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Abstract: Microplastic pollution is a research hotspot around the world. This study investigated
the characteristics of microplastic pollution in the freshwater environments of 21 major cities across
China. Through indoor and outdoor experimental analysis, we have identified the spatial and tempo-
ral distribution characteristics of microplastic pollution in China’s freshwater environments. Our
findings indicate that the average concentration of microplastics in China’s freshwater environments
is 3502.6 n/m3. The majority of these microplastics are fibrous (42.5%), predominantly smaller
than 3 mm (28.1%), and mostly colored (64.7%). The primary chemical components of these mi-
croplastics are polyethylene (PE, 33.6%), polyvinyl chloride (PVC, 21.5%), polypropylene (PP, 16.8%),
and polystyrene (PS, 15.6%). The abundance of microplastics in China’s freshwater environments
generally tends to increase from west to east and from south to north, with the lowest concentration
found in Xining, Qinghai (1737.5 n/m3), and the highest in Jiamusi, Heilongjiang (5650.0 n/m3).
The distribution characteristics of microplastics are directly related to land use types, primarily
concentrated in areas of intense human activity, including agricultural, transport, and urban land.
Seasonal changes affect the abundance of microplastics, peaking in summer, followed by spring and
autumn, mainly due to variations in rainfall, showing a positive correlation.

Keywords: China’s freshwater environment; microplastics pollution; spatial and temporal distribu-
tion characteristics; land use types; rainfall

1. Introduction

Globally, at least 300 million tons of plastic are produced annually [1], the majority of
which enter the environment and remain for decades [2], posing severe risks to biological
safety [3]. China, as a populous and major agricultural country [4], is also one of the largest
plastic producers [5]. In 2018, China’s plastic production reached 60.4215 million tons,
accounting for 29% of the global total [6]. At the same time, China is one of the largest
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consumers of plastic [7], generating massive amounts of plastic waste yearly [8]. The
extensive use of plastic bags, fast food containers, plastic greenhouses, and agricultural
film has led to a significant “white pollution” problem [9–12].

Plastics in the environment continuously degrade into microplastics (MPs) and nanoplas-
tics (NPs) [13]. Microplastics are generally defined as plastics smaller than 5 mm [14]. The issue
of microplastic pollution has been widely reported worldwide and has become a significant en-
vironmental problem, attracting public attention [15,16]. Due to their ubiquity, persistence, and
potential ecological risks, microplastics have become a hotspot in new pollutant research [17,18].
MPs are difficult to degrade, can adsorb other pollutants, and accumulate in the food chain,
thus posing substantial hazards [19–21]. Studies have shown that microplastics can alter the
structure and function of ecosystems, ultimately affecting biodiversity [22–26].

Freshwater ecosystems include large bodies of water such as rivers and lakes, as well
as smaller bodies like ditches and ponds [27–29]. These ecosystems, closely related to
human life, boast high species diversity and provide numerous ecological services, making
them highly susceptible to microplastic pollution [30,31]. Microplastics in trash, sludge, and
wastewater can enter freshwater environments directly, while those in soil may be carried
into water bodies by runoff [32–34]. Although current research on microplastic pollution
mainly focuses on marine ecosystems, reports have identified terrestrial ecosystems as
major sources of pollution [35,36]. Freshwater environments often have a more immediate
physical proximity to human activities compared to marine environments, leading to a more
direct impact on water quality and human health through recreational and consumption
routes [37,38]. As freshwater environments are crucial pathways for microplastics to
transfer from land to sea, research on microplastics in freshwater environments is growing
and has yielded important insights. However, it remains less extensive compared to studies
focused on marine environments [39,40].

The study of microplastic pollution in freshwater ecosystems focuses on water bodies,
sediments, and biota, with factors affecting the distribution, accumulation, and migration of
microplastics being key research topics [27,30,31]. It has been demonstrated that microplas-
tics are widely distributed in China’s freshwater environments [41]. An investigation in
the Yangtze River Delta of China found the widespread presence of microplastics [42].
Even in the high-altitude area on the Tibetan Plateau, microplastics are also commonly
present in freshwater [43]. However, due to the diversity of China’s freshwater environ-
ments, the abundance of inhabiting species, varied geographical locations, and complex
socioeconomic backgrounds, data are currently widely distributed and lack systematic
integrity [44]. Moreover, China’s rapid economic growth and the significant contribution
of plastic waste highlight the urgent need for effective policies and actions to address this
issue [45]. Hence, there is an urgent need for research on microplastic pollution in China’s
freshwater environments [46].

