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Abstract: Dam safety monitoring is critical due to its social, environmental, and economic implications.
Although conventional statistical approaches have been used for surveillance, advancements in
technology, particularly in Artificial Intelligence (AI) and Machine Learning (ML), offer promising
avenues for enhancing predictive capabilities. We investigate the application of ML algorithms,
including Boosted Regression Trees (BRT), Random Forest (RF), and Neural Networks (NN), focussing
on their combination by Stacking to improve prediction accuracy on concrete dam deformation using
radial displacement data from three dams. The methodology involves training first-level models
(experts) using those algorithms, and a second-level meta-learner that combines their predictions
using BRT, a Linear Model (LM) and the Greedy Weighted Algorithm (GWA). A comparative analysis
demonstrates the superiority of Stacking over traditional methods. The GWA emerged as the most
suitable meta-learner, enhancing the optimal expert in all cases, with improvement rates reaching
up to 16.12% over the optimal expert. Our study addresses critical questions regarding the GWA’s
expert weighting and its impact on prediction precision. The results indicate that the combination of
accurate experts using the GWA improves model reliability by reducing error dispersion. However,
variations in optimal weights over time necessitate robust error estimation using cross-validation
by blocks. Furthermore, the assignment of weights to experts closely correlates with their precision:
the more accurate a model is, the more weight that is assigned to it. The GWA improves on the
optimal expert in most cases, including at extreme values of error, with improvement rates up to
41.74%. Our findings suggest that the proposed methodology significantly advances AI applications
in infrastructure monitoring, with implications for dam safety.

Keywords: stacking; combination; meta-learner; experts; machine learning; cross validation; radial
displacement; greedy weighted algorithm; weights

1. Introduction and Background

Monitoring dam behaviour has maintained a transcendental significance role, given
the significant social, environmental, and economic implications that its deterioration and
failure could entail. Throughout time, conventional statistical approaches have served as
surveillance systems, affording operators the requisite capabilities to identify irregularities
and anomalies.

The advancement of technology and engineering has led to the creation of devices pro-
ficient in accumulating substantial volumes of monitoring data, thus instigating emerging
requirements in the domain of dam safety.

The growing evolution of artificial intelligence, specifically within the domain of
Machine Learning, introduces novel techniques that address these requirements in a com-
prehensive way [1]. Through Machine Learning, the development of accurate and robust
predictive models is achievable. The applications of Machine Learning span diverse do-
mains, encompassing even the intricate field of dam safety. Within this context, these

Water 2024, 16, 1235. https://doi.org/10.3390/w16091235 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16091235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-7573-4733
https://orcid.org/0000-0001-9874-4486
https://orcid.org/0000-0002-7594-7624
https://doi.org/10.3390/w16091235
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16091235?type=check_update&version=2


Water 2024, 16, 1235 2 of 24

models demonstrate significant efficacy in foreseeing dam behaviour, relying on their
ability to integrate external conditions and past records. Such predictions, when quantita-
tively compared with empirical data, facilitate the determination of emergency thresholds
based on observed disparities [2]. Thus, the imperative to maximise precision gains
notable relevance.

The first-level models used in this research have different natures and have proven to
be robust and accurate in making predictions in different domains.

Boosting Regression Trees (BRT) and Random Forest (RF) are Machine Learning
algorithms based on decision trees for making predictions. While BRT constructs multiple
trees sequentially, focussing on correcting errors in the previous model, RF constructs trees
independently and averages their predictions to reduce variance [3]. Both algorithms are
known for their ability to handle complex relationships in data and are commonly used in
regression and classification problems. However, BRT may be prone to overfitting if not
properly tuned, while RF may suffer from increased computational complexity with a large
number of trees.

On the other hand, Neural Networks (NNs) are deep learning models inspired by the
human brain. Composed of multiple layers of interconnected neurones, neural networks are
capable of capturing complex and nonlinear relationships in data [4,5]. Although powerful,
neural networks require large amounts of training data and hyperparameter tuning.

In the field of dam engineering, the Hydrostatic–Season–Time (HST) model has
been extensively employed to assess dam safety by leveraging the impact of temperature
through sinusoidal harmonic functions. However, despite its simplicity and interpretabil-
ity, this methodology does not account for other external factors that can influence dam
behaviour [6–8].

To address this limitation, several researchers have turned to Machine Learning tech-
niques, whose algorithms enable the modelling of dam behaviour based on external con-
ditions and historical trends. In this context, Fernando Salazar has frequently utilised
ensemble decision tree algorithms in various studies, producing excellent results [9–11].
They compare ML models with conventional statistical models, and they concluded that
BRT outperforms the alternatives, followed by RF and NNs [9]. They also demonstrate that
BRT not only serves to make robust predictions, but also serves as a tool for the interpreta-
tion. The behaviour of dams can be seen as a function of environmental factors through the
predictive importance of the variables that the BRT can generate [11]. Furthermore, they
propose a method for anomaly detection by training a BRT model and setting a criterion
based on its residual density function [2].

Another widely used algorithm is Support Vector Machines (SVMs). Ranković et al.
successfully predicted the tangential displacement of a concrete dam using an SVM
model [12]. Furthermore, they concluded that this model is significantly influenced by
the hyperparameters used in its training process. Mohammad Amin Hariri-Ardebili also
adopts the Support Vector Machine (SVM) approach and presents two extensive applica-
tions: one for a simplified assessment of the reliability of gravity dams and another for a
detailed nonlinear seismic analysis based on the finite element method (FEM), confirming
the accuracy of SVMs for these kinds of issue [5,13].

Mata compares a multiple linear regression with NNs, concluding that NNs repre-
sent a flexible and robust approach to predicting dam displacement, particularly under
extreme temperature conditions [13]. On the other hand, in [14], a novel approach utilizing
deep neural networks and optimization algorithms to identify the soil parameters for the
accurate modelling of rockfill dams is described. The methodology, applied to a dam in
Quebec, involves numerical solutions and inverse analysis using surrogate models. Com-
parative studies assess material heterogeneity, while stochastic optimization algorithms are
evaluated for parameter minimization, demonstrating the effectiveness of the proposed
approach [14].

