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Abstract: Decoupling agricultural economic growth from agricultural water pollution is of great
importance to regional sustainable development. It is necessary to further explore the decoupling
state and key driving factors connecting agricultural water pollution and agricultural economic
growth on the basis of accurate measurement of agricultural water pollution. Accordingly, taking the
Yellow River Basin (YRB) as the research object, this study combined the water footprint theory, the
Logarithmic Mean Divisia Index (LMDI) model and the Tapio decoupling model (TDM) to conduct
an in-depth decoupling analysis of the connection between the agricultural grey water footprint
(AGWF) and agricultural economic growth in the YRB. Specifically, this study first calculated the
AGWF of the YRB during 2016–2021 and objectively evaluated the water resource utilization in this
region based on the AGWF. Then, the LMDI model was used to explore the driving factors of the
AGWF in the YRB. Finally, the decoupling states between the AGWF and its driving factors with
agricultural GDP (AGDP) were studied using the TDM. The main results are as follows: (1) The
overall AGWF in the YRB showed a decreasing trend and a slow increase, decreasing by 5.39% in 2021
compared to 2016. (2) The primary promoting factor and inhibiting factor of AGWF reduction are the
efficiency effect and agricultural economic effect, respectively. (3) The decoupling states of the AGWF
and AGDP presented strong decoupling (SD) and then weak decoupling (WD) in the YRB during
the research period. The decoupling states between the agricultural grey water footprint intensity
(AGWFI) and AGDP changed from expansive negative decoupling (END) to SD. The decoupling state
of population and AGDP remained SD. This study will contribute to alleviating agricultural water
pollution in the YRB and help policymakers in water-stressed countries to formulate agricultural
water management policies.

Keywords: agricultural water pollution; grey water footprint; economic growth; decoupling; Yellow
River Basin

1. Introduction

Rapid economic growth, dramatic population expansion, and climate change have led
to an exponential increase in water demand [1–3]. Globally, 1.5 billion people face severe
and increasing water scarcity problems [4]. It is projected that this number will increase to
3.9 billion by 2050 [5]. Agricultural water occupies the highest proportion (70%) of freshwa-
ter resource utilization [6]. The leading cause of water pollution is agricultural non-point
source pollution, which generates 75% of nitrogen-related global warming potential and
38% of phosphorus-related global warming potential [7–9]. More than 50% of nitrogen and
phosphorus flows into water bodies due to inefficient use of fertilizers and pesticides [10].
The ineffective management of agricultural water pollution will result in a massive waste
of resources and environmental damage. However, current studies have given little con-
sideration to controlling pollutants produced by agricultural production [6,11]. With only
8% of the world’s arable land and a quarter of the global average per capita water supply,
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China needs to feed about 20% of the world’s population, which is also a considerable
challenge [12]. Meanwhile, China’s agriculture has not fully realized large-scale operation,
with low production efficiency and slow progress in adopting agricultural technology [13].
In this context, China can only continue to overuse fertilizers and pesticides to provide
more food, becoming the fastest-growing country in the world for agrochemicals [14]. At
the same time, animal husbandry aggravates agricultural grey water in China [15].

To quantitatively analyze water pollution, scholars put forward the grey water foot-
print, defined as the amount of polluted water diluted and managed to standard water
quality according to natural concentration and current environmental water quality stan-
dards [16]. Researchers have recognized the need to manage and evaluate water resources
by measuring the grey water footprint [17,18]. Regarding the measurement of agricultural
water pollution, scholars either set up macroscopic hydrological models to conduct overall
measurement analysis of agricultural grey water [7,11] or select only a few indicators to
analyze the changing trend of water pollution [10,19,20]. In most of the published studies,
the grey water footprint has been ignored or only partially considered because of the
complexity of its calculation and the difficulty of its estimation due to the lack of data [21].
Although some studies can grasp the changes in agricultural grey water footprint, few of
them have made accurate measurements of agricultural grey water footprint. In terms of
driving factors of the agricultural grey water footprint (AGWF), scholars generally use
the formula in the Water Footprint Assessment Manual [16] to calculate the AGWF more
accurately from the two aspects of planting and breeding [15,18,22]. Still, more in-depth
analyses of the specific factors that significantly impact the AGWF are needed. Therefore,
some researchers introduced the Logarithmic Mean Divisia Index (LMDI) model to conduct
in-depth studies of agricultural GDP (AGDP) driving factors [23,24]. Using the LMDI
model for factor decomposition can avoid the impact of residual and zero values on the
results, and it is a universally adaptable research method [25]. The LMDI model has been
widely used in water resources and the environment. Zhang et al. utilized the LMDI
model to explore the factor of AGWF decomposition in the midstream of the Heihe River
from 1991 to 2015 only from the perspective of the planting industry [26]. Through the
LMDI model, it was discovered that agricultural economic effect became the most critical
factor in enhancing the AGWF efficiency [27]. In addition, it was found that AGDP and
the intensity of the AGWF exerted the most significant promoting and inhibiting effects
upon AGWF change in China, respectively [6]. According to the Sustainable Development
Goals (SDGs), decoupling resources and environmental pressures from economic growth is
integral. Although the LMDI model can identify the driving factors affecting the change in
water resources, it cannot quantitatively measure the decoupling state between economic
growth and water consumption.