This study selects 21 major cities across China, primarily located in the Yangtze and
Yellow River basins, encompassing most types of land use and representing China’s main
freshwater environments. By investigating and analyzing the characteristics of microplastic
pollution in these cities’ freshwater environments, this study aims to answer the following
scientific questions: (1) What are the spatial and temporal distribution characteristics of
microplastic pollution in China’s freshwater environments? (2) What are the potential
sources of microplastic pollution in China’s freshwater environments? (3) What are the
driving factors affecting the distribution of microplastic pollution in China’s freshwater
environments?

2. Materials and Methods
2.1. Sampling Locations

Our study systematically selected 21 cities across China, focusing on both urban and
suburban areas. The sampling covered both large water bodies, such as rivers and lakes,
and smaller ones like ditches and ponds, encompassing naturally occurring and man-made
sites. These cities were strategically chosen to represent a broad spectrum of land use types,
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including but not limited to agricultural, urban, and suburban areas. This diverse selection
aims to capture the varying degrees of microplastic pollution influenced by different human
activities across geographical locations.

Sampling was conducted four times in 2020, during April, June, August, and October,
with three replicates at each site, resulting in a total of 252 water samples. We conducted our
sampling during two distinct seasons: the dry season (spring and autumn) and the rainy
season (summer). This approach allowed us to capture seasonal variations in microplastic
abundance [47]. Detailed information and locations of the sampling sites are provided in
Figure 1 and in Tables S1 and S2.
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Figure 1. Spatial distribution of sampling locations across China. Each black dot represents a
sampling site.

Winter was excluded from the seasonal sampling due to the freezing of rivers in
northern China, which poses significant challenges for sampling. Additionally, the reduced
biological and human activity during this season could potentially skew the representation
of microplastic pollution levels.

2.2. Sampling Method

At each sampling site, GPS was used to determine the coordinates, and the surround-
ing environment and water body types were photographed for future reference. Surface
water (5–10 cm deep) was collected randomly in 1000 mL glass bottles after rinsing the
container with site water [48]. Each site had three replicates. The samples were then
transported to the laboratory, stored at 2 ◦C in the dark, and sealed [49].

2.3. Extraction of Microplastics from Water Samples

Currently, there is a complete set of mature methodologies for the extraction and
analysis of microplastics in water bodies [50–52]. Our experiment mainly referenced the
work of Su and Hu [48,49], as shown in Figure S1. The extraction of microplastics from
water samples involves three steps: (1) measure and record the volume of each site and
its parallel water samples. (2) Using a vacuum pump (ME1, Vacuubrand, Wertheim,
Germany) and a glass filter (XX1004700, Millipore, Boston, MA, USA), firstly filter the
water sample onto a nylon membrane filter (NY2004700, Millipore, USA) with a diameter
of 47 mm and a pore size of 20 µm, then rinse the substances on the filter membrane
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into a 250 mL conical flask with 30% (v/v) hydrogen peroxide (H1009, Sigma-Aldrich,
Saint Louis, MO, USA), and finally place it in a high-temperature shaker for digestion
(80 rpm, 65 ◦C, not exceeding 72 h) until the organic matter is completely digested and the
solution is transparent. (3) Filter the digested solution onto a nitrocellulose membrane filter
(HAWP04700, Millipore, USA) with a diameter of 47 mm and a pore size of 0.45 µm, place
it in a 6 cm diameter glass Petri dish, dry it in an oven, and seal and store it for subsequent
analysis. Due to the high amounts of impurities, to ensure the accuracy of the experiment,
each water sample needs to be filtered onto three membrane filters, resulting in a total of
756 nitrocellulose membrane filters.

2.4. Microscopic Examination and Statistical Analysis of Microplastic Samples

Microplastic samples were examined and photographed under a stereomicroscope
(E100, Nikon, Tokyo, Japan) at 30–40× magnification, adjusting as needed for microplastic
size. The ImageJ software (Version 1.8.0) was used for measuring and statistically analyzing
the microplastic sizes. Photographs were used to classify microplastics by shape, size, color,
and abundance.