In research practice, investigators commonly employ these algorithms by simulating a
standard regression problem, where external conditions and historical information serve as
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explanatory variables, and the device’s series functions as the target variable. However,
this issue can be approached from a time series perspective, as monitoring data follows
a temporal structure. Among the most prominent approaches in recent years for time
series prediction are Long Short-Term Memory (LSTM) neural networks, which address the
memory limitations of conventional neural networks and outperform traditional methods
such as ARIMA [15,16].

After reviewing the existing literature, it becomes evident that methods such as BRT,
RF, NN, and HST models are widely utilized in various domains and have consistently
demonstrated a robust and reliable performance. These methods exhibit diverse character-
istics, with BRT and RF being ensemble methods based on decision trees, while NNs and
HST represent different modelling approaches. Given their reliability and track record of
delivering favourable results, we selected them as experts in our research. However, we
acknowledge that algorithms such as LSTM and SVM also yield excellent results. Hence,
our intention for future investigations is to broaden the pool of experts by incorporating
additional algorithms and optimization strategies.

When models are trained across a range of the aforementioned methods, it becomes
evident that disparate models exhibit distinct error patterns. The possibility arises that
the optimal model, denoted as “expert” within the context of our study, might not remain
consistent over the entirety of the time series.

Combining BRT, NN, RF, and HST models offers a synergistic approach to addressing
their individual limitations and capitalize on their complementary strengths. BRT, while
powerful, may struggle with overfitting and sensitivity to outliers. Neural Networks,
renowned for their ability to capture complex patterns, may face challenges such as the
need for large amounts of data to train effectively, susceptibility to vanishing or exploding
gradients, and difficulty in providing interpretable results. RFs, known for their robustness,
might lack sensitivity to subtle relationships in the data. HST models, although effective
for capturing seasonal variations, may overlook spatial dependencies. By integrating
these models via ML techniques, we mitigate these shortcomings, harnessing the collective
predictive prowess to achieve more accurate and resilient dam deformation predictions.

This realisation underscores the fundamental objective of our research: the orchestra-
tion of expert model combination to meticulously enhance precision through the strategic
application of Stacking.

The Stacking technique, recognised as stacked generalisation, was originally formu-
lated by Wolpert in 1992. In essence, this methodology revolves around the training of a
second-level model, denoted as meta-learner, using the prediction vectors produced by
experts obtained through the Cross-Validation procedure [17]. In an illuminating study,
Zeroski substantiates the efficacy of this approach, leveraging a comprehensive array of
30 open-source datasets. Empirical evidence underscores that a meta-learner adopting
the multiple linear regression or decision tree paradigm excels beyond the strategy of
exclusively selecting the most accurate expert model [18].

Wu et al. employ bagging, boosting, and stacking techniques to combine classifiers
and improve the accuracy of daily reference evapotranspiration estimates. Their results
suggest that all models are suitable for landslide modelling, although the SVM boost
model exhibited a higher predictive accuracy [19]. In a similar vein, Dou et al. adopted
the same strategy to predict the assessment of landslides. In their case, the SVM boost
model outperformed the other models, while the SVM stacking model yielded the lowest
performance [20].

Within the domain of dam safety, the literature offers limited instances where the com-
bination of first-level models through the Stacking technique is explored. Some researchers
apply Stacking for the purpose of a multitarget prediction [21,22], while others attempt
to reveal discernible patterns in model behaviour to delineate the threshold criteria gov-
erning the selection of one model over another [23]. Furthermore, certain authors harness
predictions derived from statistical and time series models as inputs for a second-level
model, meticulously trained using the principles of Extreme Machine Learning [24]. In
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particular, Lei W. and Wang J. utilize a Stacking ensemble meta-learner to forecast dam
displacement, highlighting its superior precision and robustness compared to expert opin-
ions. Their approach incorporates feature selection with PCA-RF, Bayesian optimisation for
hyperparameter tuning, and dynamic monitoring indexes, resulting in enhanced accuracy
and reliability for the dynamic safety warning of dam deformation [25].

In our paper titled “Prediction of Concrete Dam Deformation through the Combination
of Machine Learning Models”, we trained second-level predictive models using Stacking
and Blending techniques on radial displacement data from an arch-gravity dam, employing
Generalized Linear Regression (GLM). Our findings underscore that the Stacking approach
achieves higher precision than first-level models in most scenarios [26].

The majority of Stacking meta-learners are rooted in linear models. Within our research
inquiry, we undertake a comparative analysis of diverse algorithms, varying in levels of
complexity, to discern the optimal mode of expert combination. Among these algorithms,
the Greedy Weighted Algorithm (GWA) has emerged as a particularly effective contender
in the domain of Stacking. A case in point is the study by Kurz et al., where a greedy
algorithm is implemented across a spectrum of seven data sets that span multifaceted
biomedical disciplines, consistently exceeding the performance of the linear model in
numerous scenarios [27]. The intricate details of this algorithm are elucidated for the reader
in a subsequent section to facilitate the understanding of the research. In our study, we
chose this algorithm along with a linear model and BRT to combine experts and determine
the most effective approach to improve the precision of the leading expert.

This research stands out for its innovative nature and relevance, as there is limited
research into expert combinations in the field of dam safety. To our knowledge, there
are no existing articles that compare various meta-learner construction methods in this
specific domain.

The structure of the article commences with the introduction, followed by a dedicated
section detailing the Greedy Weighted Algorithm (GWA). We have segregated this section
because we believe it holds particular significance within the research, being the integrator
that yields the best results. Therefore, we aim for its functioning to be well comprehended.
Subsequently, we have the sections “General approach”, which succinctly summarises the
methodology, serving as a guide for the reader to navigate through the research, and “Dam
Cases”, where the data are described. Next, we delve into the core methodology and results,
divided into two sections: “Predictive modelling with meta-learners” and “Three questions
about weight estimation”. Within each, we have included two subsections: methodology
and results. Finally, we conclude with the conclusions section.

2. Greedy Weighted Algorithm

Among the algorithms used for the combination of models, the Greedy Weighted
Algorithm (GWA) [27] deserves a more comprehensive explanation due to its optimal
meta-learner properties, as elucidated in forthcoming sections.