China’s rapid agricultural modernization has been accompanied by continued growth
in economic output, water resource use and environmental pressures, and water resources
and economic growth are quite related [28]. There are some existing studies that applied
the Gini coefficient method, the imbalance index method, and other methods to research
the relationship between water resources and the economy [28]. For example, Peng et al.
applied the water footprint calculation model VAR and co-integration models in their study
to find the correlation between water resources and economic growth [29]. Since water
pollution and scarcity significantly impact agricultural economic growth, which can cause
environmental damage, it is critical to decouple the agricultural grey water footprint from
economic growth [30]. Decoupling theory is a related theory applied to physics to illustrate
that the mutual correlation between two or more physical quantities decreases or no longer
exists. In 2005, Tapio analyzed the relationship between the transportation sector and
GDP from 1970 to 2001, and decoupling elasticity was proposed [31]. The Organization
for Economic Co-operation and Development (OECD) first used the decoupling theory to
discuss the correlation between environmental quality and economic development [32].
It defined “decoupling” as the rupture of the coupling relationship between ecological
quality change and economic progress. It believed that decoupling broke the connection be-
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tween environmental pressure and financial performance and put forward the conceptions
of relative and absolute decoupling. Gradually, scholars began to use Tapio decoupling
analysis to discuss the decoupling relationships between water resources, ecological envi-
ronment and economic progress [1,33,34]. Tao adopted the decoupling theory to study the
relationship between water resource utilization and economic development in Beijing [35].
Wang et al. also conducted the decoupling theory to study a decomposition analysis of
decoupling from water use and economic growth in 31 regions of China [36]. In addition,
the Tapio decoupling model (TDM) was adopted to detect the correlation between carbon
emissions and agricultural economic progress [37]. Subsequently, the LMDI method was
combined with the TDM to study the relationships between resource reserves, energy and
carbon emissions [38–41]. Few scholars have combined the LMDI and the TDM to conduct
in-depth research on the AGWF in the YRB. Kong et al. employed LMDI and TDM to
review changes in the water footprint within three provinces of China (Beijing, Tianjin and
Hebei) [1]. However, a vast area is covered by the Yellow River Basin (YRB), and the basin
faces additional intricate influencing factors.

To fill in the research gaps mentioned above, this paper takes the YRB as the research
objective and combines the LMDI and TDM to conduct AGWF research in seven provinces
and two regions in the YRB. The key contributions of our research include the following
points: (1) The AGWF in the YRB during 2016–2021 was accurately estimated via crop
farming and animal husbandry, and the trend of the AGWF was evaluated as a whole.
(2) The LMDI model was adopted to quantitatively decompose and analyze the driving
factors of the AGWF. (3) The TDM was introduced to dissect the decoupling state between
the AGWF and AGDP in the YRB, and the decoupling relationship between AGWF driving
factors and AGDP was discussed. The rest of this paper is organized as follows: Section 2
introduces the research areas, research approaches and data origins. Section 3 depicts
the fundamental discoveries. A deep analysis and discussion regarding essential results
are offered in Section 4. Conclusions are shown in Section 5, including main discoveries,
suggestions and limitations.

2. Materials and Methods

The overall technical route flowchart of this paper is shown in Figure 1.
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Figure 1. Technical route flowchart.

2.1. Study Area

The Yellow River is China’s second longest river. It has a length of 5646 km and a
drainage area of 79.5 billion m3, occupying roughly 8% of China’s total drainage regions.
The YRB spans several provinces, most of which are arid regions and semi-arid regions. The
mean annual precipitation of YRB ranges from 123 mm to 1021 mm with an increase from
the northwest to the southeast [42]. The Yellow River flows through the following seven
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provinces and two regions: Qinghai, Sichuan, Gansu, Ningxia Hui Autonomous Region
(referred to as Ningxia in the later text), Inner Mongolia Autonomous Region (Referred to
as Inner Mongolia in the later text), Shaanxi, Shanxi, Henan and Shandong. The YRB has
developed agriculture and flows through several grain production bases, crucial to ensuring
China’s food security. In 2021, the agricultural output value reached 2584.8 billion Chinese
Yuan (CNY), contributing 33% of China’s AGDP. However, the severe drought problem in
the YRB is serious, and water resources have become scarce. Total water resources in the
YRB account for roughly 2% of China’s total water resources, and per capita water resources
merely obtain 25% of the average. With limited water resources, the YRB irrigates 15% of
Chinese cultivated land and feeds 8% of China’s population [43]. Accordingly, agricultural
progress in the YRB is over-reliant upon water resources. Additionally, agricultural water
use efficiency is low [20]. In 2021, the total quantity of agricultural water within the YRB
reached 11,588.4 m3, occupying 66.26% of the total water, and 90% of the agricultural water
was utilized to irrigate farmland. Still, only 39% of the farmland was effectively irrigated.
At the same time, livestock production and the overuse of fertilizers and pesticides have
caused the destruction of water resources in the research area, and low agricultural water
use efficiency becomes the norm. In 2022, the productivity coefficients of farmland irrigation
water in Shanxi, Sichuan, Qinghai, Inner Mongolia, and Ningxia were 0.543, 0.473, 0.499,
0.543 and 0.535, respectively. Additionally, the coefficients for these provinces and regions
were lower than the national average amount of 0.554 [18]. There is a sense of urgency to
enhance agricultural water use efficiency and decrease the agricultural grey water footprint
of the YRB [44]. A map of the YRB is displayed in Figure 2.
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2.2. Methods
2.2.1. Agricultural Grey Water Footprint (AGWF)