2.5. Chemical Composition Identification of Microplastic Samples

In this experiment, micro-Fourier Transform Infrared Spectroscopy (µ-FTIR, Spectrum
Two, PerkinElmer, Waltham, MA, USA) was employed to identify the chemical composition
of microplastics, while a Field Emission Scanning Electron Microscope (FE-SEM, Mira
4, Tescan, Brno, Czech Republic) was used to photograph the surface structure of the
microplastics. Initially, a small number of samples were selected for identification to
gain experience, followed by the random selection of a large number of samples for
formal identification.

The µ-FTIR identification process involved transferring samples to clean nitrocellulose
membranes, placing them on the µ-FTIR sample platform, and using the OPUS software
(Version 8.8) for analysis. The FE-SEM process included preparing the samples on conduc-
tive tape, coating them with gold to prevent charging, and photographing them at varying
magnifications based on the sample type.

2.6. Data Acquisition on Population, Economy, Rainfall, and Land Use Types

The population, economic, and rainfall data used in this study were all sourced from
statistical yearbooks published by various city statistics bureaus, while the data on land use
types were derived from the results of China’s third national land survey released by the
Ministry of Natural Resources [53]. The third national land survey of China commenced in
October 2017 and was completed in 2020. The survey comprehensively utilized satellite
remote sensing images with a resolution better than 1 m to create base maps for the
investigation. The survey, lasting three years, involved 219,000 survey personnel and
compiled 295 million survey plot data points, thoroughly clarifying the status of land use
in China. Therefore, the related data used in this study are reliable and credible.

2.7. Quality Assurance

The presence of procedural contamination or air blank contamination can impact
the final results. Therefore, to minimize sample contamination during field sampling,
the following measures were taken: First, before sampling, all containers and tools were
cleaned with filtered water (distilled water filtered through a 47 mm diameter, 5 µm pore
size filter membrane) and covered or wrapped in foil to prevent contamination. Second,
gloves were worn during the sampling process. Third, samples were sealed and stored
immediately after collection to avoid direct exposure to the atmosphere as much as possible.

In the laboratory analysis process, all solutions were filtered and prepared using a
47 mm diameter, 5 µm pore size polycarbonate filter membrane (TMTP04700, Millipore,
USA). During the drying step, five open Petri dishes were used to estimate air blank
contamination within the oven, and after being placed for 72 h, no microplastic blank
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contamination was found in any of the Petri dishes, proving that the oven environment
was clean. To reduce risk, samples were still slightly covered with aluminum foil during
the drying process.

Additionally, we set up five blank controls to rigorously detect any system or experi-
mental errors. These controls were tested alongside the experimental samples in identical
conditions to ensure no contamination influenced our results. The analysis of these blank
controls showed no detectable contamination, affirming the reliability of our experimental
procedures and data.

2.8. Data Analysis

Data analysis and graphing were conducted using RStudio software (Version 4.3.2).
The data were initially subjected to a normal distribution test (Shapiro–Wilk Test) and
a homogeneity of variances test (Bartlett’s Test). If the data were normally distributed,
an ANOVA was used for intra-group variance analysis, followed by a Tukey Test for
inter-group multiple comparisons. If the data did not follow a normal distribution, a non-
parametric testing method (Kruskal–Wallis Test) was employed for intra-group variance
analysis, with Dunn’s Test and the Bonferroni correction method applied for inter-group
multiple comparisons.

The map of vegetation in China was created using ArcGIS (Version 10.2). The map
showing the distribution of sample abundance at sampling sites was generated using R
extension packages (sf, ggspatial), with map vector data sourced from DataV.GeoAtlas [54].
The other figures were produced using RStudio software (Version 4.3.2) and the correspond-
ing extension packages (tidyverse, etc.).

3. Results
3.1. Physical and Chemical Properties of Microplastic Samples

By analyzing 256 water samples through filtration and digestion, a total of 756 filter
membranes were obtained. Microplastic samples on all filter membranes were observed,
photographed, scanned, and identified, with results recorded (Figure 2). Under a stereomi-
croscope set at various magnifications, microplastics of different shapes were observed:
fibers, films, fragments, and pellets. Field emission scanning electron microscopy (FE-SEM)
revealed that the surfaces of these differently shaped microplastics were not smooth, with
most being very rough. The chemical components of the extracted microplastic samples,
identified using micro-Fourier transform infrared spectroscopy (µ-FTIR), were primarily
polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS).