The GWA operates as a weight-assignment model, where the ultimate prediction
of the response variable is a combination of previously trained experts, following the
mathematical formulation:

ŷ =
k

∑
i=1

βi ∗ pi; (1)

where k represents the total number of experts, βi denotes the weight assigned to expert i,
and pi corresponds to the prediction vector of the same expert.

The algorithm iteratively assigns weights to different experts, with the aim of building
combinations by selecting the one exhibiting the lowest error. In the initial iteration,
no combinations are formed; rather, the expert with the lowest Root-Mean-Square Error
(RMSE) is chosen. Subsequently, in each iteration, an increased weight is assigned to the
selected expert. This process continues, ultimately determining the final weight for each
expert. The final weight of an expert results from a voting procedure, in which the number
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of times an expert achieved the lowest error is counted and divided by the total number of
votes, which is equal to the number of defined iterations [27].

Algorithm 1 outlines the steps involved. However, before delving into the algorithm,
it is necessary to define the elements associated with its execution:

Algorithm 1: The greedy weighting algorithm [27]

• X (mxk): A matrix containing the predictions of experts, where m is the number of rows and
k is the number of experts.

• Y: A vector representing the response variable.
• weights: A vector initialised with zeros containing the weights for each expert. The number

of entries corresponds to the number of experts.
• Z (mxk): A zero initialised matrix that holds the updated prediction vectors based on the

assigned weights.
• s: A parameter controlling the number of iterations, determining the total number of times

the weights are updated.
• e: A vector of RMSEs for each expert. The number of entries matches the number of experts.

Result: Vector w with the weights of each expert.

1. Initialize weights to a vector of 0.
2. Initialize Z to a matrix of 0.
3. Initialize s to 0.
4. WHILE (s < iter ) DO:

• s = s + 1;
• Z = (Z + X) ∗ 1

s ;
• e = RMSE(Z, Y);
• best = which[min(e)];
• Z = Z[, best] ∗ s;

5. END WHILE

6. w =
weights

s

To provide a more detailed description of the Algorithm 1 and facilitate its interpreta-
tion, presented here is an example illustrating the combination of three experts: BRT, NN,
and HST, over five iterations.

1. During the initial iteration, the algorithm identifies the expert with the lowest error as
the selected candidate.

2. In the subsequent iteration, the algorithm combines the previous optimal solution
with each expert by assigning them a weight of 1/2. For example, if BRT is determined
as the best expert, the expression for the HST column would be 1/2BRT + 1/2HST.
Consequently, each expert represents a combination of itself with the optimal expert
identified above. Subsequently, the error of each combination is computed and
the combination with the lowest Root-Mean-Square Error (RMSE) is chosen. The
selected combination is then multiplied by the total number of weights (in this case,
2), resulting in a new vector representation. For example, if HST is the optimal expert,
the updated vector would be (1/2BRT + 1/2HST) × 2 = BRT + HST.

3. In the subsequent iteration, the algorithm augments the previous vector, BRT + HST,
by combining it with each expert while assigning a weight of 1/3 to each. Thus,
for NNs, the resulting combination would be 1/3BRT + 1/3HST + 1/3NN, and the
same principle applies to the remaining experts. Following this, the error of each
combination is calculated, and the combination with the lowest RMSE is selected.
The optimal combination is then multiplied by the total number of weights. Should
the combination involving NNs yield the best result, the updated vector would be
(1/3BRT + 1/3HST + 1/3NN) × 3 = BRT + HST + NN.

4. The subsequent iteration involves adding the previous vector, BRT + HST + NN, to
each expert while assigning a weight of 1/4 to each expert. For example, for BRT,
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the resulting combination would be 1/4BRT + 1/4HST + 1/4NN + 1/4BRT, and the
same procedure applies to the remaining experts. Subsequently, the error of each
combination is calculated, and the combination with the lowest error is selected.
The optimal combination is then multiplied by the total number of weights. If the
combination involving BRT is determined as the best, it can be expressed as (1/4BRT
+ 1/4HST + 1/4NN + 1/4BRT) × 4 = BRT + HST + NN + BRT = 2BRT + HST + NN.

5. In the final iteration, the algorithm adds the previous vector, 2BRT + HST + NN,
to each expert while assigning a weight of 1/5 to each. For example, for BRT, the
resulting combination would be 2/5BRT + 1/5HST + 1/5NN + 1/5BRT, and the
same procedure is applied to the remaining experts. Subsequently, the error of each
combination is calculated, and the combination with the lowest error is selected.
The optimal combination is then multiplied by the total number of weights. If the
combination involving BRT is determined as the best, the resulting expression would
be (2/5BRT + 1/5HST + 1/5NN + 1/5BRT) × 5 = 2BRT + HST + NN + BRT = 3BRT +
HST + NN.

In the final weight counter vector, BRT accumulates three votes from iterations 1, 4,
and 5, HST accumulates one vote from iteration 2, and the NN accumulates one vote from
iteration 3. Ultimately, the total weight of each expert is determined by dividing the number
of votes by the total number of iterations (votes). Thus, the final weights for each expert
would be 3/5 for BRT, 1/5 for HST, and 1/5 for NN.

3. General Approach

This section presents a brief description of the structure of this research. The main
objective is to develop a first-level model combination methodology that improves the
accuracy of the optimal expert.

The structure of this paper has been divided into two fundamental parts (Figure 1): the
training of experts and meta-learners, and a block of questions that arise when analysing
the results of the optimal meta-learner (GWA).
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First, the experts were trained with the m × n-dimensional training dataset. In order
to cover possible predictive shortcomings of the experts and improve accuracy, algorithms
of different natures were selected, such as ensembles of decision trees (BRT and RF), neural
networks (NNs), and Hydrostatic–Seasonal–Time (HST).

The Blocked Cross Validation evaluation process was used, where each block equals
one year. This provided a method to reach the optimal hyper-parameters and to obtain
an estimate of the error in future data. Furthermore, the predictions of each block were
obtained, which served as the input data set for the next stage of the research: the training
of the meta-learners.

