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Abstract: Accurately perceiving changes in water level information is key to achieving the fine control
of water and flooding; however, the existing technology cannot achieve water level recognition in
complex and harsh environments, such as at night; in haze, rain, or snow; or during obscuration by
floating objects or shadows. Therefore, on the basis of a deep analysis of the characteristics of water
level images in complex and harsh environments, in this study, we took full advantage of a deep
learning network’s ability to characterise semantic features and carried out exploratory research on
water level detection in no-water-ruler scenarios based on the two technical means of target detection
and semantic segmentation. The related experiments illustrate that all the methods proposed in this
study can effectively adapt to complex and harsh environments. The results of this study are valuable
for applications in solving the difficulties of accurate water level detection and flood disaster early
warnings in poor-visibility scenarios.

Keywords: smart water; water level detection; machine vision; target detection; semantic
segmentation

1. Introduction

Water level monitoring plays an important role in the field of water conservancy
engineering, flood control, and early warnings. The fine control of water and flood warning
detection requires the real-time and accurate detection of sudden water level changes [1].

However, there are many shortcomings of the existing methods of water level moni-
toring, making it difficult to meet the urgent need for refined, intelligent control in modern
water resource management, including the following: (1) Artificial readings include a
great number of subjective factors, and they are difficult to check, cannot be performed
in real time or poor weather conditions, and the personnel’s safety cannot be guaranteed.
(2) Contact water level detection devices have poor accuracy and stability, and their core
components can easily be damaged during prolonged periods of contact with the surface
of water, resulting in increased maintenance costs. For example, water pressure sensors
or float sensors, because of the use of immersion measurement, are affected by the water
quality and cannot be measured in corrosive water. (3) Noncontact water level detection
based on acoustic waves, radar, infrared, etc., is affected by the environment, such as
temperature and liquid level fluctuations, and its antijamming ability is generally poor.
For example, the method of measuring the water level by ultrasonic bubble sensors may
be affected by the environment because of the shape and size of the bubbles, so when
the environment changes a lot, the sensor’s readings will produce a certain amount of
error. (4) The robustness of traditional image processing (i.e., nondeep learning) technology
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used for water level detection is relatively poor, and these methods cannot be adapted to
complex harsh environments with rain, snow, haze, shadows and shade, etc. [2,3].

With deep learning technology exhibiting excellent performance [4–6], the automatic
identification of water levels based on artificial intelligence has become a research hotspot.
In the literature [7], the use of the Unet image segmentation technique to identify water level
lines has been proposed. The authors of [8] carried out research on water level detection
in videos using the SSD target detection algorithm. In [9], a convolutional neural network
structure for water level line detection was designed. In another study [10], a real-time
water level recognition algorithm consisting of YOLO-v3 object detection, and the ResNet
scale recognition model was proposed. In [11], an intelligent visual water level recognition
algorithm based on an improved superpixel and graph cut algorithm was proposed to
address the problem of viewing and reading data errors caused by water stage gage stains
and tilting.

However, in engineering practice, complex and harsh environments characterised by
night, light, rain, haze, snow, shadows, light and shadow transformations, floating objects,
etc., create serious interference in intelligent visual water level recognition, which makes
it difficult to achieve accurate water level monitoring using the above methods. Thus,
effectively achieving accurate water level detection in complex and harsh environments
has become a problem that needs to be solved urgently [12]. Moreover, existing methods
also rely heavily on water stage gages, and few image-based water level detection methods
without water stage gages have been reported [13]. The styles of water stage gages vary
greatly, and they are “small target” objects in water level detection images, which poses
a serious challenge to the robustness of the algorithm; at the same time, there are high
requirements for a water stage gage based onsite, and its installation, maintenance, and
ancillary facilities are costly. If a water level detection scheme without a water stage gage
could be developed, this would improve the intelligence of water level detection systems.

Therefore, in this study, on the basis of a deep analysis of the characteristics of water
level images in complex and harsh environments, in this study, we took full advantage
of a deep learning network’s ability to characterise semantic features and carried out
exploratory research on water level detection in water-ruler-free scenarios based on the two
technical means of target detection and semantic segmentation. In the study of water levels
based on target detection technology without the use of a scale, an intelligent detection
method integrating the improved YOLOv5 and the Kalman filter principle is proposed. The
core technology includes the following: (1) YOLOv5 to detect water level lines (i.e., water
shore demarcation lines) and linear fitting methods to ascertain the actual water level
line, with unconventional methods based on water surfaces for recognition. (2) For water
level lines that are infinitely enlarged in the horizontal direction and infinitely shrunk in
the vertical direction, a multilevel feature fusion method is proposed to strengthen the
mesoscale features to improve the original YOLOv5 algorithm. (3) Kalman filtering is
used to introduce historical water level information as a priori knowledge to improve the
generalisation performance of this technique in complex and harsh environments. (4) A
fixed marker precalibrated into an image is added to the deep learning network for training,
determining the actual water level’s elevation based on the real size of the marker, achieving
a ruler-free water detection scheme.

In this study on water level detection without the use of scales based on semantic
segmentation technology, a Unet model (TRCAM-Unet) that fuses the Transformer and
residual channel attention mechanism is constructed. Then, an intelligent method to detect
water levels without a scale in poor environments based on TRCAM-Unet is proposed. The
core technology includes multilevel feature fusion using a full-scale connection structure,
the reinforcement of correlations among regional features by a Transformer module, and
the reinforcement of the expression of useful information and the weakening of interference
from useless information by a residual channel attention module.
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2. Methods
2.1. Characterisation of Water Levels in Complex and Harsh Environments

(1) Complex and hostile environments tend to blur, eliminate, or obscure a target’s char-
acteristics.