Statistical analysis of all samples yielded distribution characteristics of microplastics
in terms of shape, size, and color (Table 1 and Figure 3). Table 1 presents the analysis
results of all samples. In terms of shape, fibers were the most common, accounting for
42.5% of microplastics, followed by films at 38.2%. Regarding size, microplastics smaller
than 0.3 mm predominated, comprising 28.1% of the total, with those smaller than 0.5 mm
making up 51.9%. In terms of color, transparent microplastics were most common at 35.3%,
but colored samples accounted for 64.7%, mainly white and black, indicating that most
microplastics were colored.

Table 1. Distribution characteristics of microplastics by shape, size, and color (%).

Shape Percentage Size (mm) Percentage Color Percentage

Fiber 42.5 <0.3 28.1 Transparent 35.3
Film 38.2 0.3–0.5 23.7 White 20.8

Fragment 11.5 0.5–1 17.1 Black 13.5
Pellet 7.8 1–2 13.8 Blue 11.4

2–3 10.9 Green 9.3
3–5 6.4 Red 6.1

Others 3.5
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The analysis of various sampling points (Figure 3) showed that in terms of shape,
Group A had the highest proportion of fibers at 48.2%, surpassing the other groups. How-
ever, Group C had the highest proportion of films at 46.6%. In terms of size, Group A had
the highest proportion of samples smaller than 0.5 mm at 55.4%, while Group C had a
higher proportion of samples larger than 0.5 mm, indicating a larger average size. The
distribution of colors among the three groups was relatively even, with no significant
differences (p > 0.05).

Micro-Fourier transform infrared spectroscopy (µ-FTIR) was used for infrared spec-
troscopic analysis of all samples. The statistical analysis of these results provided the
distribution characteristics of the chemical components of microplastics (Figure 4). It was
found that the chemical components of the microplastic samples were mainly polyethylene
(PE), polyvinyl chloride (PVC), polypropylene (PP), and polystyrene (PS), with PE being
the most prevalent at 33.6%, followed by PVC at 21.5%. Figure 4 also reveals that, among all
analyzed samples, there were some non-plastic components, although they only constituted
7.5% of the materials. This indicates that the experimental process extracted not only plastic
samples but also some non-plastic components. While there were minor errors, they were
negligible and did not impact the experimental results.
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3.2. Spatial Distribution Characteristics of Microplastic Abundance

Statistical analysis of all sampling results revealed the spatial distribution charac-
teristics of microplastic abundance in China’s freshwater environments, with an average
abundance of 3502.6 n/m3 (Figure 5). The lowest abundance was in Xining, Qinghai
(1737.5 n/m3), and the highest in Jiamusi, Heilongjiang (5650.0 n/m3). Microplastics were
primarily found in areas with frequent human activity, including economically developed
and agriculturally intensive regions.



Water 2024, 16, 1270 8 of 19

Water 2024, 16, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 4. Distribution characteristics of microplastics by chemical composition. The external circular 
chart displays the percentage composition of different types of microplastics identified. The internal 
pie chart illustrates the proportion of non-plastic components detected in the samples. 

3.2. Spatial Distribution Characteristics of Microplastic Abundance 
Statistical analysis of all sampling results revealed the spatial distribution character-

istics of microplastic abundance in China’s freshwater environments, with an average 
abundance of 3502.6 n/m3 (Figure 5). The lowest abundance was in Xining, Qinghai (1737.5 
n/m3), and the highest in Jiamusi, Heilongjiang (5650.0 n/m3). Microplastics were primar-
ily found in areas with frequent human activity, including economically developed and 
agriculturally intensive regions. 

 
Figure 5. Spatial distribution characteristics of microplastic abundance. The points in the figure
represent different sampling sites, with different colors indicating different groups. The varying sizes
of the points denote different abundances; the larger the area, the higher the abundance.

