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Abstract: With global warming and intensified human activities, extreme convective precipitation
has become one of the most frequent natural disasters. An accurate and reliable assessment of severe
convective precipitation events can support social stability and economic development. In order to
investigate the accuracy enhancement methods and data fusion strategies for the assessment of severe
convective precipitation events, this study is driven by the horizontal reflectance factor (ZH) and
differential reflectance (ZDR) of the dual-polarization radar. This research work utilizes microphysical
information of convective storms provided by radar variables to construct the precipitation event
assessment model. Considering the problems of high dimensionality of variable data and low
computational efficiency, this study proposes a dual-polarization radar echo-data-layering strategy.
Combined with the results of mutual information (MI), this study constructs Bayes–Kalman filter
(KF) models (RF, SVR, GRU, LSTM) for the assessment of severe convective precipitation events.
Finally, this study comparatively analyzes the evaluation effectiveness and computational efficiency
of different models. The results show that the data-layering strategy is able to reduce the data
dimensions of 256 × 256 × 34,978 to 5 × 2213, which greatly improves the computational efficiency.
In addition, the correlation coefficient of interval III–V calibration period is increased to 0.9, and the
overall assessment accuracy of the model is good. Among them, the Bayes–KF-LSTM model has
the best assessment effect, and the Bayes–KF-RF has the highest computational efficiency. Further,
five typical precipitation events are selected for validation in this study. The stratified precipitation
dataset agrees well with the near-surface precipitation, and the model’s assessment values are close
to the observed values. This study completely utilizes the microphysical information offered by
dual-polarized radar ZH and ZDR in precipitation event assessment, which provides a wide range of
application possibilities for the assessment of severe convective precipitation events.

Keywords: dual-polarization radar; severe convective precipitation; data-layering strategy; Bayesian
optimization; Kalman filtering

1. Introduction

In recent years, with global warming and intensified human activities, extreme pre-
cipitation weather often occurs in many regions of the world [1–4]. This type of weather
causes serious urban disasters annually, leads to large-scale power outages, and seriously
threatens both lives and social stability [5,6]. Heavy precipitation is highly heterogeneous in
time and space, making accurate and reliable prediction challenging. Therefore, developing
high-precision and high-resolution assessments of the timing and intensity of precipitation
has become an urgent problem for meteorological departments [7–9].

Precipitation forecasting is an important issue in the field of meteorology, and the two
mainstream methods are numerical model forecasting and radar echo extrapolation [10].
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Numerical models forecast future atmospheric conditions by solving equations for at-
mospheric dynamics and thermodynamics, predicting further into the future than radar
methods [11]. Compared with the radar echo extrapolation method, the numerical model
can obtain the forecast results for a longer period of time in the future, but it also has some
drawbacks. First, there are numerous uncertainties in the process of numerical simulation,
such as inaccurate initial conditions and parameterization of physical processes [12]. The
effect of the above factors can lead to a decrease in the reliability of the numerical model
results [13]. Second, measurement errors in the input data make the solution process error
magnified. Based on real-time radar images acquired, the radar echo extrapolation method
realizes the prediction and assessment of precipitation events by analyzing the moving
trend, shape and intensity changes of strong storms [14,15]. Capecchi et al. [16] investigated
the impact of assimilated radar and automated weather station data on precipitation fore-
casts to improve the accuracy of early forecasting systems. The study by Ansh Srivastava
et al. [17] demonstrated the important role played by radar echo data in extreme rainfall
forecasting. Further, numerous scholars have conducted in-depth studies on the assessment
of extreme rainfall forecasting based on radar echoes. However, these methods use only a
small number of historical radar echo images to predict the next radar echo image. This
results in low model data utilization, while the effective forecast time usually cannot exceed
one hour [18].

In recent years, with the accumulation of big data and the development of computer
arithmetic power, artificial intelligence and deep learning techniques have developed
rapidly [19]. Deep learning methods are data-driven with strong nonlinear mapping capa-
bilities and theoretically improve as the volume of training data increases. These methods
are particularly well-suited for short-range forecasting, where extensive radar observation
data are available [20]. Based on the scale-invariant feature transform (SIFT) and UNet con-
volutional neural network methods, Yao et al. [21,22] performed 0–2 h proximity forecasting
of strong convective weather. Yu et al. [23] used a recurrent convolutional neural network
in the UNet framework for 0–2 h proximity forecasting and achieved good results in some
weather conditions. While the integration of deep learning has enhanced severe convective
weather now-casting, challenges persist in managing massive radar raster datasets; these
include overfitting, slow training speeds, and limited applicability [24].

