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Abstract: Deformation, as the most intuitive index, can reflect the operation status of hydraulic
structures comprehensively, and reasonable analysis of deformation behavior has important guiding
significance for structural long-term service. Currently, the health evaluation of dam deformation
behavior has attracted widespread attention and extensive research from scholars due to its great
importance. However, given that the sluice is a low-head hydraulic structure, the consequences of its
failure are easily overlooked without sufficient attention. While the influencing factors of the sluice’s
deformation are almost identical to those of a concrete dam, nonuniform deformation is the key issue
in the sluice’s case because of the uneven property of the external load and soil foundation, and
referencing the traditional deformation statistical model of a concrete dam cannot directly represent
the nonuniform deformation behavior of a sluice. In this paper, we assume that the deformation
at various positions of the sluice consist of both overall and individual effects, where overall effect
values describe the deformation response trend of the sluice structure under external loads, and
individual effect values represent the degree to which the deformation of a single point deviates from
the overall deformation. Then, the random coefficient model of panel data is introduced into the
analysis of sluice deformation to handle the unobservable overall and individual effects. Furthermore,
the maximum entropy principle is applied, both to approximate the probability distribution function
of individual effect extreme values and to determine the early warning indicators, completing the
assessment and analysis of the nonuniform deformation state. Finally, taking a project as an example,
we show that the method proposed can effectively identify the overall deformation trend of the sluice
and the deviation degree of each measuring point from the overall deformation, which provides a
novel approach for sluice deformation behavior research.

Keywords: sluice; nonuniform deformation; random coefficient model; individual effect values;
maximum entropy principle

1. Introduction

The sluice is a common hydraulic structure that plays a very important role in control-
ling flooding, reducing disaster, optimizing water resource allocation, and protecting the
ecological environment [1,2]. During service periods, the sluice’s safety will be threatened
by multiple risks such as external loads and emergencies, and it is necessary to grasp
the work state of the project through structural safety evaluation. Deformation, as the
most intuitive index, can comprehensively reflect the operation status of the sluice [3],
and therefore, reasonable analysis and evaluation of sluice deformation behavior have
important guiding significance for its long-term service [4].
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Structural deformation is an important research topic in safety evaluation areas of
hydraulic engineering at all times. Much research to date has focused on the analysis meth-
ods of dam deformation behavior [5,6], in which the statistical model is most commonly
used to establish the relationship between deformation and influencing factors, including
water level, temperature, and concrete creep [7–9]. In order to improve the accuracy and
robustness of the statistical model, scholars introduced some artificial intelligence meth-
ods [10,11], including artificial neural networks [12,13], support vector machines [14,15],
and deep learning model [16,17], into the analysis of dam deformation. However, because
it is a low-head hydraulic structure, the safety of the sluice is easily overlooked without
adequate attention [18]. Although the deformation analysis method of a concrete dam can
be referenced for the sluice, there exist some significant differences in their deformation
characteristics. For a concrete dam, the deformation of a certain measuring point or dam
section is the focus of attention because of the high water pressure. For the sluice, the
nonuniform deformation between different measuring points should attract special atten-
tion, owing to the uneven feature of ground properties and load distribution [19]. Especially
before the deformation develops stably, the sluice structure is likely to incur nonuniform
deformation, even leading to serious accidents such as waterstop failure, buildings tilting,
and concrete slab fracture [20].

In the actual project, the deformations of measuring points in different parts of the
sluice are different due to the nonuniformity of external loads and soft soil foundations,
but the overall deformation trend is still similar because of the similar service environment.
Hence, the deformation of a sluice could be divided into two parts: overall effect values
and individual effect values, where overall effect values describe the deformation response
trend of the sluice structure under external loads, and individual effect values represent the
deviation degree between the deformation of a single point and the overall deformation.
The panel data theory was first put forward by Mundlak in 1961, and has been introduced
widely into the fields of econometrics, sociology, and market research. Several studies
on dam deformation have been published using panel data theory, which paid greatest
attention to the spatial correlation as well as the determination of abnormal areas for dam
deformation. For instance, Shi et al. [21] proposed a variable intercept panel model based
on deformation zoning of ultra-high arch dams, and subsequently, two panel models
were established to distinguish the fixed and random modes of special effects of dam
deformation. Shao et al. [22] proposed a random coefficient model using panel data theory,
which can solve the serious multicollinearity problem among influence factors in the
traditional regression method. Zhao et al. [23] established a functional relationship between
the measured values and the real-time risk probability based on the estimation of robustness
of the panel model. Cui et al. [24] proposed a novel imputation model for missing concrete
dam deformation data based on their evaluation of the accuracy of the panel model. In
fact, one of the main uses of panel data theory is to handle the unobservable individual or
overall effects [25], and we can utilize panel data theory to identify the individual effects of
each measurement point, and further to evaluate the nonuniform deformation status of
the sluice.