We categorized all the sample sites into three groups according to the abundance of
microplastics, ranging from lowest to highest (Table S3). Group A’s sampling locations are
predominantly situated in the eastern and western regions, exhibiting the lowest mean
abundance of microplastics at merely 2228.9 n/m3. The sampling sites of Group B are
chiefly located in the southern region, demonstrating a relatively higher mean abundance
of microplastics, calculated at 3346.7 n/m3. Conversely, Group C’s sampling locations are
mainly concentrated in the central and northern regions, with the highest mean abundance
of microplastics, recorded at 4932.3 n/m3. Further analytical examination revealed that the
differences between the groups are markedly significant (p < 0.001).

Subsequent regression analysis was conducted to assess the relationship between the
abundance of microplastics and geographic coordinates (Figure 6). The analysis revealed
that there is a general upward trend in microplastic abundance with increasing longitude,
evidencing a notable positive correlation (p < 0.05). Similarly, an overall upward trend
in microplastic abundance was observed with increasing latitude; however, the positive
correlation in this case was less pronounced (p > 0.05). Thus, these findings allow us to
deduce that the abundance of microplastics in China’s freshwater environments exhibits a
general increasing trend from west to east and from south to north.
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3.3. Temporal Distribution Characteristics of Microplastic Abundance

Statistical analyses of data from four sampling events elucidated the temporal distribu-
tion patterns of microplastic abundance in freshwater environments across China (Figure 7).
Overall, the abundance of microplastics demonstrated an initial increase followed by a de-
crease within the period from April to October. Among these sampling points, the month
of June recorded the peak abundance of microplastics, reaching 4776.2 n/m3. This was suc-
ceeded by August, with an abundance of 3904.8 n/m3, and subsequently October, showing
2771.4 n/m3. The lowest abundance was observed in April, with a mere 2557.1 n/m3.
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When comparing the microplastic abundances across the four sampling instances, the
variations were found to be highly significant (p < 0.001). Specifically, the comparative
analysis between adjacent sampling periods highlighted that the difference between April
and June was the most pronounced, followed by a discernibly significant difference between
August and October, while the gap between June and August was relatively minor.

In China, April typically corresponds to the spring season, and October to the autumn
season, with both June and August falling within the summer period. Conducting an
analysis based on these seasonal distinctions, the data reveal a seasonal distribution trend
for microplastic abundance in China’s freshwater environments: the highest abundance is
recorded during the summer months, averaging 4340.5 n/m3, followed by autumn with
2771.4 n/m3, and the lowest in spring at 2557.1 n/m3.

3.4. Relationship between Microplastic Distribution and Land Use Types

Figure 5 has already shown that microplastics are mainly distributed in areas with fre-
quent human activities, including economically developed and agriculturally concentrated
regions. However, the specific relationship between microplastic distribution and various
types of land use, and the extent of this relationship, has yet to be determined. This section
will further explore the relationship between the characteristics of microplastic distribution
and land use types.

Using the R extension packages (linkET and vegan), a Mantel test was conducted to
examine the relationship between the abundance of microplastics and types of land use
(Figure 8). The Mantel test, a statistical method used to assess the correlation between
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two distance matrices, helps us understand the relationship between the geographical
distribution of microplastics and various land use types. This non-parametric test is
particularly useful in ecological studies where data may not meet the assumptions required
by more traditional parametric tests.
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** for p < 0.01.

The results showed a correlation between different types of land use. There was a
relatively high correlation between urban and transport land (r = 0.65) and a considerable
correlation between agricultural land and both urban (r = 0.57) and transport land (r = 0.63).

Examining the relationship between microplastic abundance and types of land use,
with April sampling as an example, the highest correlation was found with agricultural
land, followed by transport and then urban land. The correlation p-values were all less
than 0.01, indicating a highly significant relationship. A weak correlation existed between
microplastic abundance and wetlands, with a p-value less than 0.05 but greater than 0.01.
No correlation was found between microplastic abundance and gardens, forests, grasslands,
and water area lands, with all p-values greater than 0.05. Similar correlation patterns were
observed in the analysis of samples from other months.

The Mantel test indicated that the distribution characteristics of microplastics are
directly related to types of land use, mainly concentrated in areas with frequent human
activities, including agricultural, transport, and urban land.

Further analysis through redundancy analysis (RDA) using R extension packages
(ggpubr, ggrepel, and vegan) delved into the impact of land use types on microplastic
distribution characteristics. The data were first subjected to Hellinger transformation for
dimensionality reduction and normalization to enhance reliability.