The technology of combining dual linearly polarized weather radars and phased array
antenna scanning modes has become increasingly mature over the past few years [25]. At
the same time, Doppler radars with dual-polarization capability have been progressively
upgraded in recent years [26,27]. Compared with the single-polarization weather radar, the
bilinear polarization radar can simultaneously transmit polarized electromagnetic waves
in the horizontal and vertical directions. It can obtain more accurate hydrometeorological
estimation, which plays an important role in the prediction and monitoring of extreme
precipitation events [28,29]. In addition, polarized radar variables such as differential
reflectivity (ZDR) and specific differential phase (KDP) can provide richer convective storm
microphysical information than radar reflectivity [30]. Meanwhile, ZDR and KDP contain
the unique properties of raindrop size and distribution. These attributes may change
greatly in different stages of storm evolution, thus helping to provide information on storm
evolution [31]. Therefore, dual-polarization radar variables have great potential to improve
the nowcasting of convective precipitation [32].

This study advances beyond traditional numerical simulations based on radar echoes
by introducing a stratification strategy for radar echo data and developing a precipitation
event evaluation model utilizing intelligent learning techniques. Compared with the
current mainstream convolutional neural network method, this study greatly reduces the
data dimension, improves the model’s computing efficiency, and enhances the model’s
generalization performance. The findings demonstrate that the radar echo data stratification
strategy and the intelligent learning-based precipitation evaluation method offer high
computational reliability and efficiency, showcasing substantial practical value.
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The rest of this paper is organized as follows. Section 2 introduces the data sources and
quality control methods in detail. Meanwhile, the precipitation event assessment system
based on radar echo data is presented in Section 3. Then, the result analysis and application
cases are given in Section 4. Finally, and analysis and discussion are presented in Section 5.
The general framework of this study is shown in Figure 1.
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2. Dataset and Experimental Design
2.1. NJU-CPOL Dataset

Dual-polarization radar (DPR) is a radar system that uses two different polarizations,
usually horizontal (H) and vertical (V) polarization. It transmits horizontal or vertical
polarized microwave pulse signals through the antenna system, and obtains the following
three microphysical variables for precipitation assessment. The horizontal reflectivity factor
(ZH) is the echo intensity in the horizontal direction, which mainly reflects the strength
of precipitation. Differential reflectivity (ZDR) is the difference in echo intensity between
the horizontal and vertical directions, which mainly reflects the size of the precipitation
particles in the observation area. The specific differential phase shift (KDP) is the phase
difference between the horizontal and vertical echoes caused by precipitation particles per
unit distance, which mainly reflects the liquid water content. Wen et al. [33,34] deeply
studied the performance of KDP in simulating near-surface precipitation and proved its
excellent performance. In addition, the radar system can also obtain reflected signals at
different altitudes by adjusting the elevation angle of the antenna to cover the vertical
height range of interest.
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This study uses data from the NJU C-band dual-polarization weather radar, partially
derived from Pan et al. [32]. The dataset (called NJU-CPOL) covers a total of 268 pre-
cipitation events from 2014 to 2019, including 35,133 data files. However, Pan et al. [32]
only provided a dataset of dual-polarization radar at 3 km. This study collected and sup-
plemented 1 km, 7 km ZH and ZDR datasets and near-surface precipitation (Rt) datasets.
Referring to the work of Huang et al. [34,35], the near-surface precipitation calculation
method used in this study is Rt(KDP) = 58.01K0.785

DP . At the same time, the radar data have
been subjected to quality control and interpolated to Cartesian coordinates. All the data in
this study have a spatial resolution of 1 km in the horizontal direction, and contain CAPPI
(Constant altitude Plan Projection Indicator) data at altitudes of 1 km, 3 km, and 7 km
in a 256 × 256 km area around the radar center, and the overall dataset has a temporal
resolution of 6–7 min.