In light of the above analysis, this article introduces the panel data theory into sluice
deformation analysis for identifying the overall effect values of sluice structure and the
individual effect values of each measurement point. Then, the maximum entropy principle
is employed to estimate the probability distribution function of individual effect extreme
values, and subsequently an analysis method for the nonuniform deformation state of
the sluice is developed. Finally, the deformation data of a sluice obtained through wire
alignment transducer offer an example to validate the approach proposed.
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2. Influencing Factors of Sluice Displacement

Referring to the statistical model of dam deformation, the influencing factors of sluice
deformation δ can be divided into three parts, including water pressure component δH,
temperature component δT, and aging component δθ , as shown in Equation (1).

δ = δH + δT + δθ (1)

2.1. Water Pressure Component

The sluice’s deformation under upstream and downstream water pressure consists of
three parts (see Figure 1): (a) horizontal sliding deformation caused by the water pressure
difference; (b) bending deformation of the structure due to movement; and (c) rotation
deformation of the foundation because of water gravity difference. The horizontal displace-
ment can be expressed as:

δH = δa
H + δb

H + δc
H (2)
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Figure 1. Schematic diagram of the water pressure component of sluice displacement.

The relationship between water pressure and water depth is quadratic, and the defor-
mation caused by water pressure can be described as the 1–4th power of the upstream and
downstream water depth, referring to the expression of the water pressure component for
concrete dam deformation. Therefore, the water pressure component of sluice deformation
can be expressed as:

δH =
4

∑
i=1

(a1ihi + a2i Hi) (3)

where h is downstream water depth, H is upstream water depth, and a1i and a2i are both
regression coefficients.

2.2. Temperature Component

The sluice’s deformation is also affected by the external environmental temperature.
Changes in external environmental temperature will cause temperature differences in
concrete structure, resulting in temperature stress and deformation. The relationship
between sluice deformation and environmental temperature is shown in Figure 2, where
Ti represents the average temperature of the previous i days. It can be seen that the sluice
deformation directly follows environmental temperature. Therefore, the environmental
temperatures within 7 days before the observation date are selected as the influencing
factors, and the temperature component can be presented as:

δT =
m

∑
i=1

biTi (4)

where bi is the regression coefficient.
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2.3. Aging Component

Due to the creep of concrete and soil foundation, the deformation of the sluice structure
exhibits a certain characteristic trend, which can be depicted as:

δθ = c1θ + c2 ln θ (5)

where θ represents the difference of observation date minus start date divided by 100, and
c1 and c2 are regression coefficients.

Thus, the statistical equations of sluice displacement can be expressed as follows:

δ =
4

∑
i=1

(a1ihi + a2i Hi) +
7

∑
i=1

biTi + c1θ + c2 ln θ + d (6)

where d is a constant.

3. An Analysis Method for Sluice Displacement Behavior Based on Panel Data
3.1. Random Coefficient Statistical Model Based on Panel Data

Due to the nonuniformity of external loads and soft soil foundations, the influencing
factors for each part of the sluice structure are different, which is the main reason for
individual effects or uneven deformation. If we use traditional statistical models to analyze
the deformation state of the sluice structure, some potential influencing factors for each
part could not be included as independent variables in the model, and we would be
unable to take into account the individual differences of measurement points. Therefore, in
addition to considering the main factors, we should consider the unmeasurable or unknown
influencing factors when modeling, so that the deformation analysis model can absorb the
influence of these uncertain factors. Since traditional deformation analysis models cannot
detect the individual effects caused by the hidden factors, panel data theory is introduced
to identify and reveal the overall features and individual characteristics among multiple
measurement points.

Panel data are two-dimensional data that include time series data and cross-sectional
data [26]. Time series data reflect the observation data of a measurement point at different
times, and cross-sectional data reflect the observation data of different measurement points
at the same time. Firstly, we studied the variable coefficient statistical model, in which the
regression coefficients of panel data do not change over time but vary cross-sectionally,
formulated as follows:

yit =
K

∑
k=1

βkixkit + uit (7)

where yit represents the panel data form of sluice deformation data, t is the ordinal number
of time data, i is the ordinal number of cross-sectional data, k is the ordinal number of



Water 2024, 16, 1287 5 of 15

explanatory variables, xkit is the explanatory variable, βki is the regression coefficient, and
uit is the random error.