To calculate the AGWF, the AGWF generated by farming and breeding should be
considered [16,45]. Nitrogen fertilizer used in agriculture is the most critical factor of
water pollution. Chemical Oxygen Demand (COD) is a major water pollutant in indus-
trial discharges monitored by the Chinese government, according to publicly available
discharge data [46]. The urine and feces produced by sheep, pigs, cattle and poultry include
significant quantities of COD and total nitrogen (TN), constituting the primary origin of
water pollution from breeding. This paper only considered the TN and COD produced by
farming and breeding in the calculation of the AGWF to simplify the calculation process.
Likewise, it was assumed that the rearing cycle for pigs and poultry is less than one year
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and the rearing cycle for cattle and sheep was greater than one year; hence, the year-end
slaughter quantity was adopted for pigs and poultry, and the year-end stock quantity
was adopted for cattle and sheep. The river flow, utilization patterns, precipitation levels,
and climate change in the YRB were variable between the years 2016 and 2021; however,
these variables were not employed in the model of the paper and were, therefore, not
considered. In this paper, the calculation formulas of the AGWF are referred to as defined
in Kong et al. [6].

The specific formulas are listed below:

AGWFpla =
∂ × Appl

CTN,max − CTN,nat
(1)

AGWFbre = max(AGWFbre(COD), AGWFbre(TN)) (2)

AGWFbre(i) =
EMbre(i)

Ci,max − Ci,nat
(3)

EMbre(i) =
4

∑
a=1

Na × Da × ( fa × pa f × βa f + ua × pau × βau) (4)

AGWF = max[(AGWFpla + AGWFbre(TN)), AGWFbre(COD)] (5)

In Formulas (1)–(5), AGWFpla represents the grey water footprint of planting based
on TN. ∂ represents the leaching rate of nitrogen fertilizer. Appl represents the application
amount of nitrogen fertilizer. Ci,max represents the water quality standard concentration
of Class i pollutants, and Ci,nat represents the natural background concentration of Class i
pollutants, which is assumed to be zero. Ci,nat for water pollutants is extremely small and
non-significant compared to Ci,max [47]. AGWFbre represents the grey water footprint of
the livestock industry. AGWFbre(i) represents the grey water footprint of Class i pollutants
(COD, TN). EMbre(i) represents the emission of Class i pollutants; a represents pigs, poultry,
cattle and sheep; and Na represents the number of species a. Da represents the feeding
period of a. fa and ua represent the daily excretion and urine volume of a. pa f represents
the content of fecal pollutants per unit of a. pau represents the pollutant content in urine per
unit of a. βa f represents the rate of pollutant loss per unit of feces of a. βau represents the
rate of pollutant loss per unit of urine of a. AGWF represents the agricultural grey water
footprint. Please refer to Appendix A for the specific values of each parameter.

2.2.2. Logarithmic Mean Divisia Index (LMDI) Model

To explore the driving factors of the AGWF, the LMDI model was employed to divide
the AGWF into three parts: the AGWF intensity (AGWFI), the agricultural economic
development and the population [1]. The formulas of LMDI model are referred to as
defined as Kong et al. [1], and they are listed below:

AGWFt = ∑
j

AGWFj,t = ∑
j

AGWFj,t

AGDPj,t
·

AGDPj,t

Pj,t
· Pj,t = ∑

j
AGWFIj,t · AEDj,t · Pj,t (6)

In Equation (6), AGWFt means the AGWF of the YRB during the year t. AGWFj,t
means the AGWF of j province during the year t. Pj,t means the permanent population
of j province during the year of t. AGWFIj,t means the AGWF intensity of j province
during the year t, indicating the AGWF produced by a unit of AGDP. The agricultural
water resource efficiency will be higher if the index is smaller. AEDj,t means the per
capita AGDP of j province during the year t, which denotes the developmental level of the
agricultural economy. If the index becomes greater, the influence of agricultural economic
development level upon the AGWF will be more significant. Pj,t means the population
size of j province during the year t. According to Equations (7)–(10), the total effect (∆A)
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of the AGWF is decomposed into three effects, namely the efficiency effect (∆AGWFI),
agricultural economic effect (∆AED) and population effect (∆P).

∆A = ∆AGWFI + ∆AED + ∆P (7)

∆AGWFI = ∑
j

AGWFj,t − AGWFj,0

ln AGWFj,t − ln AGWFj,0
ln

AGWFIj,t

AGWFIj,0
(8)

∆AED = ∑
j

AGWFj,t − AGWFj,0

ln AGWFj,t − ln AGWFj,0
ln

AEDj,t

AEDj,0
(9)

∆P = ∑
j

AGWFj,t − AGWFj,0

ln AGWFj,t − ln AGWFj,0
ln

Pj,t

Pj,0
(10)

2.2.3. Tapio Decoupling Model (TDM)

The TDM was adopted to measure the degree of decoupling between two variables [31].
The specific formula of TDM is referred to as defined in He et al. [15]:

ϕ =
Gt1 − Gt0

Gt0

/
Et1 − Et0

Et0

(11)

In Equation (11), ϕ represents the decoupling elastic coefficient, Gt represents the
AGWF and its driving factors and Et represents AGDP. The decoupling state can be de-
composed into eight categories in Table 1 in light of the calculated value [48]. Notably, the
strong decoupling (SD) is a perfect state, and this indicates that when the AGDP increases,
the AGWF decreases. Meanwhile, the strong negative decoupling (SND) is the worst
state; additionally, this shows that the agricultural grey water footprint still rises when an
economic recession occurs.

Table 1. Decoupling status classification.