2.2. Experimental Design

In this study, the ZH and ZDR datasets under 1 km, 3 km and 7 km are used as the
assessment factor sets for the rainfall event Rt. Firstly, we screen the evaluation factors
at different time steps. These factors will be used as input data for the rainfall event
assessment model. Equation (1) is the formula for evaluating rainfall events using ZH, ZDR
factors under different time steps.

R̂t = M

 (Optional)Z1km
H,t−K, . . . , Z1km

H,t , Z1km
DR,t−K, . . . , Z1km

DR,t
(Optional)Z3km

H,t−K, . . . , Z3km
H,t , Z3km

DR,t−K, . . . , Z3km
DR,t

(Optional)Z7km
H,t−K, . . . , Z7km

H,t , Z7km
DR,t−K, . . . , Z7km

DR,t

 (1)

where R̂i is the near-surface precipitation event at moment t; M is the assessment model;
Optional is the factor selection mechanism; Z1km

H,t is the ZH value at moment t at a height
of 1 km, and Z3km

H,t and Z7km
H,t are similar; Z1km

DR,t is the ZDR value at moment t at a height of
1 km, and Z3km

DR,t and Z7km
DR,t are similar; and K is the time step. We set the time step to be 5

when we performed the factor selection.

2.3. Evaluating Indicator

In this study, three evaluation metrics, namely correlation coefficient (r), root mean
square error (RMSE) and mean absolute error (MAE), were used to assess the performance
of the evaluation model. The calculation formula is as follows:

r =
cov(R̂, R)√

var(R̂) · var(R)
(2)

RMSE =

√
1
n

n

∑
i=1

(Ri − R̂i)
2 (3)

MAE =
1
n

n

∑
i=1

∣∣R̂i − Ri
∣∣ (4)

where cov(X, Y) is the covariance; var(X) is the variance; Ri is the observed value of
the precipitation event; R̂i is the assessed value of the precipitation event; and n is the
data length.

3. Methodology
3.1. Data-Layering Strategy

Considering that the weak precipitation scenario has limited reference significance
for this study, this study set the minimum threshold of precipitation data coverage in the
data-processing stage. Specifically, when the proportion of rainfall data exceeded 10% of
the study area (256 × 256 km), we retained the data of the precipitation event. Meanwhile,
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the ZH and ZDR data under 1 km, 3 km and 7 km corresponding to the precipitation events
that did not satisfy the threshold were excluded. We also removed redundant data (radar
stations, building reflections) and anomalies, and replaced those exceeding the range of
values with the mean of the surrounding values. Through this screening method, a total
of 2213 valid precipitation event data files were collected and organized to provide data
support for this study.

Eventually, the processed ZH values were restricted to the interval [0, 65] while the
ZDR values were restricted to the interval [−1, 5]. Since there is an exponential relationship
between radar reflectivity and precipitation intensity, the larger the reflectivity, the stronger
the rainfall intensity. Therefore, in this study, the ZH of 1 km, 3 km and 7 km were all
divided into five layers according to the target interval (0, 65]. At the same time, the raster
positions after stratification according to ZH were mapped into ZDR and R, which, in turn,
yielded the five-layer stratified data of ZDR and R under the heights of 1 km, 3 km and 7 km.
In stratification, the non-zero values of each layer are summed up and averaged as the
value of the layer, and different layers correspond to different intensities of precipitation,
and the intensity of precipitation increases in the order of I–V layers.

The stratified frame-by-frame ZH and ZDR value factor sets are used as the factor set
to be selected for the precipitation data Rt.[

Zheight
H1 ∼ Zheight

H5 , Zheight
DR1 ∼ Zheight

DR5

]
(5)

where height is the dual-polarization radar scanning height, which is 1 km, 3 km and 7 km,
respectively.

3.2. Factor Screening Method

In this study, mutual information (MI) was used to assess the degree of correlation
between ZH, ZDR and the rainfall event Rt at different heights and time steps. MI is a
useful information metric in information theory that can be considered as the amount
of information a random variable contains about another random variable. It is used to
represent the degree of interdependence between variables [36,37]. Unlike the correlation
coefficient, mutual information is not restricted to real-valued random variables; it is more
general and determines the degree of similarity between the product of the joint and
marginal distributions p(X), p(Y).