The variable coefficient statistical model consists of both a fixed coefficient model and
random coefficient model. In the fixed coefficient model, βki is considered a fixed constant
and varies with individual changes. By stacking up all the deformation data, the model
formula is as follows [27]:

y1
y2
...

yN

 =


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XN




β1
β2
...

βN

+


u1
u2
...

uN

 (8)

where yi = (yi1, . . ., yiT) represents the time series of sluice deformation; βi = (β0, β1, . . . , βk)
′ is the

regression coefficients to be estimated of the i-th observation point; Xi =


x11 x12 · · · x1k
x21 x22 · · · x2k
...

...
. . .

...
xt1 xt2 · · · xtk

 is

the explanatory variables matrix of the i-th observation point, and xtk = (1, Ht, H2
t , H3

t , H4
t , ht,

· · · , θt, ln θt)′; and ui is the random error of the i-th observation point.
In a fixed coefficient model, the coefficients βi are regarded as fixed constant and

independent of each other. However, because the deformation patterns change with
measuring points, the parameters of βi can be set as random variables with a common
average value β. Swamy [26] proposed the following hypothesis:

E(γi) = 0

E(γiγ
′
j) =

{
∆ (i = j)
0 (i ̸= j)

E(xitγ
′
j) = 0

E(γiγ
′
j) =

{
σ2

i IT (i = j)
0 (i ̸= j)

(9)

Then, the random coefficients model is written with a matrix form as follows:

y = Xβ + X̃γ + u. (10)

where y =
(
y′1, . . . , y′N

)′; X = (X1, . . . , XN)
′; X̃ =

X1 0
. . .

0 XN

; β = (β0, β1, . . . , βk)
′

is the common mean value’s coefficient vector; γ =
(
γ′

1, . . . , γ′
N
)′ is the deviation between

individual coefficient and common average coefficient; and u =
(
u′

1, . . . , u′
N
)′ is the

random error vector.
Based on the random coefficient model, we can use Xβ to represent the overall de-

formation for multiple measurement points, and utilize
∼
Xγ + u to illustrate the degree to

which actual deformation of observation points deviates from overall deformation, that
is, nonuniform deformation or individual effect values of observation points. For random
effects models, it should be noted that the parameters obtained by least squares are not the
valid parameters, and generalized least squares estimation should be selected to estimate
the model coefficients.
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3.2. Maximum Entropy Principle for the Probability Distribution Function of Individual Effect
Extreme Values

To evaluate the health situation of nonuniform deformation for an observation point,
the probability distribution function of annual or monthly individual effect extreme values
should first be determined. Jaynes [28] proposed that the probability distribution with
the maximum entropy should be selected while using local information to infer the global
probability distribution, which is also called the maximum entropy principle.

For discrete random variables, the information entropy H(x) can be expressed as:

H(x) = −
n

∑
i=1

pi ln pi (11)

where pi is the probability of variable x, and H(x) is the amount of information, representing
the uncertainty of random variables.

For continuous random variables, the information entropy H(x) can be expressed as:

H(x) = −
∫
R

f (x) ln f (x)dx (12)

where f (x) is the probability distribution function of variable x, and R is the integration interval.
The maximum entropy principle is used to solve the probability distribution with

the maximum amount of information in light of the known sample data. Its objective
function is:

maxH(x) = −
∫
R

f (x) ln f (x)dx (13)

The constraint conditions are: ∫
R

f (x)dx = 1 (14)

∫
R

xi f (x)dx = µi (15)

where µi is the i-order origin moment calculated by the known sample data. Usually,
selecting a total order of 4 can describe the basic characteristics of a random variable.

To maximize the value of H(x), it is necessary to continuously adjust the form of the
probability distribution function f (x), and the following function can be established by
Lagrange multiplier method.

L = H(x) + (λ0 + 1)

∫
R

f (x)dx − 1

+
N

∑
i=1

λi

∫
R

xi f (x)dx − µi

 (16)

Then the analytical form of the probability distribution function can be solved as follows:

f (x) = exp

(
λ0 +

N

∑
i=1

λixi

)
(17)

By substituting Equation (17) into Equation (14), Equation (18) can be found.

λ0 = − ln

∫
R

exp

(
N

∑
i=1

λixi

)
dx

 (18)
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Equation (19) can be obtained by substituting Equations (17) and (18) into Equation (15).

∫
R

xi f (x)dx =
∫
R

xi exp

(
λ0 +

N

∑
j=1

λjxj

)
dx =

∫
R

xi exp

(
N
∑

j=1
λjxj

)
dx

∫
R

exp

(
N
∑

j=1
λjxj

)
dx

= µi (19)

For the convenience of numerical calculation, Equation (19) can be transformed into
Equation (20).