Decoupling State ϕ ∆G ∆E

Strong decoupling (SD) (−∞, 0) <0 >0
Weak decoupling (WD) (0, 0.8) >0 >0

Recessive decoupling (RD) (1.2, +∞) <0 <0
Expansive coupling (EC) (0.8, 1.2) >0 >0
Recessive coupling (RC) (0.8, 1.2) <0 <0

Expansive negative decoupling (END) (1.2, +∞) >0 >0
Weak negative decoupling (WND) (0, 0.8) <0 <0
Strong negative decoupling (SND) (−∞, 0) >0 <0

2.3. Data Sources

The relevant AGDP information, resident population, fertilizer, pesticide application,
livestock, poultry feeding, etc., involved in this research were supplied by the “Statistical
Yearbook of China”, the “China Rural Statistical Yearbook”, and the “Water Resources
Bulletin”. All of the AGDP data used in this paper were converted, with 2016 taken as the
base period. With data from the livestock rearing cycle, pollutant content in defecation
and the fecal loss rates of livestock and poultry were supplied by the Technical Report on
Pollution Survey and Countermeasures of Large-Scale Livestock and Poultry Farming in
China [49]. COD, nitrogen, ammonia emission standards, nitrogen leaching rate, natural
background concentration, and other parameters were taken from He et al. [15].
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3. Results
3.1. Spatial–Temporal Characteristics of the AGWF in the YRB

The AGWF of the YRB and its seven provinces and two regions for the period
2016–2021 was calculated, as shown in Figures 3–5 and Tables 2 and 3 (below). The
AGWF in the YRB first decreased and then slowly increased during 2016–2021 (Figure 3).
In 2016–2019, the AGWF in YRB reduced yearly, reaching its lowest level in 2019, when it
decreased by 9.45%. During 2019–2021, the AGWF in the YRB showed a gradual increase
of 4.48% compared with 2019. Overall, the AGWF in the YRB cumulatively decreased
by 5.649 billion m3 in six years, with a reduction of 5.39%. From the perspective of the
changing trend of the AGWF in the planting and breeding sectors during 2016–2021, the
AGWF of the planting industry decreased by 9.093 billion m3, which represented a decrease
of 23.96%. The AGWF of the breeding industry cumulatively increased by 3.444 billion m3,
an increase of 5.15%. Furthermore, the AGWF of plantation was lower than the AGWF of
breeding. In 2016, the AGWF in the breeding sector grew to 1.76 times that of the planting
sector. By 2021, the ratio between the two rose to 2.44 times. The gap is gradually widening,
as can be seen by comparing these two results.
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Table 2. The AGWF in the YRB and nine provincial regions from 2016 to 2021 (Unit: 109 m3).

Region 2016 2017 2018 2019 2020 2021 Mean

Qinghai 7.006 6.591 6.226 5.955 7.612 7.528 6.820
Sichuan 21.732 21.507 20.989 19.654 19.967 19.571 20.570
Gansu 7.817 7.303 7.456 7.580 7.900 8.416 7.745

Ningxia 3.931 3.982 3.918 4.066 4.425 3.745 4.011
Inner Mongolia 13.831 14.042 13.147 13.023 13.225 14.463 13.622

Shaanxi 7.359 7.111 7.059 6.570 6.383 6.319 6.800
Shanxi 3.622 3.510 3.358 3.222 3.399 3.897 3.501
Henan 20.969 21.179 20.525 18.742 18.467 19.348 19.872

Shangdong 18.592 18.908 18.166 16.141 15.340 15.923 17.178
YRB 104.858 104.134 100.844 94.953 96.717 99.209 100.119

Table 3. The mean ranking of the AGWF of breeding, AGWF of planting and AGWF.

Region AGWFbre AGWFpla AGWF

Qinghai 5 9 6
Sichuan 1 3 1
Gansu 6 7 5

Ningxia 9 6 8
Inner Mongolia 4 4 4

Shaanxi 7 5 7
Shanxi 8 8 9
Henan 3 1 2

Shangdong 2 2 3

From Table 2 and Figure 4, it can be seen that the AGWFs in five of the seven provinces
and two regions in the YRB showed a downward trend during 2016–2021. Among them,
Shandong experienced the largest decrease, with a decrease of 14.36% to 2.669 billion m3,
and Ningxia experienced the smallest decrease, with a decrease of 4.73% to 0.186 billion
m3. The AGWFs of the other four provinces showed an upward trend, among which
Gansu had the largest increase of 7.67% and Inner Mongolia had the smallest increase of
4.57%. The difference may be due to the fact that these four provinces are located in the
central and western regions of China, where ecological and economic development is slow,
agricultural technology is relatively backward, and a high-resource-consuming agricultural
development model is preferred.
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According to the average AGWF ranking, the top three provinces are Sichuan, Henan
and Shandong (Table 3 and Figure 5). The last three on the list are Shaanxi, Shanxi
and Ningxia. Combined with the rankings of the breeding AGWF and planting AGWF,
Sichuan’s total AGWF and breeding AGWF both ranked first, and its planting AGWF
ranked third. Henan’s planting AGWF ranked first. The total amount of AGWF in Shanxi
ranked ninth, and the breeding and planting of AGWF ranked eighth. This shows that the
AGWF of the breeding industry significantly impacts the total AGWF ranking.