Algorithms of higher and lower complexity were chosen as second-level models:
linear models, such as simple Linear Regression (LM) and the Greedy Weighted Algorithm
(GWA), and decision tree ensembles (BRT). The predictions obtained during the Blocked
CV at this stage were also used to make an error estimate, which was compared with the
optimal expert’s error through their relative difference. Following this comparison, the best
model was determined.

As will be seen in the analysis and discussion of the results, the best meta-learner
was the GWA. At this point, three questions emerged regarding the performance of this
algorithm and the increase in precision, which are directly linked to the weight estimation.

The first question arises intuitively, as it is an algorithm that gives weights to each
first-level model: Can the GWA fail to improve precision? The reader might give a negative
answer, as it seems reasonable to give a weight of 1 to the optimal expert and 0 to the rest
in case their combination did not improve the accuracy. To solve this question, the optimal
weights of each expert in each fold were calculated and compared with the weights given
by the algorithm during the Blocked CV. This will be explained in detail in Section 5.1.

The second issue of concern was which experts had the most weight and why. Since
the results already obtained were used to answer this question, the reader will not find a
methodology explanation in this section. The response boils down to the comparison of the
weights given and the estimated errors during the CV.

To conclude this part of the research, it was studied whether the second-level model
improved the predictions of the optimal expert where it made the greatest error. To this end,
we extracted errors that were lower than the limit of quartile one and higher than the limit
of quartile three. Then, the errors of the expert and the meta-learner were calculated and
compared at those values. Additionally, the same methodology was applied to the periods
in which extreme values of radial displacement, water level, and temperature are found.

The proposed methodology was applied to three different dams, following a specific
order that is relevant to mention. First, the experts and second-level models were trained
on the pendulum series of dam 1. The algorithms used were BRT, LM, and GWA. Since
the GWA was the best meta-learner, it was selected to train meta-learners on the data of
dams 2 and 3. The experts trained on the series of these dams were the same as in the
first case.

4. Dam Cases

This section presents the main characteristics of the dam cases, as well as the graphs
of the series of the target variables and the external conditions. Data are available for
three dams of different types: arch-gravity, gravity, and double curved arch dam, with
heights ranging from 45 to 99 m above foundation, Table 1. The data sources are three
different research projects on three different dams, two of them located in Spain and one in
France. Due to confidentiality reasons, no details are given on the name of the dam or its
exact location.
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Table 1. Summary of the dams whose data have been used during the research.

Dam Type Height Target Devices Instances Explanatory
Variables Date Range

Dam 1 Arch-gravity >66 m Radial movement 4 pendulums 3560 5 2004–2017
Dam 2 Gravity 99 m Radial movement 2 pendulums 216 4 1992–2020

Dam 3 Double curved
arch dam 45 m Radial movement 2 pendulums 681 3 2000–2012

The dams are equipped with various monitoring devices that allow for control of the
safety of the dam. Radial displacement of the structure is a reliable measure closely related
to the safety of the dam. Therefore, auscultation devices were selected for this purpose for
all dams. In the case of dam 1, four pendulums were used, placed in the upper zone and
in the horizontal gallery (Figure 2). However, for the second dam, bisection movement
sensors were selected at two points located in a downstream overhang close to the crest in
the central blocks (Figure 3). The two selected pendulums from dam 3 are located in block
CB in Figure 4.

To extrapolate the methodology’s efficacy comprehensively, it is imperative to explore
its applicability with other sensors measuring different aspects of dam safety. Future
investigations are planned to evaluate the methodology’s performance using diverse sensor
types, aiming to provide a more holistic assessment of overall dam safety.

The highest number of available records corresponds to the first dam, with 3560 records,
while the lowest number belongs to dam 2, with only 216 records (Table 1). The date ranges
available differ depending on the dam, but in all cases the last available year is reserved for
the last validation, in red in the figure (Figure 5). However, the errors used for the model
comparison are the ones obtained during Cross Validation, as it is a more reliable estimate
as it is an average over several years (Table 2).
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Table 2. Cross Validation by Blocks. The green colour represents training folds, while the blue colour
represents test folds.

Year Year1 Year2 . . . Yearn
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. . . . . . . . . . . . . . .
Iterationn
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Figure 5. Series of radial movement of the pendulums of the three dams. The part of the series for
the training set is shown in green and the part for the last validation is shown in red.

The external conditions that serve as explanatory variables for experts are rainfall
(Figure 6), temperatures (Figure 7) and reservoir level (Figure 8). From these, synthetic
variables related to the past were calculated for each of them. Moving averages, aggre-
gates, and speeds of variation of different orders (7, 15, 30, 60, 90, 180, and 365 days)
were calculated.



Water 2024, 16, 1235 11 of 24Water 2024, 16, 1235  11  of  24 
 

 

 

Figure 6. Series of rainfall of the 3 dams. 

 

Figure 7. Series of temperatures of the three dams. 

Figure 6. Series of rainfall of the 3 dams.

Water 2024, 16, 1235  11  of  24 
 

 

 

Figure 6. Series of rainfall of the 3 dams. 

 

Figure 7. Series of temperatures of the three dams. Figure 7. Series of temperatures of the three dams.



Water 2024, 16, 1235 12 of 24Water 2024, 16, 1235  12  of  24 
 

 

 

Figure 8. Series of reservoir level of the three dams. 

5. Predictive Modelling with Meta-Learners 

This chapter addresses the training of experts and the development of second-level 

models. It is structured into two subsections: methodology, wherein the executed actions 

are elucidated, and results and discussion. 

5.1. Methodology 

The initial phase of the methodology included the selection of algorithms for expert 

training. Given the primary goal of enhancing the accuracy of the optimal expert, a diverse 

range of algorithms were chosen  to mitigate  their  individual  limitations  through  their 

combination. Each selected model demonstrates a  significant  level of quality, drawing 

from both established research and our own empirical insights. Consequently, ensembles 

of decision  trees  (specifically BRT and RF), Neural Networks  (NNs), and Hydrostatic–

Season–Time (HST) were selected. 