In general, the mutual information of two discrete random variables X and Y can be
defined as follows:

I(X; Y) = ∑
y∈Y

∑
x∈X

p(x, y)log
(

p(x, y)
p(x)p(y)

)
(6)

where p(x, y) is the joint density function of X and Y, and p(x) and p(y) are the edge density
functions of X and Y, respectively.

3.3. Data Noise Reduction Method

To reduce the effect of systematic errors in dual- polarization radar observation data,
this work uses the Kalman filtering (KF) approach for smoothing and noise reduction in
hierarchically processed radar data [38]. KF is renowned for its ability to estimate the state
of dynamic systems accurately, making it particularly suited for sensor data plagued by
noise. This technique not only forecasts system state variables effectively and optimizes
future state predictions but also adeptly handles measurement errors and uncertainties
inherent in system dynamics [39]. KF has been widely used as an extremely effective
estimation tool in a variety of fields such as aerospace, navigation, robotics, finance, and
signal processing. Its core idea is to characterize the system state in terms of a probability
distribution and to continuously update this distribution to integrate new dynamic and
measurement information in order to improve the accuracy of estimating the state of a
dynamic system.
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3.4. Rainfall Assessment Model
3.4.1. Random Forest

Random Forest (RF) is an integrated learning algorithm especially for classification
and regression tasks. RF employs Bootstrap resampling to create multiple subsets from
the original training set, each of which is used to build a decision tree [40,41]. It improves
the accuracy and robustness of the model by constructing multiple decision trees and
merging their results to obtain the final prediction. The Random Forest algorithm excels
at coping with multidimensional inputs, determining the relevance of variables, and
maintaining high classification accuracy. The effectiveness of the RF model hinges on
various hyperparameters, including the number of trees, the branching complexity of these
trees, and the data volume in their leaf nodes. To identify optimal hyperparameter settings,
this paper employs Bayesian optimization, a method that effectively adapts to diverse data
characteristics and enhances the model’s generalization capability.

3.4.2. Support Vector Regression

Support Vector Regression (SVR) is a regression method based on Support Vector
Machine (SVM). The core idea of SVR lies in determining a hyperplane that approximates
all training datasets as closely as possible [42,43]. Different from the goal of SVM to find
the maximum interval between classifications, the goal of SVR is to make the hyperplane
contain as many data points as possible while ensuring that the error is within an acceptable
range. In many practical applications, SVR has become a widely used regression method
because of its robustness and high efficiency. In this study, the Bayesian method is used to
optimize the key hyperparameters in SVR to improve the performance of the model, such
as kernel function type, kernel function parameters, error penalty coefficient and so on.

3.4.3. Gate Recurrent Unit

Gated Recurrent Unit (GRU) is an upgraded form of Recurrent Neural Networks
(RNN) that addresses the issues of gradient vanishing and explosion in long-sequence
situations. GRU introduces a gating mechanism that is better able to capture long-term
dependencies in sequences while reducing the number of parameters [44]. GRU mainly
includes two key gating units: Update Gate and Reset Gate. These gating mechanisms allow
the GRU network to selectively update the state when processing sequential data while
controlling the transmission of information. This method can help the model to identify
the key features in the sequence more accurately. In order to improve the evaluation effect
of GRU, this paper uses the Bayesian method to optimize some hyperparameters. These
hyperparameters include the number of hidden layer nodes, initial learning rate, learning
rate decay period, and factor.

3.4.4. Long Short-Term Memory

Since the introduction of the Artificial Neural Network (ANN) in the 1980s, its excellent
nonlinear mapping ability has made it the focus of research in many fields. Long Short-
Term Memory (LSTM) solves the problem of disappearing or exploding RNN gradients
and insufficient long-term memory capacity. It greatly improves the performance of RNN
in temporal prediction [45,46]. LSTM is mainly composed of an input gate, output gate
and forgetting gate. It has the recursive attribute of RNN and can effectively use long-
sequence data information, as shown in Figure 2. The unique memory structure and gating
mechanism of LSTM make it well-adapted and reliable in feature learning. Therefore, it
is widely used in time series model training. To improve the prediction performance of
LSTM, this paper strategically adjusts hyperparameters, including the number of nodes in
the hidden layer, the initial learning rate, and the rate of learning decay. Concurrently, it
employs optimized L2 regularization to mitigate the risk of overfitting, ensuring a more
reliable model performance.
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3.4.5. Bayesian Hyperparameter Optimization