3.2. Analysis of Driving Factors of AGWF

In this study, the LMDI approach was adopted to decompose the AGWF in the YRB
into three parts: efficiency effect, agricultural economic effect and population effect. Ac-
cording to Equations (6)–(10), the results are as exhibited in Figures 6 and 7 and Tables 4–7.
According to Table 4, during 2016–2021, the total effect of the AGWF first showed a sharp
decline and, subsequently, a slow rise, cumulatively decreasing by 5.647 billion m3 during
the six years. The total effect of the AGWF declined yearly from 2016 to 2019, and the maxi-
mum reduction was 5.891 billion m3 from 2018 to 2019. The total effect of the AGWF rose
slowly year by year in 2019–2021. Additionally, the maximum increase was 2.492 billion m3

during 2020–2021.
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Table 4. The LMDI analysis of AGWF change in the YRB (Unit: 109 m3).

Year Efficiency Effect Agriculture
Economic Effect

Population
Effect Total Effect

2016–2017 −3.486 2.371 0.465 −0.650
2017–2018 −7.184 3.587 0.235 −3.362
2018–2019 −11.514 5.395 0.228 −5.891
2019–2020 −8.635 10.206 0.193 1.764
2020–2021 −8.570 11.192 −0.131 2.492

Sum −39.389 32.752 0.990 −5.646

From the decomposition effect of the AGWF (Figure 6), the efficiency effect was
always negative, and its absolute value first increased and then decreased. This showed
that agricultural water use efficiency became the main factor when the AGWF was reduced.
A maximum of 11.514 billion m3 reduced the efficiency effect in 2018–2019. The agricultural
economic effect was always positive, and the effect increased year by year. The population
effect was positive in most years and decreased year by year. The AGWF increase results
from a mixture of the agricultural economic effect and the population effect. As the
agricultural economic level gradually improves and the population continues to grow, the
problem of rural water pollution will continue to rise. However, the cumulative impact of
the agricultural economic effect on AGWF growth over the six years 2016–2021 was about
30 times greater than the cumulative impact of the population effect, indicating that the
progress of the agricultural economy dominated the AGWF increase.

From the related provinces (Tables 5–7 and Figure 7), during the time period of 2016 to
2021, the total effects of the AGWF in Sichuan, Ningxia, Henan and Shandong all decreased,
while the full effects of the AGWF in Qinghai, Gansu, Inner Mongolia and Shanxi increased.
Among them, the total reduction effects for the AGWF in Shandong, Sichuan and Henan
ranked among the top three, with 2.669 billion m3, 2.161 billion m3 and 1.621 billion m3,
respectively, contributing significantly to the decrease in the AGWF from 2016 to 2021.
The total AGWF effect of Inner Mongolia increased the most, and it was 0.632 billion m3.
Via the decomposition effect, the cumulative contribution of the efficiency effect in the
seven provinces and two regions was negative, and the incremental contribution from
the agricultural economic effect was positive, while the cumulative contribution of the
population effect was negative only in Shanxi, Inner Mongolia and Gansu, and the other
provinces were positive. The increase or decrease in the AGWF in the seven provinces and
two regions was mainly caused by agricultural economic effects or efficiency effects, which
were similar to the results in Table 4. It is noteworthy that the cumulative contribution
from agricultural economic effects to the AGWF increase in Shandong, Sichuan and Henan
ranked fifth, second, and first, respectively. However, the cumulative reduction in the
AGWF caused by efficiency effects ranked third, first, and second, respectively, much higher
than the cumulative reductions in the AGWF caused by efficiency effects in other provinces.
It shows that the agricultural water-saving technology and irrigation technology within
three provinces have been prominently enhanced compared to the other six provinces,
thus strengthening the agricultural water use efficiency and alleviating the problem of
agricultural water pollution.
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Table 5. The LMDI analysis of AGWF change in Qinghai, Sichuan and Gansu (Unit: 109 m3).

Period
Qinghai Sichuan Gansu

Efficiency
Effect

Agriculture
Economic Effect

Population
Effect

Total
Effect

Efficiency
Effect

Agriculture
Economic Effect

Population
Effect

Total
Effect

Efficiency
Effect

Agriculture
Economic Effect

Population
Effect

Total
Effect

2016–2017 −0.736 0.275 0.047 −0.414 −0.660 0.336 0.099 −0.225 −0.899 0.379 0.006 −0.514
2017–2018 −0.809 0.433 0.011 −0.365 −1.239 0.639 0.082 −0.518 −0.311 0.485 −0.021 0.153
2018–2019 −0.939 0.637 0.031 −0.271 −3.205 1.797 0.073 −1.336 −0.496 0.638 −0.018 0.124
2019–2020 0.895 0.728 0.034 1.657 −2.766 3.033 0.047 0.314 −0.633 0.978 −0.025 0.320
2020–2021 −0.902 0.805 0.013 −0.084 −0.751 0.352 0.002 −0.396 −0.823 1.375 −0.036 0.517

Sum −2.491 2.878 0.136 0.522 −8.622 6.157 0.304 −2.161 −3.163 3.855 −0.093 0.600

Table 6. The LMDI analysis of AGWF change in Ningxia, Inner Mongolia and Shaanxi (Unit: 109 m3).