In water level monitoring, as shown in Figure 1, these complex and harsh environ-
ments, such as those with low light at night, rain, haze, snow, shadows, the Tyndall effect,
and obscuration by floating objects, are very unfavourable to the characterisation of a target,
which results in existing water level detection algorithms being unable to accurately locate
the water stage gage or the surface of the water. In addition, they are susceptible to omis-
sions and misdetections in some parts of the image, seriously affecting their performance.
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Figure 13. Comparison of predictive effectiveness of different network 
models. (a) daytime, (b) night, (c) rain, (d) fog, (e) sheltered, (f) wavy, 
(g) flotage, (h) snow, (i) Tyndall effect, and (j) shadow. (The original 
image, YOLOv3, YOLOv5, and the methods in this study are arranged 
from left to right, and the red box is the recognition result box). 
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Figure 14. Dataset label. (a) Original image. (b) Label image. 
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Figure 1. Examples of sampling conducted in different environments. 
(a) Daytime, (b) night, (c) rain, (d) fog, (e) sheltered, (f) wavy, (g) drift, 
(h) ice-covered, (i) Tyndall effect, and (j) shadow. 
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Figure 1. Examples of sampling conducted in different environments. (a) Daytime, (b) night, (c) rain,
(d) fog, (e) sheltered, (f) wavy, (g) drift, (h) ice-covered, (i) Tyndall effect, and (j) shadow.

(2) The distinctive “small target” feature of a water stage gage, combined with other
unfavourable factors, leads to unsatisfactory results in intelligent visual water level
recognition based on water stage gages.

In deep learning, small target detection has been a technical difficulty. The litera-
ture [14] defines a small target as follows: the relative area of all target instances in the
same category (i.e., the ratio of the area of the bounding box to the area of the image)
has a median between 0.08% and 0.58%. An analysis of the images in Figure 1 shows
that the relative proportions of the water stage gages to the images are extremely small,
exhibiting distinctive “small target” features. A “small target” feature is more susceptible
to interference in complex and harsh environments. It can be seen that water level detection
technology based on water stage gages is limited by the “small target detection” problem
and complex and harsh environmental interference, easily resulting in large errors or even
direct failure. In addition, a water stage gage’s model and type, as well as font colour, logo
layout, installation methods, etc., can lead to higher requirements. Moreover, they have
higher costs related to installation, maintenance, and ancillary facilities. These combined
unfavourable factors lead to unsatisfactory intelligent visual water level recognition results.

(3) Image information can be used to determine actual water level elevations, achieving
the intelligent detection of water levels without the use of a water stage gage.

This achievement will result in water level detection technology becoming more
intelligent and applicable. Therefore, in this study, we propose a water-scale-free detection
scheme. Obvious image features are selected, and fixed markers (either specific objects
or specific geometric shapes) are added to the deep learning network for training. Water
level detection is achieved using the relative distance between the water level line and the
markers, and combined with the precalibration of the scale coefficients, the real coordinates
of the markers can be converted into the actual water level’s elevation.
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2.2. Water Level Detection Method without a Scale Based on the Target Detection Technique
2.2.1. Detection Program

On the basis of the above analyses of water level characteristics, this study proposes
a water level detection method without the use of a water stage gage that integrates the
improved YOLOv5 with the Kalman filter principle.

(1) The YOLOv5 algorithm [15], which has excellent accuracy and real-time performance,
was used for the target detection of the water level line (i.e., waterfront demarcation
line), and the centre point of the captured water level line’s anchor frame was linearly
fitted to obtain a water level line that approximated the real one. In this way, according
to the law of large numbers, it is not required that the detected anchor frames cover
the entire area of the water level line but only that the results are statistically correct.
Evidently, this greatly enhances the robustness of the present technique.

(2) Because a water level line has the characteristic of being infinitely large in its exten-
sion direction and infinitely small in its normal direction such that only one scale
feature plays a dominant role in the water level line, in this study, we propose a
multilevel feature fusion method that strengthens the mesoscale features to improve
the performance of the original YOLOv5 algorithm, increasing the accuracy of water
level recognition.

(3) Kalman filtering is used to introduce historical water level information as a priori
knowledge to improve the generalisation performance of this technique in complex
and harsh environments.

(4) A marker with obvious features and a fixed position in the image is selected and
added to the deep learning network for training. Moreover, the scale factor, k, of
a pixel is converted to the real length in real time, using the size of the marker to
determine the Pixel lengths, l, between the water level line and the marker, which is
then combined with the real elevation, h′, of the marker to determine the actual water
level elevation, h.

The markers can be specific objects (e.g., street lights, railings, or other fixed objects)
or geometric shapes (e.g., a corner of the case embankment, a skyline, a shape painted by
humans). To facilitate the measurement, the marker location must be above the water’s
surface and not obscured by it. The formula to determine the actual water level elevation is
as follows:

h = h′ − kl = h′ − r
p

l (1)

where p denotes the pixel length of the marker in the image, and r denotes the actual length
of the marker.

A flow chart of this scale-free water level detection scheme is shown in Figure 2, and
its technical points are explained in detail below.

2.2.2. Improved YOLOv5 Algorithm

The YOLOv5 network structure is divided into four parts: the input layer, the baseline
network layer, the neck feature fusion network layer, and the detection head [16–18]. The
YOLOv5 algorithm incorporates the advantages of the previous versions of YOLO and has
been tested on the public COCO dataset against Faster-RCNN [19], SSD [20], YOLOv3 [21],
and YOLOv4 [22]. The YOLOv5 tests (as shown in Table 1, indicates that the corresponding
metrics are not found) show that YOLOv5 performs optimally in both the mAP (mean
Average Precision) and FPS (Frames Per Second) performance metrics. Therefore, YOLOv5
was chosen as the base network for the semantic feature learning of the “water level line”
in this study.
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Figure 2. Flow chart of water level detection scheme without water gauge. 
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Table 1. Test results of different target detection algorithms on COCO dataset.

Evaluation Index Faster-RCNN SSD YOLOv3 YOLOv4 YOLOv5

mAP (%) 59.1 48.5 55.3 65.7 69.6
Frames per second - 22 35 33 40

After the water level image is extracted by the YOLOv5 benchmark network, it will
output three scales of feature mapping: large, medium, and small (as shown in Figure 3).
Among them, the large-scale feature mapping contains the lowest number of bottom layer
features and the greatest number of high-level features; the small-scale feature mapping
contains the greatest number of bottom layer features and the lowest number of high-level
features; the medium-scale feature mapping contains the advantages of the above two.
YOLOv5 uses the FPN (Feature Pyramid Network) plus PAN (Pixel Aggregation Network)
feature fusion module to fuse the three scales of feature mapping, so as to exhibit excellent
performance in target detection.