The data sets used for expert training contain information about the external condi-

tions of the dam. Moreover, to capture the influence of the past behaviour of these varia-

bles, moving averages, aggregates, and variation rates were calculated for each of them 

and added as synthetic variables. 

On the other hand, the evaluation process used to reach the optimal hyperparameters 

and estimate the error on future data was Cross-Validation by blocks, where each block 

represents a year. Through this procedure, we obtained the prediction vectors of each ex-

pert, which shape the training matrix of the meta-learners:   

“By  joining  these vectors  to  the  target variable  𝑌 ൌ  ሼ𝑦ଵ,𝑦ଶ, . . . ,𝑦௠ሽ் ,  the  following 

training matrix  ሾ𝑚 x ሺ𝑘 ൅ 1ሻሿ  is obtained: 

𝐷ᇱ ൌ ൭
𝑝ଵଵ ⋯ 𝑝ଵ௞ 𝑦ଵ
⋮ ⋱ ⋮ ⋮

𝑝௠ଵ ⋯ 𝑝௠௞ 𝑦௠
൱, 

where  𝑝௜௝  is prediction  𝑖  of the expert  𝑗. The first column in Equation (3) is the prediction 

vector of expert 1,  𝑝ଵሺ𝑌ሻ ൌ ሼ𝑝ଵଵ,𝑝ଶଵ, … ,𝑝୫ଵሽ,  and so on.” [26]. 

Figure 8. Series of reservoir level of the three dams.

5. Predictive Modelling with Meta-Learners

This chapter addresses the training of experts and the development of second-level
models. It is structured into two subsections: methodology, wherein the executed actions
are elucidated, and results and discussion.

5.1. Methodology

The initial phase of the methodology included the selection of algorithms for expert
training. Given the primary goal of enhancing the accuracy of the optimal expert, a diverse
range of algorithms were chosen to mitigate their individual limitations through their
combination. Each selected model demonstrates a significant level of quality, drawing from
both established research and our own empirical insights. Consequently, ensembles of
decision trees (specifically BRT and RF), Neural Networks (NNs), and Hydrostatic–Season–
Time (HST) were selected.

The data sets used for expert training contain information about the external conditions
of the dam. Moreover, to capture the influence of the past behaviour of these variables,
moving averages, aggregates, and variation rates were calculated for each of them and
added as synthetic variables.

On the other hand, the evaluation process used to reach the optimal hyperparameters
and estimate the error on future data was Cross-Validation by blocks, where each block
represents a year. Through this procedure, we obtained the prediction vectors of each
expert, which shape the training matrix of the meta-learners:

“By joining these vectors to the target variable Y = {y1, y2, ..., ym}T , the following
training matrix [m × (k + 1)] is obtained:

D′ =

 p11 · · · p1k y1
...

. . .
...

...
pm1 · · · pmk ym

,
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where pij is prediction i of the expert j. The first column in Equation (3) is the prediction
vector of expert 1, p1(Y) = {p11, p21, . . . , pm1}, and so on.” [26].

Once the training set was configured, the meta-learners were trained. Three distinct
algorithms of varying complexity were selected: simple linear regression (LM), greedy
weight estimation (GWA), and an ensemble of decision trees (BRT). Given the limited
number of variables in this new dataset, all of which exhibit linear relationships with the
target variable, linear models were considered suitable. Specifically, the weight estimation
algorithm was chosen to mitigate potential issues related to multicollinearity. Lastly, BRT
was chosen for its predictive quality in standard problems.

An important aspect to be elaborated on is the estimation of the coefficients and
weights assigned to the experts. The determination of hyper-parameters for the BRT meta-
learner was executed through Blocked Cross Validation, mirroring the approach employed
for the BRT expert. Conversely, in the case of the other two second-level models, Cross-
Validation does not impact the estimation of final coefficients and weights; rather, it serves
solely to estimate the error.

In summary, the challenge encountered in this phase of the research lies in the esti-
mation of coefficients and weights for experts within the training set. The aim is to apply
these estimates to the predictions generated by experts on the forthcoming data [27]:

ŷ =
k

∑
j=1

wj pj; (2)

where wj is the vector of final weights or coefficients of expert j, k the total number of
experts, and pj the vector of predictions of expert j.

The weights were estimated considering the entirety of the data in matrix D′, refer-
enced above. However, an error estimate is needed to ensure that the model is accurate and
robust. At this point, the usefulness of the CV for the LM and GWA meta-learners arises.

Under the assumption of having have n years available in the data set, the CV will
comprise n iterations, as each block represents a year. To estimate the error for the GWA
and LM, within each iteration, we computed the weights and coefficients using all years (as
indicated by the green entries in Table 2). The exception was one year designated as the test
fold (in blue in Table 2). Therefore, for each year, we obtained a vector of weights estimated
with the data for the remaining n − 1 years. We believe that this assessment approach is
close to reflecting the actual problem and, therefore, most suitable.

The weights estimated with each training subset were applied to the prediction vectors
of the D′ matrix of the test fold, resulting in an associated error value. Hence, in addition
to the vectors of weights and coefficients, we obtained n error values. The selected error
measure in this context is the Rooted-Mean-Squared Error (RMSE), a customary choice in
machine learning problems:

RMSE =

√√√√ m

∑
i=1

(ŷi − yi)
2

m
; (3)

where ŷi is the predicted value of i, yi is the observed value of i, and m is the total number
of records.

The ultimate estimated error is determined by computing the average of the errors
observed across all test folds:

RMSEcv =
1
n

n

∑
i=1

RMSEi; (4)

where n is the total number of years and RMSEi is the error over the test fold i.
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Finally, using the relative difference between them, the optimal expert’s estimate errors
were compared with each meta-learner’s estimate errors, which was called “percentage of
improvement” (ER) in this study:

ER =
RMSEopt − RMSEmodel

RMSEopt
× 100; (5)

where RMSEopt and RMSEmodel are the RMSE values of the optimal expert and some other
model, respectively.

5.2. Results and Discussion

BRT is the most frequent optimal expert (four out of eight devices), followed by NNs,
with relative differences closest to 0% (down to −2.97%), as shown in Table 3. Nevertheless,
the HST is the best method to predict the radial displacement of dam 2, while the lowest
ER values of the experts tend to belong to the HST, down to −89.29% in pendulum 3 of
dam 1.