In order to improve the evaluation performance of the model, the optimization of
model-sensitive hyperparameters is crucial. The traditional exhaustive method is prone
to a “dimensional disaster”. In order to avoid this problem, this study uses the Bayesian
method to optimize the model’s hyperparameters [47,48]. Compared with other optimiza-
tion methods, the Bayesian method uses the information of the probability model to find
the optimal hyperparameter value faster. The Bayesian optimization method takes the sur-
rogate model as the core. Based on the acquisition function (AF), the Bayesian optimization
method selects a hyperparameter that is most promising to improve the performance of
the model and updates the surrogate model. It will repeat this process until the optimal
hyperparameter value is found.

In conclusion, Bayesian optimization is a powerful global optimization method that is
particularly suitable for black-box objective functions that are computationally expensive
and have high uncertainty. Therefore, this study uses Bayesian optimization to optimize
the hyperparameters of RF, SVR, GRU and LSTM models, as shown in Table 1. In this
study, the evaluation model and the Bayesian optimization algorithm are implemented
using functions or tools in Matlab.

Table 1. The optimized hyperparameters of different models.

Model Hyperparameters to Be Optimized Number of Hyperparameters

RF numTrees; MaxNumSplits; MinLeafSize 3
SVR BoxConstraint; KernelScale 2

GRU hiddenSize; InitialLearnRate;
LearnRateDropFactor; LearnRateDropPeriod 4

LSTM hiddenSize; InitialLearnRate; L2Regularization;
LearnRateDropFactor; LearnRateDropPeriod 5

4. Results Analysis
4.1. Data Stratification Results

This study explores the correlation between dual-polarization radar data and rainfall
data from two dimensions of time and space. In the time dimension, this paper takes
the sequence of frames in 258 rainfall processes as the timing standard. In the spatial
dimension, this paper takes the 256 × 256 km plane area corresponding to each frame of
data as the regional standard. According to the range of radar data after processing and
the stratification strategy, the ZH value (256 × 256 km) is stratified in this paper. Finally, a
total of 2215 hierarchical processing data values were obtained. The distribution of radar
echo ZH after stratification is shown in Figure 3.
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The ZH contour plot is divided into five gradients of (0, 13), [13, 26), [26, 39), [39, 52),
[52, 65] with 13 dBZ as the gradient. This study was carried out with an example of a
precipitation event in the dataset, as shown in Figure 4.
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In this study, a precipitation event is used as an example to plot ZH contour maps
under each stratum separately. Figure 5 shows that the ZH values of this precipitation
event are concentrated in the II and III intervals. Since the relationship between radar
reflectivity and precipitation intensity is empirically exponential, this indicates that the
rainfall is moderate-intensity rainfall.
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Ⅱ 
7km 7km 7km 7km 7km 7km 3km
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Figure 5. The heat map of radar echo data after ZH stratification.

4.2. Analysis of MI Results

Combining the hierarchically processed data and the MI analysis method, this study
performs correlation analysis on the radar echo data of 1 km, 3 km, and 7 km. The time step
of ZH, ZDR, and KDP data is set to 5, and there are a total of 36 prediction factors in each
interval. Too low or too high input data dimension will lead to underfitting and overfitting
problems in the model. This study comprehensively considers all model features, and
finally sets the model’s input dimension to 15.

Table 2 lists the top 15 input features of each interval MI value, and Figure 6 shows the
MI vertical diagrams corresponding to 15 input features. Table 2 shows that precipitation
events of different intensities are most strongly associated with ZH and ZDR at 1 km,
followed by ZH and ZDR at 3 km. This indicates that the higher radar echo data have a
limited contribution to the assessment of near-surface precipitation. Meanwhile, the radar
echo data’s correlation with precipitation gradually decreases with the increase in time
step. Combined with Figure 6, it can be seen that interval IV has the highest MI value
and interval I has the lowest MI value. This indicates that there is a complex correlation
between the MI value and the intensity of precipitation events.

Table 2. The model’s input factors of different intervals.