Results (Figure 9) confirmed that agricultural, transport, and urban land have the
most significant impact on microplastic abundance. This is in complete agreement with the
Mantel test results, further proving that microplastic distribution characteristics are directly
related to types of land use, primarily concentrating in areas of frequent human activity
such as agricultural, transport, and urban land.
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Figure 9. Redundancy analysis (RDA). The x-axis (RDA1) and y-axis (RDA2) represent the first and
second principal components, respectively, explaining the highest proportions of variance in the data
set. The points in the figure represent samples, with different colors indicating different groups, while
arrows originating from the origin represent land use types. The length of an arrow indicates the
strength of the impact of land use type on microplastic abundance, with longer arrows indicating a
stronger influence of that land use type. The angle between an arrow and the axes represents the
correlation between the land use type and the axes, with smaller angles indicating higher correlations.
The vertical distance from a sample point to an arrow and its extension line indicates the strength of
the impact of land use type on microplastic abundance; the closer a sample point is to an arrow, the
stronger the influence of that land use type on microplastic abundance. If a sample point is in the
same direction as an arrow, it indicates a positive correlation between microplastic abundance and
that land use type. If a sample point is in the opposite direction of an arrow, it indicates a negative
correlation between microplastic abundance and that land use type.

3.5. Relationship between Microplastic Distribution and Social and Natural Factors

Figure 7 has shown that the abundance of microplastics changes over time, with June
showing higher abundance than other months. To understand why this variation occurs, a
regression analysis was conducted between microplastic abundance and social and natural
factors (Figure 10).

The results showed a negative correlation between microplastic abundance and re-
gional GDP, indicating that economically developed areas do not necessarily have higher
microplastic abundance (Figure 10A). A positive but not significant correlation (p > 0.05)
was found between microplastic abundance and population size, suggesting that microplas-
tic abundance tends to increase with population growth (Figure 10B).

A strong positive correlation (p-value close to 0.01) was found between microplastic
abundance and regional area, indicating that microplastic abundance increases with the size
of the area (Figure 10C). Correlation analysis between microplastic abundance at different
sampling sites across various months and rainfall showed a very strong positive correlation
(p < 0.001), identifying rainfall as the most critical factor affecting microplastic distribution
(Figure 10D).
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Figure 10. Regression analysis of microplastic abundance with social and natural factors.
(A) Regression analysis of microplastic abundance with GDP. (B) Regression analysis of microplastic
abundance with regional population. (C) Regression analysis of microplastic abundance with regional
area. (D) Regression analysis of microplastic abundance with rainfall. (A–C) use the average values
of four samplings. (D) uses all the values of four samplings, including microplastic abundance
and rainfall.

4. Discussion
4.1. Spatial and Temporal Distribution Characteristics of Microplastic Pollution

This study discovered an overall trend of increasing microplastic abundance from west
to east and from south to north in China’s freshwater environments. Agricultural lands in
China are mainly concentrated in the central, eastern, and northern regions [55], which is
evident from the land type distribution shown in Figure 1. There is an inevitable correlation
between the two. When categorizing all sampling points based on microplastic abundance
from low to high, significant differences were observed between the groups (p < 0.001),
with Group C sampling points showing the highest microplastic abundance, which also
had the highest proportion of agricultural land. This precisely indicates that the possible
source of microplastics in freshwater environments is the adjacent farmlands [56,57].

Overall, the abundance of microplastics increased first and then decreased from April
to October, with the highest abundance recorded in June. This pattern corresponds with
China’s rainy season, which mainly occurs from June to August (summer). Although
Group C did not experience the highest rainfall, the accumulation of microplastics during
the dry season (spring) is expected to be higher than in the other groups.

In the dry season, microplastics accumulate on the soil surface or on roads covered
with dust [58,59]. Kang et al. conducted a study in Goyang city, South Korea, and found
that microplastic concentrations in road dust increased with the drying period, suggesting a
significant accumulation of these pollutants on road surfaces in dry conditions [60]. Their re-
search indicated that after a three-day drying period, the concentration of microplastics was
notably higher, with a significant portion originating from vehicle tires and road materials.