Table 3. Results of trained models: RMSE obtained during CV and percentage of improvement. The
bold text in the table corresponds to the lowest error values of the error, for RMSEcv, and the highest
for ER.

Dam Pendulum: 1 2

Dam 1

RMSEcv ER RMSEcv ER

Expert

BRT 2.2 −9.02% 1.404 0.00%
NN 2.018 0.00% 1.446 −2.97%
RF 2.649 −31.27% 1.925 −37.07%

HST 2.848 −41.13% 2.080 −48.08%

Meta-learner
GWA 1.94 3.87% 1.178 16.12%
LM 2.019 −0.05% 1.201 14.48%
BRT 2.295 −13.73% 1.253 10.78%

Pendulum: 3 4

RMSEcv ER RMSEcv ER

Expert

BRT 1.288 0.00% 1.299 0.00%
NN 1.473 −14.36% 1.416 −9.01%
RF 1.832 −42.24% 1.652 −27.17%

HST 2.438 −89.29% 2.436 −87.53%

Meta-learner
GWA 1.106 14.13% 1.177 9.39%
LM 1.174 8.85% 1.223 5.85%
BRT 1.245 3.34% 1.279 1.54%

Dam 2

Device: 1 2

RMSEcv ER RMSEcv ER

Expert

BRT 1.07 −34.93% 1.06 −19.10%
NN 1.201 −51.45% 1.192 −33.93%
RF 1.631 −105.67% 1.527 −71.57%

HST 0.793 0.00% 0.89 0.00%

Meta-learner GWA 0.765 3.53% 0.794 10.79%

Dam 3

Pendulum: 1 2

RMSEcv ER RMSEcv ER

Expert

BRT 0.566 −4.81% 2.377 0.00%
NN 0.54 0.00% 2.860 −20.32%
RF 0.624 −15.56% 2.798 −17.71%

HST 0.594 −10.00% 2.869 −20.70%

Meta-learner GWA 0.47 12.96% 2.248 5.43%
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It is surprising that HST is, in some cases, the best expert. Possible explanations are
that data set 2 has only a small number of records. As a result, simpler models are better
adapted to radial movement series. However, the BRT and NN models tend to be better
as they were fed with information about past external conditions, and its complex nature
manages to capture intricate relationships between the data.

Due to the order indicated in Section 2, three different meta-learners can be observed
in Table 3 for dam 1. The GWA is always the best meta-learner and always improves the
precision of the optimal expert, reaching improvements of up to 16.12% in the predictions
of pendulum 2 of dam 1. The lowest ER values of the GWA are found in case 1 of dams 1
and 2: 3.87% and 3.53%, respectively. BRT and LM also manage to improve precision in all
cases except pendulum 1 of dam 1 (ER values of −0.05% and −13.73%), which may be due
to a device failure in 2014 that can be seen in the graph P1 Dam1 (a) of Figure 5. The LM
follows the GWA in terms of accuracy, while the BRT, despite being the best expert, is the
least accurate meta-learner overall.

These results may indicate that simpler algorithms, which capture linear relationships
between prediction vectors in a straightforward manner, are more appropriate for making
expert combinations. The BRT, with its complex nature of ensembles of decision trees, in
addition to requiring more time to train, does not capture these relationships any better
than a simple linear model.

Once the mean error results were obtained, the error distribution of each model was
studied (Figure 9). The measure taken as reference was the difference between the observed
and predicted values.

Water 2024, 16, 1235  15  of  24 
 

 

as they were fed with information about past external conditions, and its complex nature 

manages to capture intricate relationships between the data. 

Due to the order indicated in Section 2, three different meta-learners can be observed 

in Table 3 for dam 1. The GWA is always the best meta-learner and always improves the 

precision of the optimal expert, reaching improvements of up to 16.12% in the predictions 

of pendulum 2 of dam 1. The lowest ER values of the GWA are found in case 1 of dams 1 

and 2: 3.87% and 3.53%, respectively. BRT and LM also manage to improve precision in 

all cases except pendulum 1 of dam 1 (𝐸𝑅  values of −0.05% and −13.73%), which may be 

due to a device failure in 2014 that can be seen in the graph P1 Dam1 (a) of Figure 5. The 

LM follows the GWA in terms of accuracy, while the BRT, despite being the best expert, is 

the least accurate meta-learner overall. 

These  results may  indicate  that simpler algorithms, which capture  linear  relation-

ships between prediction vectors in a straightforward manner, are more appropriate for 

making expert combinations. The BRT, with its complex nature of ensembles of decision 

trees, in addition to requiring more time to train, does not capture these relationships any 

better than a simple linear model. 

Once the mean error results were obtained, the error distribution of each model was 

studied  (Figure 9). The measure  taken as reference was  the difference between  the ob-

served and predicted values. 

 

Figure 9. Boxplots of the error distributions. Figure 9. Boxplots of the error distributions.



Water 2024, 16, 1235 16 of 24

It was noted above that, on average, GWA’s RMSE is lower than that of other models.
However, the median of experts is lower than the median of the GWA in some of the cases.
For example, in the case of pendulum 1 of the second dam, the median of the BRT is lower
than the GWA and its optimal expert HST. This indicates that the error value that leaves
above and below 50% of the records is lower in the BRT, but as the rest of the error values
are higher, this is not met on average. This can be seen in the width of the boxes. In all
cases, the GWA box is narrower than the rest, implying a lower dispersion in the error
(Figure 9).

In conclusion, the GWA manages to reduce the mean error and its dispersion, making
it the best model for prediction.

Figure 10 shows parts of the series of devices where the GWA outperforms the optimal
expert in accuracy. It can be seen that the meta-learner is closer to the observed values.
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Overall, the combination of experts through the GWA meta-learner manages to im-
prove the accuracy of the optimal experts in all cases. The success of the GWA raised
several questions about this algorithm and the results obtained, which are presented and
answered in the following section.