The water level line has the characteristic of being infinitely large in its extension
direction and infinitely small in its normal direction. When applying YOLOv5 to water
level detection, the water level line region needs to be identified with an anchor frame of
a specific size. This means that only one scale feature mapping plays a dominant role in
identifying the water level line. Evidently, YOLOv5 fuses three scale feature mappings with
the risk of redundancy and the introduction of irrelevant features. According to the deep
learning theory, constant convolution and pooling operations will reduce the spatial and
detailed information of feature mappings, which is not conducive to target localisation [23].
In the process of water level monitoring, whether the target localisation is accurate or not
directly affects the identified water level results. Therefore, it is necessary to improve the
ability of YOLOv5 to convey spatial and detailed information for feature mapping.

In summary, the water level line anchor frame size was set as a medium-sized target
(labelled so that the water level line passes exactly through the midpoint of the anchor
frame), corresponding to the mesoscale feature mapping, and the following improvements
were made to the feature fusion network layer in the neck of the YOLOv5 network: two
transfer nodes of the YOLOv5 small-scale feature mapping and the large-scale feature
mapping were pooled into the mesoscale feature mapping channel, and the mesoscale
feature mapping was performed in a tight manner, fully fused, and reduced the convolution
and pooling operations before the original small-scale and large-scale feature mapping
fusion to improve the ability of mesoscale feature mapping to convey spatial information
and detailed information. The improved YOLOv5 network structure is shown in Figure 3.
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The following improvements to YOLOv5 provide advantages in water level line recog-
nition: 1⃝ Increased convergence node of mesoscale feature mapping to achieve a fuller and
tighter fusion, which improves the ability of the mesoscale feature mapping to recognize
the water level line. 2⃝ The shallow feature mapping is fused with deeper feature mapping
at an earlier stage, which retains more spatial and detailed information, so that the centre
of the prediction frame is closer to the water level line, and the accuracy of the subsequent
fitted line is increased. 3⃝ One Concat operation, one CSP2_1 (convolution + residual) op-
eration, and two CBL (convolution + batch normalisation + activation function) operations
are reduced, which reduces the number of network layers and parameters, and is conducive
to the lightweighting of the deep network.

2.2.3. Method of Approximating the True Water Level Line

The coordinates of the centre of the anchor frame of the water level line predicted by
the improved YOLOv5 were sampled and fitted by the method of least squares to obtain
the following expression equation for the water level line:

y = ax + b (2)

a =

n
n
∑

i=1
xiyi −

n
∑

i=1
xi

n
∑

i=1
yi

n
n
∑

i=1
x2

i −
(

n
∑

i=1
xi

)2 (3)

b = y − ax (4)

where xi and yi are the coordinates of the midpoint of the prediction frame; a is the slope of
the fitted line; b is the intercept of the fitted line; n is the number of prediction frames; and
x and y are the mean values of the midpoint coordinates of the prediction frames.

In this way, by sampling plus fitting, the approximation of the real water level line
was obtained. This method does not need to detect all the water level line areas and solves
the problem of the presence of foreign objects on the water surface obscuring the prediction
of the water level line in some areas, which is invalid and less robust.
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2.2.4. An Intelligent Water Level Detection Method Integrating Improved YOLOv5 and
Kalman Filter Principles

It is worth noting that the complex environment encountered during water level
detection is not constant. While night, rain, haze, snow, shadows, and floating objects
all change over time, there will always be a period of time when the water level in the
monitoring area is in a favourable environment, i.e., there will always be true and reliable
historical information available at the time of water level detection. The introduction of
more a priori knowledge (historical information of water level) will help to improve the
performance of water level recognition in complex and harsh environments. As mentioned
above, this study introduced historical information as a priori knowledge to guide the
water level recognition by using the Kalman filtering principle, so that an intelligent water
level detection technique integrating the improved YOLOv5 and Kalman filtering principle
was proposed.

The slope of the water level line in the image is basically constant when the water level
fluctuates. Therefore, it was assumed that the water level recognition system based on the
improved YOLOv5 is a static system, and its state space model is shown in Equation (5).

x̂n+1,n = x̂n,n (5)

where x̂n+1,n is the next water level prediction value and x̂n,n is the water level output result
of the current state, which is jointly determined by the previous water level estimation
value x̂n,n−1 and the current measurement value f (xn). The state update equation of the
system is shown in Equation (6).

x̂n,n = x̂n,n−1 +
1
n
(yn − x̂n,n−1) = (1 − 1

n
)x̂n,n−1 +

1
n

f (xn) (6)

where the 1/n coefficient is the Kalman gain, denoted as Kn.
However, as the iteration proceeds, Kn gradually tends to 0. That is, at a certain

point in iteration, the effect of the measurements disappears and does not respond to the
change in the observations, which contains new information about the actual change in the
water level. At the same time, when the time span is large, or when the water level line
fluctuates a lot, the water level line is not static, and assuming the system to be static may
be problematic. Therefore, in this study, Equation (6) was improved as follows:

x̂n,n =

{
f (xn), εn < σn
x̂n,n−1, εn ≥ σn

(7)

where σn is the standard deviation of the historical water level value; εn is the difference
between the water stage in the current moment f (xn) and the expected value of the water
level at the previous moment.

εn = f (xn)− E(X), X = [X̂1, . . . , X̂n−1] (8)

where E(X) denotes the expectation of the historical water levels, X̂1, . . . , X̂n−1.
During the training process, the slope and intercept values of the water level line

are obtained from the fitted water level line, and the accuracy of the coordinate positions
of the network output prediction frame will directly affect the accuracy of the slope and
intercept of the fitted water level line. In this study, the accuracy of the prediction frame
was improved by integrating the improved YOLOv5 with the Kalman filter principle, thus
ensuring the accuracy of the slope and intercept of the water level line.