During the rainy season, these microplastics are transported to freshwater environ-
ments with rainwater runoff [61–63]. Koutnik et al. conducted a global analysis on the
distribution of microplastics in soil and freshwater environments, focusing on the factors
affecting their concentration and the fundamental transport processes. Their findings
indicate that microplastic concentrations in inland locations such as glaciers and urban
stormwater were significantly higher than in rivers, suggesting the importance of rainwater
runoff in microplastic transport [64].
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Furthermore, regression analysis between regional population, area size, and mi-
croplastic abundance revealed a positive correlation, though not significant. However,
there was no positive correlation between regional GDP and microplastic abundance, pos-
sibly because economically developed areas have a lower proportion of agricultural land
and pay more attention to environmental protection, thereby limiting the use of plastic
products [65–68].

4.2. Potential Sources of Microplastic Pollution

Both Mantel tests and redundancy analysis (RDA) indicate that the distribution charac-
teristics of microplastics are directly related to land use types, predominantly concentrated
in areas of frequent human activity, including agricultural, transport, and urban land.

Agricultural activities involve extensive use of plastic greenhouses and mulch films,
mostly made of polyethylene (PE) or polyvinyl chloride (PVC) [69–71]. Zhang et al. found
the agricultural plastic film usage in China in 2017 was 2,528,600 tons [72]. After agricultural
film recycling and water erosion, the plastic debris amount was estimated as 465,016 tons.
The water erosion process carried 4329 tons of plastic debris into the aquatic environment.
Studies have shown that under the combined effects of sunlight and rainfall, these plastic
films continuously break down into smaller pieces, forming microplastics that can migrate
into deeper soil layers [73]. Additionally, the long-term application of sludge and organic
fertilizers is another significant source of microplastic pollution in farmlands [74]. About
90% of microplastics in wastewater accumulate in sludge, which is often used as fertilizer
after pretreatment [75]. However, conventional sludge pretreatment methods, such as
anaerobic fermentation and heat drying, are ineffective in removing microplastics [76,77].
Thus, microplastics enter and accumulate in the soil through sludge used as fertilizer [78].
This explains why polyethylene and polyvinyl chloride are the main chemical components
of microplastic samples in this study (Figure 4). Among all sampling points, Group C had
the highest proportion of film-shaped microplastics and the largest average size, likely
related to the high proportion of agricultural land in this group.

In transportation activities, microplastics primarily originate from two sources. The
first source is road dust [79]. Su et al. found that the average abundance of microplastics in
road dust collected from typical streets in Phillip Bay, Australia, and its upstream area dur-
ing different precipitation seasons ranged from 20.6 to 529.3 items/kg [80]. Fibers (70.8%),
individuals smaller than 1 mm (41.9%), and polymers like polyester and polypropylene
(combined 26.3%) constituted the majority of microplastics. Monitoring road dust is an
economical and effective method for preliminary screening of microplastic pollution levels
from atmospheric or urban non-point source diffusion. Road dust has been proven to be an
important site where microplastics enter the environment from non-point sources [60,79].
The second major source in transportation is tire and brake wear [81]. Evangeliou et al. con-
ducted global simulations of the atmospheric transport of microplastic particles produced
by road traffic, including tire wear particles (TWPs) and brake wear particles (BWPs) [82].
Their findings reveal a high transport efficiency of these particles to remote regions, suggest-
ing a significant environmental impact far from their urban source areas. Recent research
by Griffith University in Australia analyzed the quantity and type of tire wear particles
(TWPs) in urban stormwater runoff [83]. As tires wear, they release particles of varying
sizes, from visible rubber chunks to microplastics. Annually, 6.6 million tons of TWPs are
released worldwide, becoming a significant source of microplastic pollution.

Urban areas, as major human settlements, continuously generate a vast amount of
microplastic pollution [59]. This experiment showed that fibers are the predominant shape
of microplastics in China’s freshwater environments (42.5%). Similar findings have been
reported in many studies, especially those investigating urban water bodies [84,85]. For
instance, studies were conducted in the Ottawa River basin in Canada and the Rhine River
basin in Germany, where fiber detection rates exceeded 60%, with some areas reaching up
to 100% [86,87]. Additionally, Hu et al. investigated microplastic distribution in 25 small
water bodies in the Yangtze River Delta urban agglomeration, including Shanghai and Zhe-
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jiang [48]. The results showed that microplastics were universally present, with an average
abundance of 0.5–21.5 items/liter, predominantly in fiber form, accounting for 87.8%. A
significant source of high fiber content in freshwater environments is domestic scattered
discharge, such as the washing of synthetic clothing [88,89]. Another significant source is
sewage treatment plants, where a large amount of non-removed microplastics remaining in
the effluent or sewage sludge enters the water and soil through direct discharge or sludge
reuse [90]. Currently, most sewage treatment plants (STPs) have varying processes for re-
moving fibrous microplastics and have not yet established a unified standard for effectively
treating microplastics, which is a significant challenge in addressing urban microplastic
pollution [91,92].