Interval Input Factors

I
Z1km

DR (t), Z1km
DR (t − 5), Z1km

DR (t − 4), Z1km
DR (t − 1), Z1km

DR (t − 2), Z1km
DR (t − 3), Z7km

DR (t), Z7km
DR (t − 2)

Z7km
H (t − 2), Z7km

DR (t − 5), Z7km
H (t − 5), Z7km

DR (t − 1), Z7km
H (t − 4), Z7km

H (t), Z7km
DR (t − 3)

II
Z7km

H (t − 3), Z7km
H (t − 5), Z7km

H (t − 4), Z7km
H (t − 2), Z7km

H (t − 1), Z7km
H (t), Z3km

H (t − 3)
Z3km

H (t − 4), Z3km
H (t − 2), Z3km

H (t − 5), Z3km
H (t), Z3km

H (t − 1), Z1km
H (t − 5), Z1km

H (t − 1), Z1km
H (t − 2)

III
Z1km

H (t), Z1km
H (t − 2), Z1km

H (t − 1), Z1km
H (t − 3), Z1km

H (t − 4), Z1km
H (t − 5), Z3km

H (t − 4)
Z3km

H (t), Z3km
H (t − 1), Z3km

H (t − 2), Z3km
H (t − 5), Z3km

H (t − 3), Z7km
H (t), Z7km

H (t − 1), Z7km
H (t − 2)

IV
Z1km

DR (t), Z1km
H (t), Z1km

DR (t − 1), Z1km
DR (t − 2), Z1km

H (t − 1), Z1km
DR (t − 3), Z1km

H (t − 2), Z1km
DR (t − 4)

Z1km
H (t − 3), Z1km

DR (t − 5), Z1km
H (t − 4), Z1km

H (t − 5), Z3km
H (t), Z3km

H (t − 1), Z3km
H (t − 3)

V
Z1km

DR (t), Z3km
DR (t), Z1km

H (t), Z1km
DR (t − 1), Z3km

DR (t − 1), Z1km
DR (t − 2), Z3km

DR (t − 2), Z3km
DR (t − 3)

Z3km
DR (t − 4), Z1km

DR (t − 3), Z1km
DR (t − 4), Z3km

DR (t − 5), Z1km
DR (t − 5), Z1km

H (t − 1), Z3km
H (t)
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Figure 6. MI vertical diagrams of different intervals.

4.3. Interval Evaluation Effect

In this study, the Bayesian optimization method described in Section 3.4.5 was used
to optimize the hyperparameters of the RF, SVR, GRU and LSTM models. As an example,
Figure 7 shows the optimization process of the SVR model for precipitation events I–V
under the Bayesian optimization framework. In this process, the objective function was
adjusted according to the research needs, and the BoxConstraint and KernelScale kept
changing until the best combination was found. As can be seen in Figure 7, the potential
optimal values in the pre-Bayes optimization period are obtained by random search. In
this study, the 25 Bayesian iterations process is set, and the model gradually locks in the
best combination of parameters. From the final result, the optimization process is very
reasonable, and the objective function achieves the minimum requirement.
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Figure 7. Bayesian optimization SVR hyperparameter optimization process.

Based on the Bayesian optimization results of the model, this study establishes an
assessment method for precipitation events. Table 3 demonstrates the precipitation assess-
ment effect for each interval. The thickened data shows that the corresponding model
performs better in this interval. The data in Table 3 show that the performance of precipita-
tion event assessment for each interval is better overall, and the assessment effect of the
calibration period is generally better than that of the validation period. This phenomenon
may be due to the greater noise in the validation period data. Except for interval 4, the
Bayes–KF-LSTM model has the most prominent assessment effect in other intervals, and
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thus it is recommended as the main precipitation assessment method. It should be noted
that interval I is relatively poorly assessed, which may be due to the under-representation
of the data in the calibration period.

Table 3. Interval I–V model precipitation assessment results.