In this way, the flow of the intelligent water level detection method integrating the
improved YOLOv5 and Kalman filtering principle, shown in Figure 4, greatly strengthens
the adaptability of this technology to complex and harsh environments by introducing a
priori knowledge to guide the current water level recognition.
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2.3. Method for Water Level Detection without Water Stage Gage Based on Semantic
Segmentation Technique
2.3.1. Testing Program

In water level detection, technical solutions based on target detection algorithms
usually use the adjacent area of the water level line (the intersection line between the water
surface and the shore embankment) as the identification target, and a specific line shape is
fitted through multiple identification results to obtain an estimate of the actual water level
line. However, water level lines are mostly natural curves, and simple fitting to straight
lines or other line shapes will result in decreased accuracy when the number of output
water level line anchor frames is small. Therefore, in this study, a semantic segmentation
method was used for water level detection to solve the problem of the target detection
technique not being applicable under certain conditions.

Based on the water level image characteristics and semantic segmentation technology,
in this study, we proposed a Unet model that integrates the Transformer and residual
channel attention mechanism and applied this to water level detection in unfavourable
environments, forming a water level detection scheme without a water stage gage to solve
the problem of water level recognition in such environments.

(1) First, the ratio of the true distance to the Pixel lengths was obtained using the obvious
and fixed markers in the water level image, as shown in Equation (9).

k =
y
y′

(9)

where y denotes the Pixel lengths of the water level line in the image; y′ denotes the Pixel
lengths of the marker in the image.

(2) Accurate water surface segmentation images were obtained in harsh environments
using the improved Unet model.

(3) The edge detection algorithm was used to process the segmented image of the water
surface to obtain the pixel elevation of the water level line, which could be converted
to the real elevation information by using the above scale relationship.

The flow of the improved Unet based water level detection scheme without water
stage gages is shown in Figure 5.
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2.3.2. Structure of the Improved Unet Model

The semantic features of the “water surface” and “background (riverbank)” in the
water surface image remain unchanged under complex and harsh environments, but
the combined effect of multiple unfavourable factors under such environments makes it
difficult for the neural network to accurately represent these semantic features. In addition,
while deep features in deep learning enable the extraction of more semantic features, they
also lead to a lack of spatial localization. Therefore, the key problem of water level detection
is how to build a network that can efficiently represent semantic information such as “water
surface” and “background (embankment)”, and take into account “depth”, “superposition”,
and “error”. “Overlay and error back propagation” should also be taken into account.

Unet is a commonly used deep learning network architecture that performs well in
image segmentation and other image processing tasks. With an aim to address the above
challenges, in this study, we proposed an improved Unet model (denoted as TRCAM-Unet),
which integrated the Transformer and the residual channel attention mechanism, utilized
the global connectivity structure for multi-level feature fusion, and used the Transformer to
improve the correlation between the network and the local features of the water body image,
and also to improve the effectiveness of the transmitted information. The overall structure
of the model is shown in Figure 6. The network is based on Unet’s network structure, with
the jump structure replaced with global connectivity, the deepest convolution operation in
the coding domain replaced with the Transformer transmission structure, and the residual
attention mechanism added at the connection point of coding and decoding. On this basis,
the TRCAM-Unet network model was established.
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2.3.3. Structure of Full-Scale Connections

In the Unet network, based on its residual linking model, a skip connection structure
(SCS) was proposed to reduce the loss of shallow features due to network extension. This
method directly connects the image at the coding end with the corresponding image at
the decoding end, which can maintain the shallow features in the image and enhance the
model’s ability to correctly recognize the local features in the image.

However, in complex and harsh environments, due to the interference of multiple
harsh conditions, the water level line is characterised by “weak edges”, which makes the
simple “jump” structure unable to ensure the complete extraction of “shallow” information
(spatial and temporal information), which is not conducive to the accurate determination
of the water level orientation and boundary. The TRCAM-Unet model was structured
using a global connectivity approach to maximize the representation of feature information,
especially shallow localization information, at multiple scales. In the full-scale connectivity
framework, each level of the decoder includes both the decoded feature maps at each scale
and the feature maps at the shallow level of the decoder, and the connectivity is shown in
Figure 7.

The encoder of this structure output features mappings of five different scales, and the
feature mappings of all scales are fused to the decoder output to achieve the fusion of the
full-scale information. The outputs of the encoder and decoder feature mappings for each
scale were defined as XINi, XOUTi, i ∈ [1, 5], and the specific formulas are shown below.

XOUTi =


XINi,

H


C(D(XINk))

i−1
K=1, C(XINi),︸ ︷︷ ︸

Scales:1th∼ith

C(U(XOUTi))
N
K=i+1︸ ︷︷ ︸

Scales:i+1th∼Nth


,

i = 5
i = 1, . . . , 4

(10)

where H(·) denotes the multi-scale fusion operation by convolution and splicing; C(·) is the
convolution; D(·) is the up-sampling operation; and U(·) is the down-sampling operation.

Since the data, XINi, that are output from the encoder at different scales have different
dimensions, when performing data fusion at different scales, the data need to be adjusted
to make the data dimensions exactly the same before the splicing and fusion work can be
completed. For XIN1~XIN(i−1), it was downgraded by a pooling operation to maintain the
same dimension as XOUTi; for XIN(i+1)~XIN5, it was upgraded by bilinear interpolation to
reach the same dimension; for XINi, feature extraction was performed by a convolution
operation. The process first transformed the feature maps of different scales into 64-bit
channels (same scale as XINi), and then performed the splicing operation on them, and,
finally, expanded the number of channels to 320, and then used the convolution kernel
(3 × 3 × 64) for the convolution to obtain the final output feature maps.
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In the full-scale connectivity structure, the feature maps of each scale in the encoder
were fused into the decoder so that the deep structure of the network incorporated more
shallow information. Therefore, this enables the features of different depths in the encoder
feature maps to be retained more efficiently.

2.3.4. Transformer Module

Convolutional neural networks (CNNs) can fully extract shallow features to obtain
local spatial and temporal information in images. However, the water level line in the
figure often runs through a specific region, and its position in the image changes slightly
and shows strong regional correlation, which is significantly different from the traditional
water level detection. Therefore, if the regional correlation between the targets can be fully
explored, the semantic information acquisition and expression ability of the model for the
target will be greatly improved, which is of great significance for improving robustness in
complex and harsh environments.

Currently, Transformer technology is developing rapidly in the field of computer
vision [24]. Because the Transformer itself performs long correlation, it can obtain stronger
feature information by paying attention to itself, meaning it has a stronger long-distance
correlation learning ability and stronger multimodal feature fusion ability. Compared
with CNN, the Transformer has a stronger self-attention ability, can effectively mine more
long-distance correlation, has stronger parallelism, and can carry out optimal inference
learning for different tasks.