Period

Ningxia Inner Mongolia Shaanxi

Efficiency
Effect

Agriculture
Economic Effect

Population
Effect

Total
Effect

Efficiency
Effect

Agriculture
Economic Effect

Population
Effect

Total
Effect

Efficiency
Effect

Agriculture
Economic Effect

Population
Effect

Total
Effect

2016–2017 −0.114 0.109 0.057 0.052 0.116 0.113 −0.017 0.212 −0.573 0.270 0.056 −0.248
2017–2018 −0.486 0.394 0.028 −0.064 −1.701 0.867 −0.062 −0.895 −0.157 0.056 0.049 −0.053
2018–2019 0.085 0.023 0.039 0.148 −0.936 0.849 −0.038 −0.124 −0.904 0.393 0.022 −0.489
2019–2020 −0.422 0.758 0.024 0.359 −0.968 1.235 −0.065 0.202 −0.705 0.500 0.018 −0.188
2020–2021 −0.996 0.294 0.023 −0.679 −0.064 1.319 −0.017 1.238 −1.122 1.060 −0.002 −0.064

Sum −1.932 1.577 0.170 −0.185 −3.553 4.384 −0.199 0.632 −3.463 2.278 0.144 −1.041

Table 7. The LMDI analysis of AGWF change in Shanxi, Henan and Shandong (Unit: 109 m3).

Period

Shanxi Henan Shandong

Efficiency
Effect

Agriculture
Economic Effect

Population
Effect

Total
Effect

Efficiency
Effect

Agriculture
Economic Effect

Population
Effect

Total
Effect

Efficiency
Effect

Agriculture
Economic Effect

Population
Effect

Total
Effect

2016–2017 −0.084 0.051 −0.004 −0.038 −0.717 0.818 0.110 0.210 0.183 0.021 0.112 0.316
2017–2018 −0.252 0.037 −0.008 −0.223 −0.971 0.244 0.074 −0.654 −1.256 0.433 0.081 −0.742
2018–2019 −0.489 0.358 −0.005 −0.136 −2.113 0.256 0.073 −1.783 −2.518 0.444 0.049 −2.025
2019–2020 −0.399 0.583 −0.007 0.177 −2.011 1.661 0.075 −0.275 −1.624 0.731 0.092 −0.802
2020–2021 0.142 0.365 −0.010 0.497 −2.792 3.783 −0.111 0.881 −1.262 1.838 0.008 0.583

Sum −1.083 1.394 −0.034 0.277 −8.605 6.762 0.222 −1.621 −6.478 3.466 0.342 −2.669
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3.3. Decoupling Analysis of AGWF and AGDP

The changing trend of AGDP and the AGWF in the YRB during 2016–2021 is exhib-
ited in Figure 8. The decoupling state of the AGWF and its decomposition factors from
AGDP are displayed in Table 8. The AGDP showed a stable growing trend, while the
AGWF showed a changing trend of, firstly, a sharp decline and then a slow rise (Figure 8).
According to the data in Table 8, the decoupling states of the AGWF and AGDP were
manifested as SD in 2017–2019 and WD in 2019–2021, which conforms to the changing
trend in Figure 8. In light of the decoupling relationship between the decomposition factors
of the AGWF and AGDP, the decoupling between them was not considered since AGDP
and agricultural economic development belong to the economic category. In addition, the
AGWFI and AGDP showed END in 2017–2019, followed by SD in 2019–2021. Furthermore,
the decoupling state always presented SD between the population effect and AGDP.
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Table 8. Decoupling status of AGWF and its driving factors and AGDP.

Year
Decoupling
Elasticity of

AGWF and AGDP

Decoupling
Status

Decoupling
Elasticity of AGWFI

and AGDP

Decoupling
Status

Decoupling
Elasticity of P

and AGDP

Decoupling
Status

2017–2018 −1.002195098 SD 33.6473 END −0.495061127 SD
2018–2019 −1.094079494 SD 11.29061 END −0.029251404 SD
2019–2020 0.173306378 WD −2.33237 SD −0.152678292 SD
2020–2021 0.208439086 WD −0.06081 SD −1.675894151 SD

Notes: Green represents strong decoupling; light green indicates weak decoupling; and red indicates expansion
negative decoupling.

Separately, (1) although the decoupling state between the AGWF and AGDP was SD
in 2017–2019, from a numerical point of view, the decoupling state of 2018–2019 was higher
than that of 2017–2018, while the decoupling state was WD after 2019. The decoupling state
gradually became weaker over time, indicating that from 2017 to 2019, with the continuous
increase in AGDP, continuous decrease in the AGWF, and the reduction speed becoming
faster and faster, the agricultural water pollution problem in the YRB was effectively
controlled. From 2019 to 2021, with the continuous increase in AGDP, the AGWF increased.
Still, the growth rate of the AGWF was significantly slower than that of AGDP, indicating
that the control of agricultural grey water footprint in the YRB was relaxed. (2) The
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decoupling state between the AGWFI and AGDP showed END in 2017–2019, but the value
of 2018–2019 was much lower than that of 2017–2018, indicating that although both were in
the END state, the END state gradually decreased with the increase in time. Although the
AGWFI increased with the increase in AGDP, and the growth rate of the AGWFI was much
higher than that of AGDP, the growth rate of the AGWFI slowed down, indicating that the
agricultural water use efficiency in the YRB was not greatly improved, but decision-makers
have paid the issue of improving agricultural water use efficiency attention. Although the
decoupling state between the AGWFI and AGDP was in SD from 2019 to 2021, the value of
2019–2020 is lower than that of 2020–2021, indicating that the SD state was unstable. This
indicates that although the AGWFI decreased with the growth of AGDP during 2019–2021,
the rate of AGWFI decline slowed down, that is, agricultural water use efficiency was yet
to be steadily improved. (3) The decoupling state between P and AGDP showed SD during
2017–2021, illustrating that with the AGDP increase, the population in the YRB decreased to
some degree, that is, the AGDP increase did not depend on population growth. However,
the decoupling strength of different stages was different, as the SD state was strongest
during 2018–2019 and weakest during 2020–2021.