Data Range Model Period r RMSE MAE

Interval I

Bayes–KF-RF Calibration 0.93 8.83 3.96
Validation 0.60 7.48 5.08

Bayes–KF-SVR Calibration 0.71 23.19 18.25
Validation 0.57 18.18 17.14

Bayes–KF-GRU Calibration 0.73 15.37 7.98
Validation 0.57 9.21 7.05

Bayes–KF-LSTM Calibration 0.87 11.23 5.46
Validation 0.69 5.67 4.36

Interval II

Bayes–KF-RF Calibration 0.80 22.31 18.09
Validation 0.62 13.81 13.67

Bayes–KF-SVR Calibration 0.68 9.61 5.09
Validation 0.73 4.22 3.31

Bayes–KF-GRU Calibration 0.73 8.78 4.38
Validation 0.75 4.30 3.10

Bayes–KF-LSTM Calibration 0.73 8.64 4.06
Validation 0.77 5.09 3.59

Interval III

Bayes–KF-RF Calibration 0.93 1.72 0.99
Validation 0.72 2.78 2.42

Bayes–KF-SVR Calibration 0.88 2.61 1.92
Validation 0.82 1.98 1.63

Bayes–KF-GRU Calibration 0.82 2.57 1.81
Validation 0.83 1.88 1.48

Bayes–KF-LSTM Calibration 0.91 1.88 1.42
Validation 0.83 1.81 1.35

Interval IV

Bayes–KF-RF Calibration 0.98 3.50 2.46
Validation 0.82 15.19 12.41

Bayes–KF-SVR Calibration 0.97 4.49 3.75
Validation 0.82 18.16 15.65

Bayes–KF-GRU Calibration 0.97 4.24 3.04
Validation 0.80 9.77 7.58

Bayes–KF-LSTM Calibration 0.97 4.66 3.32
Validation 0.77 13.75 11.62

Interval V

Bayes–KF-RF Calibration 0.94 73.73 41.77
Validation 0.88 93.38 61.19

Bayes–KF-SVR Calibration 0.93 34.86 29.60
Validation 0.87 43.65 37.26

Bayes–KF-GRU Calibration 0.93 26.29 13.59
Validation 0.84 54.86 36.69

Bayes–KF-LSTM Calibration 0.98 13.76 7.91
Validation 0.93 38.56 26.37

4.4. Representative Cases

In order to evaluate the effectiveness of specific precipitation events, we utilize heat
maps to visualize the model’s assessment accuracy before and after applying optimized
parameters, combined with typical precipitation events. In Figure 8, we select a total of
five typical precipitation event processes, and each typical precipitation time includes
the observed value of the precipitation event, the interval stratification value, and the
precipitation assessment value. Figure 9 shows that the assessment model’s precipitation
events, which accurately predict the likely intensity of upcoming precipitation events, are
in good agreement with the observed values, particularly in the region of strong convective
precipitation. This makes the practical application of the model better. As the interval



Water 2024, 16, 1136 13 of 18

increases, that is, as the precipitation intensity continues to increase, the better the forecast
effect. This is mainly because the larger the interval level, the fewer the corresponding
heavy precipitation events. There are many 0 values in the data, which affect the final
evaluation index.
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In order to evaluate the computational efficiency of different models and intervals,
this study sets the number of Bayes optimizations for each model to 25, and the average of
its time is taken for each run 10 times. Table 4 shows the average computational time of
different models under each interval, and Figure 10 shows the box plots of the running time
of different models and intervals. Overall, RF has the shortest running time and the highest
computational efficiency; GRU has the longest running time and the lowest computational
efficiency, which may be related to the model’s structure and parameter settings. Combined
with Figure 10, it can be seen that, except for the anomalies, the model’s running time
is essentially within a reasonable range. At the same time, with the increase in rainfall
intensity (I–V), the running time of the whole model shows a weak downward trend. This
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may be due to the fact that there are more 0 values in layers IV–V after the stratification of
heavy rainfall events.
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Figure 9. Heat maps before and after assessment of five typical severe convective precipitation events.
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Table 4. Average running time for each model and interval.

Model Interval Running Time/s Model Interval Running Time/s

Bayes–KF–RF

I 30.67

Bayes–KF–GRU

I 274.13
II 26.56 II 266.89
III 28.87 III 258.02
IV 24.20 IV 267.91
V 26.18 V 250.48

Bayes–KF–SVR

I 314.31

Bayes–KF–LSTM

I 108.16
II 68.69 II 91.62
III 137.20 III 88.08
IV 92.42 IV 118.77
V 165.28 V 72.30
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Figure 10. Box plots of running times for each model and interval.