In this study, we incorporated the Transformer-MHSA (Muti-Head-Self-Attention)
technology into the TRCAM-Unet network structure to improve its semantic description of
objects. In this module, each head adopts its own autonomous attention strategy, which was
able to mine and learn the corresponding higher-order features in multiple representation
subdomains according to the characteristics of the water surface data to improve the
recognition performance of TRCAM-Unet. In MHSA, the computational equation for a
single attention head is as follows:

hi = softmax(qk + qr)v, i = 1, . . . , 8 (11)

where hi denotes the i-th attentional endpoint; q = xWq, k = xWk, v = xWv, x are the input
feature maps; Wq, Wk, Wv are the convolutional layer weights; r is the positional coding
matrix; r = RH × RW , RH , RW are the positional feature vectors that can be trained to
acquire vertical and horizontal information; and Softmax(·) is the activation function. The
formula is shown below:

Softmax(x) =
exj

c
∑
j

exj

(12)
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where xj is the corresponding feature channel pixel; c is the number of feature channels.
The structure of feature extraction for a single attention endpoint is shown in Figure 8.
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In this way, the multiple self-attention mechanism can be expressed as follows:

MHSA(q, k, v) = concat(h1, . . . , h8)W0 (13)

The feature map obtained from MHSA, which is fused with features using a Multilayer
Perceptron (MLP), is the complete structure of the Transformer module in TRCAM-Unet,
as shown in Figure 9. Its output can be expressed as follows:

T = MLP(BN(MHSA(BN(x)) + x)) + (MHSA(BN(x)) + x) (14)

where BN(·) stands for the regularization operation, which can be used to accelerate train-
ing by using the process of transformation and amplification to avoid gradient vanishing
or bursting, while reducing the probability of overfitting.
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2.3.5. Residual Channel Attention Module

In TRCAM-Unet networks, in addition to enhancing the extraction of local features,
the suppression of noise is also a key factor in improving the overall performance of the
network. In deep learning, the attention mechanism allows the model to find the data that
are more important to the current task out of a huge amount of data, reduce or eliminate
other unimportant data, and then improve the processing efficiency and accuracy of the
data. To this end, we added SEblock [25] to TRCAM-Unet to focus more on the water
surface features while ignoring the noise in various complex backgrounds. SEblock is an
attention module based on channel dimensions, which extracts the feature information that
is beneficial to the task from each channel of the feature map and achieves the suppression
of globally useless information. Meanwhile, similar to the hopping structure, SEblock adds
the residual structure [26] to achieve the preservation of shallow features (regional features)
in order maintain the feature information that originally existed in the feature map when
changing the weights of the channels. The residual channel attention module is shown in
Figure 10.
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First, the overall features were extracted by global average pooling (GAP), which
transformed the overall features into a real number, Xc ∈ RC, that can represent the overall
features, as shown in Equation (15).

Xc =
1

W × H

W

∑
i=1

H

∑
j=1

x(i,j) (15)

where W and H denote the width and height of the feature map; x(i,j) denotes the grey
value of the corresponding position in the feature map.

On this basis, the image features were extracted by two fully connected layers. Specifi-
cally, in the first fully connected layer, the number of all the feature channels were adjusted
to 1/16 of the original number, while in the second fully connected layer, the number
of all the feature channels were restored to 1/16 of the original number. This method
has the following advantages: it can efficiently fuse the features between the channels,
which greatly reduces the computational complexity of the model. The first fully connected
layer used an activation function, ReLU (Rectified Linear Unit), with Equation (16). The
second fully connected layer used an activation function, Sigmoid (The Sigmoid activation
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function is a commonly used continuous, smooth “s” type activation function), expressed
in Equation (17) below.

ReLU(x) = max(0, x) (16)

Sigmoid(x) =
1

1 + e−x (17)

Then, a residual structure was added to the output of SEblock by superimposing the
original feature map with the SEblock results to obtain a residual channel attention model.
The output of it this represented by Equation (18).

Fc = Xc(1 + SE(Xc)) (18)

3. Results
3.1. Experimental Results and Analysis of Water Level Detection Method without Water Stage
Gage Based on Target Detection Technique
3.1.1. Experimental Program

First, the dataset was produced. A total of 4175 water level images of various types
were collected in the field. The water level line was labelled, and according to the original
YOLOv5 preset a priori box size, the medium-scale anchor box [50, 120] was selected as
the size of the labelling box, and when labelling, it was ensured that the midpoint of the
labelling box was close to the water level line, and that continuity should be maintained
between the labelling boxes (as shown in Figure 11, the blue box is the labelling anchor
box). The labelled images are proportionally divided into a training set (3675 images) and
a test set (500 images). To prevent overfitting, the training set was augmented through
dataset augmentation to 13,875 images.
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Then, the aforementioned deep learning network was built and trained to test the
performance of the training algorithm using a test set. Meanwhile, the original YOLOv5
algorithm was built to train and predict the water level as a comparison experiment.

During the experiment, the hyperparameters took the same value. The batch size
was set to 32, the initial learning rate was 0.01, and this was updated using the cosine
annealing algorithm. The maximum number of iterations was 500. The experimental
hardware environment used was Intel Xeon Gold 5218 R CPU, 256 G RAM, Nvidia
Quadro RTX6000 24 GB GPU. The software environment used was 64-bit Windows 10,
Python3.8 + Pytorch1.7.1.

3.1.2. Evaluation of Indicators

Usually, the performance of target detection algorithms is evaluated using the average
precision (AP), mean average precision (mAP), accuracy, and recall. However, the water
level line is infinitely large in the extension direction and infinitely small in the normal
direction, leading to the failure of the above evaluation metrics. Because the water level
elevation described in this study was obtained by solving the water level line expression
(Equation (1)), the accuracy of the water level line expression directly affects the pass rate
of water level detection. Therefore, we established a new evaluation index of the water
level line detection accuracy based on the characteristics of the water level line, Pa and Pb,
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which measured the slopes of the predicted water level line and the discrepancy between
the intercept and true value.