4. Discussion
4.1. Discussion of AGWF

This paper first calculated and evaluated the 2016–2019 AGWF in the YRB. Subse-
quently, the LMDI approach was adopted to decompose the AGWF drivers. Next, the
decoupling relations were detected among the AGWF, its driving factors, and AGDP
growth through the Tapio decoupling model.

This study confirms that the overall AGWF decreased in the YRB, with a downward
trend in 2016–2019 and an upward trend in 2019–2021 (Figure 3). Kong et al. also found
that China’s AGWF showed a downward trend from 2015 to 2019 [6]. Xu et al. further
found that the AGWF of prefecture-level cities in the YRB continued to decline from
2015 to 2019 [50]. The research conclusions of this paper are consistent with those of
Kong et al. and Xu et al. [6,50]. The reason why the AGWF in the YRB decreased at
first and then rose slowly during 2016–2021 may be that the implementation of the high-
quality development strategy in the YRB had a strong promotion effect on reducing the
agricultural grey water footprint and improving agricultural water use efficiency in the
region in 2016 and for the following three years. However, there was an increase in the
AGWF in the YRB between 2019 and 2021, which COVID-19 may have influenced. The
impact of COVID-19 may have led to a loosening of controls on agricultural pollutants. This
result is consistent with that of Kuttippurath et al., who found that agricultural activities
and the use of nitrogen fertilizer increased during the COVID-19 period due to lack of
restrictions [51]. To ensure national agricultural security, China’s National Development
and Reform Commission put agricultural output in first place in 2020 and temporarily
weakened agricultural pollution controls.

This paper found that the AGWF in Qinghai, Shanxi, Gansu and Inner Mongolia
increased from 2016 to 2021, mainly due to the severe shortage of water resources in the
above four provinces. Wei et al. pointed out that water resource endowment plays a
decisive role in alleviating the problem of the agricultural grey water footprint [52]. To
promote the rapid development of the agricultural economy, the four provinces mentioned
above often used sewage for agricultural irrigation while applying fertilizer in large quan-
tities for a long time. Although sewage irrigation can provide land with a stable water
source and bring phosphorus, nitrogen and other chemical elements needed for crops, it
inevitably aggravates the problem of agricultural non-point source pollution. In addition,
Qinghai, Gansu and Inner Mongolia are major provinces of animal husbandry, and the
rapid development of animal husbandry has increased the loads of resources and the
environment. This finding is supported by the study of Wen et al., who suggest that the
high concentrations of pollutants in the soil have led to the worsening of agricultural water
pollution in northern China [53].
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The AGWF in the YRB reached its lowest level in 2019, a significant decrease compared
with 2016. The reasons may be as follows: On the one hand, the research data in this paper
show that the AGWF was greatly affected by AGWFbre, and the AGWFbre in the YRB
reached its lowest level in 2019, reaching 63.112 billion m3, while AGWFpla decreased
year by year. On the other hand, implementing the new development concept in the
YRB continued to promote the green transformation of agricultural development. China
promulgated the National Water Saving Action Plan and subsequently brought forward
a nationwide strategy for the ecological protection and high-quality progress of the YRB
in 2019. During the same year, the related provinces responded to the nation’s call and
actively launched water-saving action implementation plans aligned with other provinces.
With the promotion of various policies, the problem of agricultural water pollution in the
YRB has been controlled.

4.2. Discussion of Driving Factors of AGWF

In our study, the driving factors of the AGWF are split into the efficiency effect, agricul-
tural economic effect and population effect by the LMDI model, and the contribution degree
of the three decomposition effects to the AGWF are discussed. From 2016 to 2021, the agri-
cultural economic effect was the primary factor driving AGWF increase in the YRB, while
the population effect contributed little to the rise in the AGWF, and the efficiency effect was
an essential reason for the decrease in the AGWF. The same conclusion can be reached from
the relevant provinces. Similarly, it was concluded that the increase or decrease in the grey
water footprint was mainly caused by economic or technological effects through the LMDI
approach [27]. Moreover, the Generalized Divisia Index Method (GDIM) was adopted to
dissect the driving factors of the AGWF in China and Hubei Province, respectively. It was
found that agricultural economic growth inhibited the decline of the AGWF, while the
AGWFI promoted the AGWF’s decrease [6,15]. Chen et al. analyzed the water resource
carrying capacity (WRCC) in the YRB during 2009–2018 through LMDI decomposition
and concluded that wastewater treatment technology promoted the WRCC. However, the
WRCC was inhibited by the economic effect [54]. The above studies demonstrate that the
reduction in the AGWF is mainly promoted by the efficiency effect and inhibited by the
agricultural economic effect. The efficiency effect in our research area on AGWF reduction
in 2021 increased by 1.5 times compared with that in 2016, suggesting that the planting
technology was enhanced, as well as agricultural sewage treatment technology; animal
husbandry was transformed into a green development model; and the AGWF was, thus,
reduced. This finding is supported by the study of He et al., who suggest that agricultural
science and technology improvement could lead to AGWF reduction [15]. The degree of
agricultural development in southern China is higher than that in northern China; therefore,
it can be inferred that the AGWF in southern China is higher than that in northern China.
This is consistent with the research conclusion of Kong et al. [6]. However, Wen et al. found
that the upward trend of the AGWF in southern China was significantly lower than that in
northern China, possibly due to the higher total water resources and better water quality
in southern China, as well as higher agricultural resource utilization efficiency compared
with northern China [53].

