor water quality in
area 4 is due to its border with neighboring counties and the fact that some of the water
flows in from the adjacent area. The water quality conditions in area 4 are affected not only
by the production and life in the region, but also by the poor water quality conditions in the
neighboring counties. Therefore, effective water management requires joint efforts between
the two areas, and relying solely on No. 4 area is not sufficient.

Table 4. Annual average of measured data at monitoring stations, 2013–2015.

DO
(mg/L)

CODMn
(mg/L)

CODCr
(mg/L)

NH3-N
(mg/L)

Petroleum
(mg/L)

Fluoride
(mg/L)

TP
(mg/L)

Sampling
Times

Target value for good water >=5 <=6 <=20 <=1 <=0.5 <=1 <=0.2
2013 5.580 4.409 20.073 1.142 0.044 0.492 0.170 114
2014 6.391 4.369 18.076 1.018 0.043 0.416 0.125 114
2015 6.464 3.965 15.368 0.532 0.041 0.419 0.112 112

In summary, using the remote sensing water quality sample enhancement method
applied to water quality classification proposed in this study for the construction of water
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quality models can make full use of the existing data already available. It saves a lot of
human resources and time costs, while ensuring data quality, which is more suitable for
application in practical work. At the same time, using this model to evaluate SDG 6.3.2
results in a more comprehensive reflection of multiple water quality parameters, better
representing the actual water quality situation. This approach saves time and cost while
ensuring the accuracy and reliability of the evaluation results. It significantly enhances the
efficiency of SDG 6.3.2 assessment, while reducing the threshold for evaluation.

Currently, remote sensing is limited in its ability to monitor and evaluate water quality
due to its inability to detect water quality parameters that lack significant optical properties,
such as metallic pollutants. The pollution parameters for water quality in Deqing County,
the study area for this research, are primarily reflected by remote sensing. These parameters
include DO, CODMn, ammonia nitrogen, and total phosphorus. It is possible that there
is heavy metal pollution and other types of pollution that cannot be detected via remote
sensing in areas that are classified and evaluated as good. This is an important consideration
when applying the method used in this study to other areas. However, when considering
the causes of water pollution, it is important to note that agricultural and domestic water
usage currently accounts for 80% of global fresh water usage [65]. Furthermore, water
pollution is primarily caused by agricultural production and domestic water sources. [66]
The main parameters of water pollution are total phosphorus (TP), ammonia nitrogen
(NH3-N), and dissolved oxygen (DO) [67,68]. Therefore, the methodology used in this
study has strong general applicability. Furthermore, previous research has been conducted
on the remote sensing monitoring of heavy metal pollution in water quality. It is believed
that this limitation will be effectively addressed in the future [69–71]. It should be noted
that there is still a lack of a globally harmonized and fixed standard for water quality
parameters, and local water quality standards need to be used for practical applications.

6. Conclusions

Based on Landsat 8 data and station water quality-monitoring data, a remote sensing
water quality sample enhancement method under open-ground uncoordinated conditions
was proposed in the field of water quality classification, and a random forest excellent
water body classification model was constructed. The water quality distribution map of
Deqing County was drawn to evaluate SDG 6.3.2 water quality indicators. First, according
to the characteristics of water quality pollution, a remote sensing water quality sample
enhancement method was proposed in the field of quality classification. By expanding the
sampling time points of station data into time periods, the number of samples matched
with Landsat 8 data increased, and the sample quality is ensured through reconstructing
relevant rules and outlier detection. Experimental results confirmed that the enhanced
sample set’s band-to-water quality parameter correlations align with existing research,
verifying the method’s scientific validity and feasibility. Secondly, a random forest excellent
water body classification model was constructed, and combined with Landsat 8 data, the
water quality distribution map of Deqing County, China, from 2013 to 2022 was drawn.
It was found that excellent water body classification models have a certain accuracy. The
classification results show that the water quality in Deqing County improved significantly
from 2013 to 2015, and then maintained stable fluctuations. From 2013 to 2015, the order
of water quality improvement was roughly main rivers, lakes and tributaries. And poor
water quality persists along the western border. These are consistent with the actual
situation, which illustrates the scientificity and feasibility of the remote sensing water
quality sample enhancement method we proposed. Finally, based on the results of excellent
water body classification, a set of spatial evaluation methods was designed to evaluate
SDG 6.3.2 indicators. It was found that Deqing County has generally maintained good
water quality since 2015 (overall evaluation score >80%), but poor water quality still exists
in the central urban areas and western border areas (the proportion of water body pixels
with good water quality is <80%). It is recommended that relevant departments continue
to strengthen the water quality supervision and management of small water bodies, and, at
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the same time, start from the external environment and strive to mobilize adjacent areas
for collaborative management to improve the external environment of water quality in the
region, achieving the sustainable development of water resources. This study demonstrates
the examples and feasibility of using satellite data to support SDG 6.3.2 water quality
reporting. At present, remote sensing technology still has shortcomings in detecting heavy
metals in water. Given that global water pollution sources mainly come from agricultural
and domestic sewage, which mainly affects parameters such as DO, TP, and NH3-N, the
proposed spatial evaluation method based on remote sensing still has broad applicability.
Future research aims to leverage multi-source remote sensing data to expand and refine the
remote sensing water quality sample database, advancing towards fully automated SDG
6.3.2 evaluation processes.
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