Pa =

(
1 − |a − a′|

a′

)
× 100% (19)

Pb =

(
1 − |b − b′|

b′

)
× 100% (20)

where a is the predicted slope value, b is the predicted intercept value, a′ is the true slope
value, and b′ is the true intercept value. The true values of the slope and intercept for each
water level line in the dataset are calculated as shown in Figure 12, where the left end of the
water body in the image is connected to the right end to obtain a manually labelled straight
water level line, the labelling ensures that the endpoints of the water body are selected
accurately, and the true values of the slope and the intercept are solved by the manually
labelled water level line.
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3.1.3. Analysis of Experimental Results

The experimental results are analysed and illustrated in terms of the number of
algorithmic parameters and the effect of ablation experiments, respectively.

(1) Number of algorithmic parameters

The algorithm parameter count results are shown in Table 2. The method in this study
reduces the number of network layers by 11%, the parameter scale by 5.6%, and the number
of floating-point operations by 6.7% compared with the original algorithm. This indicates
that the algorithm of this method is more lightweight, and the water level detection speed
is faster.

Table 2. Number of model participants.

Algorithm Layer Number Parameters Giga Floating Point Operations per Second

The original YOLOv5 283 6.74 M 16.5
Method used in this study 252 6.36 M 15.4

(2) Effect of ablation experiment

In order to verify the improvement in the water level detection performance achieved
by each module, the following ablation experiments were designed. The results of the
accuracy indexes are shown in Table 3, and the results of the water level recognition are
shown in Figure 13 (in Figure 13, the detection maps of the original, YOLOv3, YOLOv5,
and the method used in this study are shown from left to right, respectively. Moreover,
three different scenarios are included in Figure 13: reservoir, river, and dike). Among
them, YOLOv5 and the improved YOLOv5 represent the original YOLOv5 network and
the improved YOLOv5 network in this study, respectively; YOLOv5-K and the improved
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YOLOv5-K represent the intelligent detection method of the water level that integrates the
improved YOLOv5 with the Kalman filtering principle, and the intelligent method of water
level detection that integrates the improved YOLOv5 with the Kalman filtering principle,
respectively; and Pa and Pb are the mean values of the aforementioned water level line
detection accuracy evaluation indexes, Pa and Pb.

As can be seen in Figure 13, the real water level lines all pass through the centre of the
predicted anchor frames; the method in this study outputs more anchor frames, and more
anchor frames imply higher fitting accuracy. It can be seen that the method in this study is
more capable of recognizing the water level line in complex and harsh environments with a
higher generalization performance. The ablation experimental data in Table 3 also support
the above conclusion: the slope accuracy of the method in this study is 97.3%, which is 2.4%
higher than the original algorithm; the intercept accuracy is 99.3%, which is 0.5% higher
than the original algorithm.
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Figure 13. Comparison of predictive effectiveness of different network models. (a) daytime, (b) night,
(c) rain, (d) fog, (e) sheltered, (f) wavy, (g) flotage, (h) snow, (i) Tyndall effect, and (j) shadow. (The
original image, YOLOv3, YOLOv5, and the methods in this study are arranged from left to right, and
the red box is the recognition result box).

Table 3. Water level line detection data statistics.

Environment Photo
Count

YOLOv5
¯
Pa

YOLOv5
¯
Pb

Improved
YOLOv5

¯
Pa

Improved
YOLOv5

¯
Pb

YOLOv5-

K
¯
Pa

YOLOv5-

K
¯
Pb

Improved
YOLOv5-K

¯
Pa

Improved
YOLOv5-K

¯
Pb

daytime 104 95.4% 99.3% 97.5% 99.6% 95.4% 99.3% 97.5% 99.6%
night 60 95.0% 98.9% 96.3% 99.1% 95.7% 99.2% 97.6% 99.4%
rain 37 94.4% 98.5% 96.2% 98.8% 95.5% 98.8% 97.1% 99.0%
fog 35 94.4% 98.3% 95.4% 98.5% 94.8% 98.6% 96.6% 98.8%

sheltered 50 95.0% 98.9% 97.4% 99.4% 96.0% 99.0% 97.4% 99.4%
wavy 58 95.2% 99.1% 97.6% 99.6% 96.5% 99.1% 97.6% 99.6%

flotage 60 94.7% 98.6% 97.4% 99.1% 96.2% 98.9% 97.4% 99.1%
snow 49 94.5% 98.4% 95.9% 98.6% 94.9% 98.5% 96.7% 98.9%

Tyndall 47 94.6% 98.3% 95.5% 98.6% 95.0% 98.6% 96.9% 99.0%
average 94.9% 98.8% 96.6% 99.0% 95.5% 98.9% 97.3% 99.3%

3.2. Experimental Results and Analysis of Water Level Detection Method without Water Stage
Gage Based on Semantic Segmentation Technology
3.2.1. Experimental Program

The models compared were several of the more popular semantic disambiguation
networks, such as Deeplab [27] and PSPNet [28]. All the network models used the same
software and hardware experimental protocols (Table 4) and had the same parameter
settings. In this experiment, the batch size was 4; the training batch was 50; β1, β2, and ε in
the Adam optimizer were set to 0.9, 0.999, and 10−8, respectively, and the initial learning
rate was 0.01.
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Table 4. Hardware and software parameters.

Type Parameter

CPU Intel Xeon Gold 5218 R CPU
GPU Nvidia Quadro RTX6000
RAM 256 GB

VRAM 24 GB
Operating system Windows 10

Cuda 11.3
Deep learning framework Pytorch1.7.1

Language Python 3.8
Other key libraries Numpy 1.92.2, Pillow 8.2.0

The experiment utilised 6028 water surface images, including those taken in daytime
and nighttime, with ice and snow cover, light, shadow, waves, rain, fog, etc. The images
were associated with a variety of severe weather types. The images were labelled using
Labelme (see Figure 14) and the dataset was enhanced with the image data.
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Figure 14. Dataset label. (a) Original image. (b) Label image.