6. Three Questions about Weight Estimation

The analysis of the results of the optimal meta-learner (GWA) generated three ques-
tions that are addressed in this section, all related to the estimation of weights:

• Q1: Can GWA fail to improve precision?
• Q2: What experts have a higher weight? Why?
• Q3: Does GWA improve the optimal precision of the expert at extreme values and error?

Each of these is divided into two further subsections, methodology, and results and
discussion. The second question has no methodology subsection, as results already obtained
in the previous section were used to answer it.

6.1. Q1: Can GWA Fail to Improve Precision?

This question arises when analysing the possibility of failure of the GWA. The reader
may intuitively arrive at a negative answer to the question, as weight 1 could be assigned
to the optimal expert and 0 to the rest in case the combination of models does not increase
accuracy. However, the answer is affirmative, and the key lies in estimating the weights
and the error during CV.

6.1.1. Methodology

As explained in the previous section, the weights are estimated with all the data
available in the meta-learner training matrix. To replicate the real problem, the blocked
CV is used to calculate the error in future data by estimating the weights with the training
folds and calculating the error on the test fold (Table 2).

This strategy allows us to estimate the error of the meta-learner, but does not ensure an
optimal solution for the test folds. It is known that external conditions that affect the dam
might behave differently depending on the year. The same is applicable for the behaviour
of the expert prediction series. It is possible for an expert to be optimal for one year, or fold
in the CV, but not for the rest. In fact, this is the main motivation for the investigation.

To demonstrate this, the optimal weights for each year of the data set were approxi-
mated and applied to the same year, as shown in the table (Table 4). In theory, by estimating
the weights and testing the new function on the same set, the new model should not give
an error larger than the optimal expert in any case.

Table 4. Estimation of weights for question 1 (Q1). GWA by Fold. The green colour shows the fold
used for weight estimation, which is also the test fold, coloured in blue. As the same fold serves as
both train and test, the colours overlap. The rest of the folds, in grey, are not used.

Year Year1 Year2 . . . Yeark

Iteration1

Iteration2

. . . . . . . . . . . . . . .

Iterationk

The weights estimated in each of the iterations, for each of the folds, were compared
with the weights calculated through the standard CV (Table 2).
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6.1.2. Results and Discussion

The following images show the RMSE results obtained in each year for each model.
The y-axis represents the RMSE value, and the x-axis represents the corresponding year.

All subfigures of Figure 11 reveal that the optimal expert varies depending on the
year. In the case of pendulum 2 of the first dam (Figure 11b), the optimal expert is BRT.
However, the optimal expert in several years is the NN (2005, 2006, 2008, 2009, 2010, and
2013). Furthermore, the graph shows that the GWA does not always improve the optimal
expert, as is the case in the years 2004, 2007, 2008, 2014, and 2015. On the contrary, the GWA
per fold (Table 4) manages to improve the optimal expert or, otherwise, to achieve the same
RMSE in all cases.
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The differences observed between the weights estimated in Tables 2 and 4 show that
the optimal weights estimated on a data set may not be the optimal solution for future
years. Therefore, the error made by the meta-learner may be larger than the one made by
the optimal expert.
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6.2. Q2: What Experts Have More Weight and Why?

This subsection arose from questioning which experts were the most interesting to
construct the meta-learner and whether the similarity in the nature of the experts influence
the choice of experts for their combination.

6.2.1. Methodology

As mentioned above, in this case we do not specify any methodology because the
results obtained in previous steps were used to solve the question.

6.2.2. Results and Discussion

The comparison between RMSE and the weight assigned to each expert reveals that
the algorithm tends to give more weight to the most accurate experts (Figure 12). In the case
of dam 3, the HST is the expert with the highest weight in both devices (0.714 and 0.545).
On the other hand, experts NN and BRT have the highest weight in the case of dam 2, with
weights of 0.441 and 0.589, respectively, for devices 1 and 2. The same phenomenon is
observed in the first dam due to its higher accuracy.
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Another important point to note is the estimation of the weights of the RF expert in
the different sensors (Figure 12). It can be noted that in most cases (75%), the algorithm
disregards this expert, giving it a weight of 0 or very close to 0, as in the case of the
remaining 25%. The correlation plots between the errors of the first-level models of the
different devices are shown to seek an explanation.

The correlation between the BRT and RF errors is high in all cases, reaching its maxi-
mum in device 1 of dam 1 with 82% (Figure 13). For the rest of the devices, the correlation
varies between 54% and 76%. The remaining experts tend to have a correlation below 50%,
indicating a low direct relationship between their errors. It is worth noting the atypical
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case of the first device of dam 1, where the correlations are higher due to a failure of the
device in 2014, which increases the similarity between the errors.
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We hypothesised that the nature of the RF is very similar to that of the BRT, the latter
being significantly more accurate. Therefore, since both experts are wrong in a similar way,
their combination did not provide new information and the algorithm selected the most
accurate model. The high correlation values observed between them seem to indicate that
the hypothesis proposed could be correct.

6.3. Q3: Does GWA Improve Optimal Expert’s Precision at Extreme Values and Error?

A further aspect that we found interesting to investigate was whether the combination
of experts improved the optimal first-level model in the periods where the expert makes
a larger error. We also analysed whether this was also true for the extreme values of the
device series, the temperature, and the reservoir level.

6.3.1. Methodology

Outliers were values below quartile 1 (q1) and above quartile 3 (q3) for each selected
measurement. These values were calculated for temperatures, reservoir levels, absolute
error, and sensor series, and values outside the range were identified. Because the absolute
value has a minimum value of 0, we only looked at errors greater than q3.

The measures calculated for the analysis, in addition to the values of q1 and q3 values,
are as follows:

• %times: percentage of times the meta-learner improves the optimal expert when the
values are outside the range (x < q1 & x > q3).

• ER: percentage improvement of the meta-learner over the optimal expert when the
values are outside the range.
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Finally, it should be mentioned that, for the devices of the third dam, a previous step
had to be taken, which consisted of eliminating the trend of the series so that the external
values considered would be correct.

6.3.2. Results and Discussion

The results obtained are shown in Table 5.