4.3. Discussion of Decoupling States of AGWF with AGDP

In addition, the TDM was adopted in this study to explore the decoupling relationships
between the AGWF, its driving factors, and AGDP during 2016–2021. It is shown that the
decoupling states of the AGWF and AGDP presented SD in 2017–2019 and WD in 2019–2021.
These two decoupling states indicate that in the AGDP growth process, the AGWF first
decreased and then rose slowly, thus achieving sustainable agricultural development to a
certain extent [6]. Simultaneously, the AGWFI and AGDP showed END during 2017–2019
and SD during 2019–2021. It is highlighted that agricultural water use efficiency was
dramatically improved as agricultural irrigation technology and water-saving technology
developed, and the ideal state of the AGWFI decreasing with the AGDP increasing was
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finally realized. Therefore, when dealing with agricultural grey water, it is imperative
to properly handle the correlations between the economy, ecology, and resources based
upon the water environment carrying capability, focus upon the influences of AGDP and
AGWF intensity upon agricultural water use, and improve agricultural water use efficiency
through continuously improving agrarian technology [44,54].

5. Conclusions

With the sustained and rapid growth of the agricultural economy, the massive ap-
plication of chemical fertilizers and pesticides and the arbitrary discharge of livestock
and poultry manure have aggravated the water pollution of China’s agriculture, seriously
restricting the green development of China’s agricultural economy. As an important agri-
cultural region in China, the YRB has a broad plain and fertile soil, which provides unique
conditions for China’s agricultural development. This paper provides a method to accu-
rately calculate the AGWF in the YRB during 2016–2021, which can be applied in similar
cases in further studies. The LMDI approach was employed to decompose the driving
factors that impacted the AGWF. Next, the TDM was adopted to explore the decoupling
relationships between the AGWF, its driving factors, and AGDP. The following conclusions
were reached:

(1) In 2016–2021, the AGWF in the YRB decreased by 5.39%. The AGWF in the research
area varied greatly.

(2) The primary promoting and inhibiting factors of AGWF reduction were the effi-
ciency effect and agricultural economic effect; however, the population effect had a weak
inhibiting effect upon AGWF reduction.

(3) Regarding the decoupling states between the AGWF and AGDP, SD and WD were
presented first. Moreover, the decoupling state between the AGWFI and AGDP shifted
from END to SD. The decoupling between the population and AGDP was in SD. This
indicates that agriculture in the research area realized the sustainable development pattern
step by step.

Based on the above research conclusions, this paper puts forward the following pol-
icy recommendations: (1) Agricultural grey water in different provinces varies greatly;
therefore, agricultural water management policies should be formulated according to local
conditions, rational allocation of resources and coordinated regional development. (2) It
is also vital to constantly improve various infrastructure, accelerate the diversified devel-
opment of the agricultural economy, cultivate and expand characteristic industries and
achieve sustained progress in the agricultural economy. (3) Finally, policymakers should
strengthen the protection and scientific and rational use of water resources, further promote
the application of water-saving technologies, accelerate the development of green agricul-
tural technologies, consolidate and improve coordination between the agricultural economy
and agricultural water use, and achieve the high-quality development of green agriculture.

Although the AGWF in the YRB was measured and analyzed, as were its driving
factors, some areas are still worth improving. The generalization of these results is subject
to certain limitations. For instance, (1) on account of the challenges of attaining some
information related to agricultural grey water, only COD and TN pollution sources were
considered in the calculation of the AGWF in this paper, and there may be specific differ-
ences between the calculation results of the AGWF and the actual situation of agricultural
water pollution. (2) The dynamic evolutionary path between the AGWF and its drivers
and AGDP is worth further exploration. (3) Due to time constraints, this paper did not
study how the COVID-19 pandemic influenced agricultural pollutants, and this could be
further explored.
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Appendix A

Table A1. The parameters mentioned in this paper and their values.

Parameters Values

∂ 7% for ∂
Ci,max 60 mg/L for CCOD,max; 15 mg/L for CTN,max
Ci,nat Assumed to be zero.

Da 365 days for Dcattle and Dsheep; 199 days for Dpigs; 210 days for Dpoultry
fa 0.02 t/day for fcattle; 0.002 t/day for fpigs; 0.0026 t/day for fsheep; 0.000125 t/day for fpoultry
ua 0 t/day for usheep and upoultry; 0.01 t/day for ucattle; 0.0033 t/day for upigs

pa f (for COD) 31 kg/t for pcattle f ; 52 kg/t for ppigs f ; 4.63 kg/t for psheep f ; 45.65 kg/t for ppoultry f
pa f (for TN) 4.37 kg/t for pcattle f ; 5.88 kg/t for ppigs f ; 7.50 kg/t for psheep f ; 10.42 kg/t for ppoultry f

pau (for COD) 0 kg/t for psheepu; ppoultryu, 6 kg/t for pcattleu; 9 kg/t for ppigsu
pau (for TN) 0 kg/t for psheepu and ppoultryu; 8 kg/t for pcattleu; 3.3 kg/t for ppigsu

βa f (for COD) 6.16% for βcattle f ; 5.58% for βpigs f ; 5.50% for βsheep f ; 8.59% for βpoultry f
βa f (for TN) 5.68% for βcattle f ; 5.34% for βpigs f ; 5.30% for βsheep f ; 8.47% for βpoultry f

βau 50% for βau
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