The sum of the cross-entropy loss function and the Dice loss function was utilized
as the model loss function. The cross-entropy loss represented the difference between the
true probability distribution of the image and the predicted probability distribution, and its
equation is shown below:

lCE = −
N

∑
i=1

p(xi) loga q(xi) (21)

where N is the number of categories categorized; i is the classification number; p(xi) is the
classification target for the actual true value, expressed as 1 in the case of the corresponding
object category, and 0 in all other cases; q(xi) is the predicted probability value; and e is
taken from the bottom, a, where not otherwise specified.

The Dice loss indicates the proportion of incorrectly categorized information to correct
information with the following expression:

lDice = 1 −
2∑P

i=1 pi p∗i
∑P

i=1 pi + ∑P
i=1 p∗i

(22)

where pi and p∗i denote the predicted and true values of pixel p; P is the total number
of pixels.

Fifty rounds of training were performed based on the above loss function and the
change in model loss values was recorded (see Figure 15, lossvalue is a parameter value in
model training, the lower the value is, the better the model training effect is; epoch is the
number of iterations in model training).
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3.2.2. Evaluation of Indicators

Currently, evaluation methods based on the Mean Intersection Ratio (MIOU) and the
Mean Pixel Accuracy (MPA) for categories are widely used. The IOU represents the ratio of
the intersection and concatenation between the true and predicted values, and the MIOU
represents the average of the IOU values for each category in a global context, as follows:

MIOU =
1

N + 1

N

∑
i=1

pii

∑N
j=0 pij + ∑N

j=0 pji − pii
(23)

where N denotes the number of categories categorized; pii denotes the pixels correctly
categorized; pij denotes the pixels that would have belonged to category i but were classified
in category j; and pji denotes the pixels that would have belonged to category j but were
classified in category i.

The PA value indicates the ratio of correctly categorized pixels to all pixels, while the
MPA value is the average PA value for each category across the region, as follows:

MPA =
1

N + 1
∑N

i=0 pii

∑N
i=0 pi

(24)

where pi denotes the total number of pixels corresponding to the classification.
Because the test data were taken from the same points, the mean water level difference

(MLD) can be used as a measure of the water level discrimination accuracy:

MLD =
∑L

i=1
∣∣li − l∗i

∣∣
L

(25)

where L denotes the total number of detected images; li and l∗i denote the true value of the
water level and the predicted value of the network.

3.2.3. Analysis of Experimental Results

The two different methods proposed in this study were compared, and the effective-
ness of the two methods were verified by ablation experiments, the results of which are
shown in Table 5. The numbers 1–5 in the table represent the different model structures
based on the Unet model, and a circle indicates that the model contains the correspond-
ing structure.
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Table 5. Ablation experiments.

Structure 1 2 3 4 5

Unet
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ures 16 and 17 that the surface edges obtained by segmentation under various complex 
and harsh environments are closer to the actual surface edges, as suggested in this study 
for the TRCAM-Unet model, whereas the other network models tend to produce segmen-
tation edges that are unstable and false areas of recognition. The experimental results 
show that this method can achieve more high-precision water level detection. 
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The experimental results are shown in Table 6. It can be seen that the experimental
groups achieved some improvements on the basis of Unet’s semantic segmentation model.
Compared with the first experiment, the second experiment replaced all the convolutional
layers of the original encoder’s single scale with the Transformer structure, and the second
experiment improved the detection accuracy with the Transformer structure. The parame-
ters were reduced dramatically, which effectively improved the correlation between the
local features. Compared to the first experiment, the third experiment added a residual
channel attention module between the encoder and the decoder, thus improving the net-
work accuracy without changing any parameters. The fourth experiment combined the
two improvement methods of Experiment 3 and Experiment 2, and the result was that
both Experiment 3 and Experiment 2 provided better results than the single improvement
method. Under the assumptions of the fifth experiment, which replaced the basic jump
structure with a full-scale connectivity structure, a significant reduction in the number of
parameters was achieved and the detection accuracy of the model was improved. In con-
clusion, these improvements can enhance the performance of net detection. The test set had
a total of 600 water surface images, covering a variety of different harsh environments. Due
to the space limitation of the layout, eight images with typical significance were selected
for presentation. In Figure 16, from left to right, the detection maps of the original image,
the method used in this study, Deeplab, PSPNet, and Unet are shown, respectively. The
effect image after segmentation is enlarged for the convenience of presentation, the plane
area after segmentation is marked in red, and in the bottom surface, the dike is marked in
black. The low illumination and rainfall-obscured water level areas in Figure 16a,h were
enlarged and are shown in Figure 17. It can be seen from Figures 16 and 17 that the surface
edges obtained by segmentation under various complex and harsh environments are closer
to the actual surface edges, as suggested in this study for the TRCAM-Unet model, whereas
the other network models tend to produce segmentation edges that are unstable and false
areas of recognition. The experimental results show that this method can achieve more
high-precision water level detection.

From Table 6, it can be seen that the TRCAM-Unet model proposed in this study
exhibits an MIOU evaluation index of 98.84% and an MPA evaluation index of 99.42%,
which has a better segmentation accuracy. TRCAM-Unet has only a 9.717 × 10−3 m
average difference in the detection of water, which is a small difference compared with
other types of network models. Compared with other semantic segmentation methods, the
TRCAM-Unet method can be better applied to water level detection in various complex
and harsh environments.

Table 6. Semantic segmentation results of each model with water level monitoring results.

TRCAM-Unet Deeplabv3 Unet Pspnet

MIOU/% 98.84 97.35 96.09 97.87
MPA/% 99.42 98.67 98.12 98.96
MLD/m 9.717 × 10−3 4.915 × 10−2 4.405 × 10−2 4.279 × 10−2

Parameters/×106 16.48 2.76 23.84 2.45
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Figure 16. Comparison of prediction effects of different network models. (a) Low light level. (b) 
Haze. (c) Snow. (d) Tyndall effect. (e) Camera shake. (f) Wavy. (g) Water surface freezing. (h) Rain. 
(The original image, TRCAM-Unet, Deeplab, PSPNet, and Unet are arranged from left to right). 
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Figure 17. Semantic segmentation effect details display. (a) Low light detail display. (b) Rain block
detail display.
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3.3. Comparison of the Practical Results of Two Methods of Water Level Detection without a Scale