Table 5. Improvement at extreme values of error, reservoir level, and temperature of the GWA over
the optimal expert. NA represents an empty value.

Dam Variable Measure q1 q3 %Times ER

1

P1
Observed −0.29 15.69 60.80% 8.68%

Absolute Error NA 1.73 72.10% 12.80%

P2
Observed 2.14 20.25 59.76% 19.70%

Absolute Error NA 0.16 92.23% 41.74%

P3
Observed 1.1 20.45 55.49% 11.79%

Absolute Error NA 1.50 85.31% 31.72%

P4
Observed 0.40 18.79 54.16% 5.35%

Absolute Error NA 1.55 80.07% 23.50%

Water Level Observed 1302 1311 56.04% 7.13%
Temperature Observed 3.00 15.00 53.26% 7.44%

2

P1
Observed −2.80 2.13 60.00% 6.40%

Absolute Error NA 0.68 77.16% 19.32%

P2
Observed −14.29 −1.13 55.90% 2.17%

Absolute Error NA 2.66 73.17% 12.33%

Water Level Observed 214.9 233.2 62.65% 10.37%
Temperature Observed 7.85 18.15 59.81% 9.25%

3

P1
Observed −1.68 1.93 50.93% 3.27%

Absolute Error NA 0.90 68.52% 8.51%

P2
Observed −1.96 2.06 50.00% 8.84%

Absolute Error NA 1.05 85.19% 27.29%

Water Level Observed 663.3 676.3 53.98% 4.32%
Temperature Observed 5.47 16.50 53.77% 4.72%

The results obtained on the absolute error stand out, where, in all cases, the meta-
learner upgrades the optimal expert in the extreme values of the error. It improves up to
92.23% of extreme values in device 2 of the first dam, with an improvement percentage of
41.74%, while its value in the total series was 16.12%. The lowest percentage is found in the
first pendulum of the third dam, where the optimal expert is improved 68.52% of the time,
with an improvement percentage of 8.51%.

On the other hand, the percentage of improvement in the extreme values of the other
variables (temperature, level, and series) is always positive, but the percentage of records
where the meta-learner is better varies between 50% and 62.5%.

The results suggest that the combination of experts beats the optimal expert when it
makes a larger error, but no direct relationship of the improvement with the extreme values
of the other variables was found.

7. Conclusions

This study successfully utilized a combination of expert models employing various
algorithms to predict the movement of three dams. The findings highlight the Greedy
Weighted Algorithm (GWA) as the most effective meta-learner for this combination. Among
the experts, Boosted Regression Trees (BRT) emerged as the optimal choice in four out of
eight devices, closely followed by Neural Networks (NNs) and the Hydrostatic–Season–
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Time (HST) model. Notably, HST demonstrated superior accuracy in dam 2, particularly
due to the limited sample size available.

We compared three different algorithms—BRT, Linear Model (LM), and GWA—to
train second-level models on dam 1 data. The GWA consistently outperformed the optimal
expert across all cases, with BRT and LM failing to improve accuracy in the first pendulum
of dam 1, possibly attributable to a device malfunction in 2014. GWA exhibited the most
promising results, achieving an improvement percentage of up to 16.12%, followed closely
by the simple linear model. These findings underscore the efficacy of simple models
capable of capturing linear relationships between prediction vectors for expert combination.
Consequently, the GWA was employed to train models for the remaining two dams.

Additionally, error distributions of experts and the GWA were scrutinized, revealing
that combining experts using the GWA not only reduces average error but also decreases
its dispersion, thereby enhancing model reliability. Section 6 highlighted the potential for
the GWA to yield larger errors than the optimal expert, attributed to variations in optimal
weights over time, as evidenced in Figure 11 of Section 6.1.2. However, Cross-Validation
offers a means to provide robust error estimates for the GWA in future data.

The weight assigned to each expert correlates closely with their accuracy, with greater
weight typically allocated to experts exhibiting lower Root-Mean-Square Error (RMSE).
Furthermore, the correlation between expert errors, serving as a measure of algorithmic
similarity, influences the chosen combination. This phenomenon is exemplified by the BRT
and RF weights, which exhibit high error correlation, with BRT proving the more accurate
of the two.

The GWA demonstrates the ability to enhance precision, particularly for data records
with higher expert error rates. Notably, significant improvement was observed, particularly
in the second device of dam 1, with an improvement percentage of 92.23%, compared to
the overall improvement percentage of 16.12%. However, no significant improvement
was observed in extreme values of the other variables analysed, such as apparatus series,
temperature, and reservoir level.

In conclusion, this research underscores the potential benefits of combining accurate
experts of varying natures using the Greedy Weighted Algorithm to enhance the precision
and reliability of first-level models. Future studies should explore clustering predictions
into groups and applying optimised weights based on each record’s group affiliation.
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Nomenclature

%times
Percentage of times the meta-learner improves the optimal expert when the values
are outside the range

βi Weight assigned to expert i
BRT Boosted Regression Trees
CV Cross Validation
D′ Matrix form of prediction vectors of the experts
e Vector of RMSEs for each expert
ER Percentage improvement of the meta-learner over the optimal expert
FEM Finite Element Method
GLM Generalised Linear Regression
GWA Greedy Weighted Algorithm
HST Hydrostatic–Seasonal–Time
k Number of experts
LM Linear Model
LSTM Long Short-Term Memory
m Number of instances of the data set
n Number of explanatory variables
NNs Neural Networks
pi Prediction vector of i
pj Vector of predictions of expert j
q1 Quartile 1
q3 Quartile 3
RF Random Forest
RMSE Root-Mean-Square Error
RMSEcv Rooted-Mean-Squared Error over Cross Validation
RMSEmodel RMSE values of one model
RMSEopt RMSE value of the optimal expert

s
Parameter controlling the number of iterations in GWA algorithm, determining the
total number of times the weights are updated

SVM Support Vector Machine
wj Vector of final weights or coefficients of expert j
weights Vector initialized with zeros, containing the weights for each expert
X Matrix of predictions of experts
ŷ Target value estimated
Y Target variable

Z
Initially zero-initialized matrix that holds the updated prediction vectors based on
the assigned weights
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