4.3. The Driving Role of Rainfall on the Distribution of Microplastics

In this study, regression analysis between the abundance of microplastics at all sam-
pling points and the rainfall in different months shows a very strong correlation (p < 0.001).
This indicates a positive correlation between the abundance of microplastics and the amount
of rainfall. Moreover, the detection results at all sampling points vary with the seasons,
showing significant differences in the abundance of microplastics across different months.
Combined with the multi-variate statistical analysis of human activities and meteorological
data, it was found that urbanization and precipitation significantly affect the abundance
and distribution of microplastics. It can be assumed that there is a pattern where microplas-
tics, originating from human activities including agricultural production, transportation,
and daily life, first accumulate in the soil environment during the dry season, and then
are washed away and transported by runoff during the rainy season, eventually entering
freshwater environments.

Freshwater microplastics primarily come from land-based sources, which can be
divided into point sources and non-point sources [93]. Point sources include sewage
treatment plants, plastic manufacturing companies, etc., while non-point sources include
farmlands, roads, residential buildings, and commercial areas [94]. The types and colors of
microplastics in water environments change with different land pollution sources [40,95].
In the investigation of microplastics in Italy’s Ofanto River, due to the impact of agricultural
activities in the watershed, especially the use of plastic film, black film-shaped microplastics
dominated [96]. This indirectly proves the driving role of rainfall on the distribution of
microplastics. In this study, the color distribution ratio of the three groups of samples was
relatively balanced, with no significant differences (p > 0.05). This may be due to different
pollution sources near different sampling points, showing no clear pattern.

Apart from rainfall, wind is also an important driver affecting the distribution of
microplastics [97]. This is because the density of microplastic particles is much lower than
that of soil minerals like quartz, and they are less “sticky”, making them less likely to
be captured by moisture like soil minerals [98]. Therefore, microplastics are more easily
carried away by the wind [99]. Sometimes, the wind may not be strong enough to lift
dust, but it can still carry microplastics into the air [100]. A study showed that smaller
plastic particles can travel farther in the atmosphere [101]. Microplastic particles of 10 µm
or smaller tend to fall closer to their source, but many particles of 2.5 µm or smaller can
be carried far from the source. We acknowledge recent findings by Xiao et al., which
highlight the significant role of microplastic fiber shapes in their long-distance atmospheric
transport [102]. These insights are particularly relevant to our discussion on the pathways
and mechanisms of microplastic migration. In agricultural activities, wind can promote
the degradation of plastic film into microplastics and facilitate the spread of microplastics
in the atmosphere [103]. In transportation activities, two major sources of microplastics—
road dust and tire wear—are also affected by wind in addition to being washed away by
rainfall [104].
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5. Conclusions

This study elucidated the spatial and temporal distribution characteristics and poten-
tial sources of microplastic pollution in China’s freshwater environments. It was found
that the abundance of microplastics generally increases from west to east and from south to
north, with higher abundance observed during the rainy season (summer) compared to the
dry season (spring and autumn). The main reason is that the distribution of microplastics
is directly related to land use types, primarily originating from agricultural, transport, and
urban land. The change in microplastics’ abundance with the seasons is mainly driven
by rainfall. However, the threshold of rainfall that triggers the migration of microplastics
remains unclear, which is a direction for future research [105].

This study is the first to investigate the spatial and temporal distribution characteristics
of microplastic pollution in China’s freshwater environments on a national scale, enriching
the data on microplastic pollution in China’s freshwater environments and filling a research
gap in this field. The findings of this study provide a solid scientific basis for the control
and legislation of microplastics, thereby establishing reliable monitoring schemes and
formulating effective measures to protect freshwater environments.
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