A reservoir was selected as a practice point. In order to facilitate the analysis of the
accuracy of the method used in this study, the water level image acquisition point was
arranged in a water stage gage area. Due to the limitations of the terrain, the camera
was far away from the acquisition target, about 150 m. Since the wave protection wall
above the reservoir can be seen clearly in the image, and its position is fixed and not easily
deformed, the wave protection wall was selected as the detection marker. As shown in
Figure 18, the actual length of the wall is 1.46 m measured manually and accurately. The
proportion coefficient K between the pixel and the real length is converted in real time by
detecting the pixel length of the marker and is used for the subsequent conversion of the
actual water level elevation. The water level at the site was monitored from 22 March to
8 April 2022, using the two no-water-ruler detection methods described in this study. The
images were taken every 1 h during monitoring, and a total of 420 images were captured.
Among them, 173 images were taken during normal daytime, 120 images during normal
darkness, 48 images during foggy days, 41 images during rainy days, 11 images under
shadow, and 11 images with waves. The water level at this location was monitored from
22 March–8 April 2022 using the two detection methods in this paper. Images were taken
at 1 h intervals during monitoring, and a total of 420 images were captured. Among them,
173 images were taken during normal daytime, 120 images were taken during normal
darkness, 48 images were taken during foggy days, 41 images were taken during rainy
days, 11 images were taken during shadows, and 11 images were taken during waves. The
true water levels were extracted by using manually observed water level scales.
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The water level detection results from harsh environments obtained using the fusion
of the improved YOLOv5 and Kalman filter principle of water level detection without a
water stage gage are shown in Figure 19, where the red line is the detected water level
line, the green line is the virtual water stage gage, and the yellow line is the detected water
level elevation. The overall detection data are shown in Figure 20, and there were no
misidentification results obtained during the entire monitoring period, and the maximum
error between the detected water level elevation value and the manually observed value is
only 0.09 m.

The water level detection results in harsh scenarios obtained using the TRCAM-Unet-
based water level detection method without a water stage gage are shown in Figure 21, and
the overall detection data are shown in Figure 22. Throughout the entire detection process,
the water level detected by this study’s method had a very small deviation from the real
water level, with a maximum deviation of no more than 0.08 m, and its MLD was only
1.609 × 10−2 m.
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The real-time processing capability of the model is expressed by the FPS value, and
Table 7 shows the FPS values of the two methods proposed in this study, and it can be
seen that the response speeds of the two models for processing an image belong to the
millisecond level, which meets the needs of practical applications.

Table 7. Real-time processing capabilities of different models.

Model Frames per Second (FPS)

Improved YOLOv5 48
TRCAM-Unet 31

4. Discussion

The experiments performed in this study show that the two water level detection meth-
ods described can accurately identify the water level in complex and harsh environments,
with an error less than 0.1 m. As shown in Table 8, the intelligent water level detection
method without a ruler that combines the improved YOLOv5 and Kalman filtering prin-
ciple does not rely on the water stage gage, and since the method uses linear fitting to
obtain the water level line, it can reduce the impact of a small number of detection errors.
However, it is prone to failing in cases of water surfaces with large undulations, so the
method should be applied to an area with a gentle water surface. Moreover, the number
of parameters in the algorithm is low, and is 61.4% less than the number of parameters
in the TRCAM-Unet-based model proposed in this study; the TRCAM-Unet-based water
level detection method without a ruler also does not rely on the water stage gage and
tends to be applicable to all water level detection scenarios, and has a higher compatibility.
However, the number of parameters in the algorithm is large, and the requirements for the
computing equipment are high, which is not conducive to the deployment of the model in
mobile applications.

Table 8. Comparison of the methods proposed in this study.

Methodology Applicable Scenarios Advantages Disadvantages

A method of water level detection
without a water stage gage by

integrating improved YOLOv5 and
Kalman filtering principle

Scenarios of water level
detection without a water

stage gage with gentle
water surface

Small number of model
parameters, thus facilitating

mobile deployment
Limited suitable scenarios

A method for water level detection
without a water stage gage based

on TRCAM-Unet

All water level detection
scenarios without dipstick

Higher compatibility for
all scenarios

Higher number of
model participants

5. Conclusions

In order to solve the problem of water level detection in complex and harsh environ-
ments, we proposed a fusion of an improved YOLOv5 and the Kalman filtering principle
for intelligent water level detection without a water stage gage. (1) Aiming at the character-
istics of the water level line being infinitely large in the extension direction and infinitely
small in the normal direction of the water level line, we proposed a multi-level feature
fusion method to improve YOLOv5 by reinforcing the meso-scale features. We utilized
the improved YOLOv5 algorithm to capture an anchor frame of a specific size of the water
level line, and we approximated the real water level line by fitting the centre point of
the anchor frame. The Kalman filter was used to introduce the a priori knowledge to
improve the model’s generalization performance within complex and harsh environments.
(2) The relevant experiments show that the present technique effectively improves the
accuracy of water level detection: the accuracy of the slope is 97.3%, which is improved
by 2.4% compared with the original algorithm, and the accuracy of the intercept is 99.3%,
which is improved by 0.5% compared with the original algorithm.
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However, there is a certain risk of failure in detecting the water level using only
target detection techniques, so this study used the deep learning semantic segmentation
technique to detect the water level and output of a near-real water level line contour to
satisfy the demand of water level detection in each scenario. The TRCAM-Unet model
was proposed to achieve the following: (1) To achieve multi-level feature fusion through
a full-scale connection structure; to enhance the network’s relevance to the features of
the water surface image region through the Transformer module; to enhance the useful
feature information and reduce the influence of useless noise through the residual channel
attention module; and to reduce the influence caused by water surface obstruction under
unfavourable environments. (2) In real-world unfavourable environments, the water level
image test experiments and application showed that the TRCAM-Unet model achieves an
MIOU score of 98.40% and an MPA score of 99.20%, the maximum error of the water level
detection is no more than 0.08 m at a distance of 150 m, and the mean value of the water
level deviation (MLD) is only 1.609 × 10−2 m, which is far better than the mainstream
Deeplab, PSPNet, and Unet semantic segmentation network models.

Relevant engineering practices show that the technology proposed in this study can
automatedly and accurately detect water level elevation under complex and harsh environ-
ments, such as night, haze, rain, snow, floating objects, shadows, and so on, with an error
of less than 0.1 m.
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