5. Summary and Discussion

This research work is driven by ZH and ZDR data from dual-polarization radar, and a
data-layering strategy is proposed to reduce the data dimensionality. Further, this paper
constructs the Bayes–KF-Models for evaluating strong convective precipitation events. The
example verification shows that the data stratification strategy proposed in this paper
can significantly reduce the data dimension and greatly improve the operation efficiency
of the model. Kalman filtering can reduce the interference of radar echo data noise on
the model to a certain extent. The radar data after stratification contains microphysical
information such as rainfall intensity, which can provide a data basis for model construction.
The results of the precipitation assessment model in this paper are very close to the near-
surface precipitation data. The correlation coefficient r of the calibration period of the
calibration intervals III–V can reach about 0.9. Among them, the Bayes–KF-LSTM model
has the best evaluation effect, followed by the Bayes–KF-RF model. However, the Bayes–
KF-RF model has the highest computational efficiency, which has the strong practicability.
Considering that the model needs to have better applicability in precipitation events
of different intensities, Bayes–KF-RF or Bayes–KF-LSTM are recommended as the main
methods for the assessment of intense convective precipitation events.
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The evaluation model of strong convective precipitation events constructed in this
paper has good applicability and promotion value. However, this research work still
requires further discussion, which can be further studied and improved in the future.
For example, this study focuses only on the post-processing and assessment of severe
convective precipitation events, and is understudied with respect to forecasting issues; the
evaluation results of different models are quite different; and the uncertainty characteristics
of severe convective precipitation events are difficult to quantify. In the future, research
work can consider increasing the fusion results of multi-model evaluation effects to reduce
the impact of data noise and system errors. Meanwhile, we need to pay more attention
to the precipitation event forecasting method itself. The generalization performance and
stability of the model can be improved through the above research. In summary, this study
fully exploits the potential of dual-polarimetric radar ZH and ZDR data in precipitation
event assessment. This research work can provide new ideas for the assessment of strong
convective precipitation events, which has broad application prospects.
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41. Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.; Nikolić, M.; Bajat, B. Random forest spatial interpolation. Remote Sens. 2020, 12, 1687.
[CrossRef]

42. Zhang, C.; Wang, H.; Zeng, J.; Ma, L.; Guan, L. Short-term dynamic radar quantitative precipitation estimation based on wavelet
transform and support vector machine. J. Meteorol. Res. 2020, 34, 413–426. [CrossRef]

43. Zhang, F.; O’Donnell, L.J. Support vector regression. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp.
123–140.

44. Cho, M.; Kim, C.; Jung, K.; Jung, H. Water level prediction model applying a long short-term memory (lstm)–gated recurrent unit
(gru) method for flood prediction. Water 2022, 14, 2221. [CrossRef]

45. Landi, F.; Baraldi, L.; Cornia, M.; Cucchiara, R. Working memory connections for LSTM. Neural Netw. 2021, 144, 334–341.
[CrossRef] [PubMed]

46. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

47. Cho, H.; Kim, Y.; Lee, E.; Choi, D.; Lee, Y.; Rhee, W. Basic enhancement strategies when using Bayesian optimization for
hyperparameter tuning of deep neural networks. IEEE Access 2020, 8, 52588–52608. [CrossRef]

48. Lee, S.; Bae, J.H.; Hong, J.; Yang, D.; Panagos, P.; Borrelli, P.; Yang, J.E.; Kim, J.; Lim, K.J. Estimation of rainfall erosivity factor in
Italy and Switzerland using Bayesian optimization based machine learning models. Catena 2022, 211, 105957. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs12101687
https://doi.org/10.1007/s13351-020-9036-7
https://doi.org/10.3390/w14142221
https://doi.org/10.1016/j.neunet.2021.08.030
https://www.ncbi.nlm.nih.gov/pubmed/34547671
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1109/ACCESS.2020.2981072
https://doi.org/10.1016/j.catena.2021.105957

	Introduction 
	Dataset and Experimental Design 
	NJU-CPOL Dataset 
	Experimental Design 
	Evaluating Indicator 

	Methodology 
	Data-Layering Strategy 
	Factor Screening Method 
	Data Noise Reduction Method 
	Rainfall Assessment Model 
	Random Forest 
	Support Vector Regression 
	Gate Recurrent Unit 
	Long Short-Term Memory 
	Bayesian Hyperparameter Optimization 


	Results Analysis 
	Data Stratification Results 
	Analysis of MI Results 
	Interval Evaluation Effect 
	Representative Cases 

	Summary and Discussion 
	References