1 −

∫
R

xi exp

(
N
∑

j=1
λjxj

)
dx

µi
∫
R

exp

(
N
∑

j=1
λjxj

)
dx

= ri (20)

where ri is the residual under the i-order origin moment. When solving the coefficients λ0,
λ1, λ2, . . ., λN, it is necessary to minimize the residual value, and the objective function can
be expressed as:

minr =
N

∑
i=1

r2
i =

N

∑
i=1

1 −

∫
R

xi exp

(
N
∑

j=1
λjxj

)
dx

µi
∫
R

exp

(
N
∑

j=1
λjxj

)
dx

(21)

Therefore, the initial objective function, that is Equation (13), is converted to the form
of Equation (21), and the probability distribution function of random variables can be
obtained by solving Equation (21).

3.3. The Analysis Method for Nonuniform Deformation State

According to Section 3.2, the probability distribution function f (x) of individual effect
extreme values for each measurement point can be calculated based on the maximum
entropy principle, where the annual or monthly maximum and minimum values are seen
as random variables [29]. Excessive deviations from overall displacement, whether towards
downstream or upstream, are detrimental to the sluice, and thus we assume that x+α and
x−α are the early warning indicators of individual effect values. When the individual
effect values of the sluice exceed x+α and x−α , the sluice will be in a warning state, and the
corresponding exceeding or non-exceeding probability can be determined by Equation (22).

Pα =

{
P[x > x+α ] =

∫ +∞
x+α

f (x)dx

P[x < x−α ] =
∫ x−α
−∞ f (x)dx

(22)

where Pα is the probability of sluice failure, which can be determined based on the impor-
tance of the sluice, generally ranging from 1% to 5%.

Based on the early warning indicators of x+α and x−α , the following criteria can be used
to determine whether the nonuniform deformation of the sluice is normal [30].

(1) When the individual effect values meet with x−α ≤ x ≤ x+α , the nonuniform deforma-
tion is in a normal state;

(2) When the individual effect values meet with x > x+α or x < x−α , the nonuniform
deformation is in an abnormal or warning state.

In summary, an analysis flow for nonuniform deformation behavior of the sluice is
established and shown in Figure 3.
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4. Case Study
4.1. General Situation

A sluice with a reinforced concrete structure is located in Jiangsu Province, China. It
has 15 sluice holes with the size of 10 m × 6.2 m, and 5 concrete bottom slabs with the
size of 33.2 m × 18 m. Figure 4 shows the layout of observation points for horizontal
displacement set on each bottom slab, which are labeled as SP1-1, SP1-2, . . ., SP5-1, and
SP5-2, respectively. The deformation data of the sluice from 17 October 2022 to 5 April 2023
are presented in Figure 5, and the corresponding upstream water levels, downstream water
levels, and environmental temperature are shown in Figure 6.
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4.2. Random Coefficient Statistical Model Based on Panel Data
4.2.1. Fitting Results

In order to verify the fitting effect of the model proposed in Section 3.1, the deformation
data of the above-mentioned sluice will be taken as an example. Considering the general
form of the random coefficient model, the sluice deformation statistical model can be
expressed as: 

y1
y2
...

yN

 =


X1
X2
...

XN

β +


X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · XN




γ1
γ2
...

γN

+


u1
u2
...

uN

 (23)

Firstly, each explanatory variable is normalized before modeling. Then it is possible to
fit all measurement points at once based on Equation (23), and Figure 7 shows the fitted
values of the random coefficient model and measured values for each measurement point.
In addition, the fitting effects of the random coefficient model and stepwise regression
method are compared by correlation coefficients R and standard deviation values S, as
shown in Table 1. From the parameters R and S in Table 1, the results calculated by the
random coefficient model are almost identical to the results calculated by the traditional
stepwise regression model for each single point, with a very high fitting accuracy.
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Table 1. The parameters R and S of the random coefficient model and stepwise regression method.

Random Coefficients Model Stepwise Regression Method

Points R S Points R S Points R S Points R S

SP 1-1 0.974 0.108 SP 3-2 0.980 0.185 SP 1-1 0.974 0.108 SP 3-2 0.980 0.184
SP 1-2 0.980 0.127 SP 4-1 0.984 0.199 SP 1-2 0.981 0.127 SP 4-1 0.984 0.199
SP 2-1 0.970 0.206 SP 4-2 0.986 0.178 SP 2-1 0.970 0.206 SP 4-2 0.986 0.178
SP 2-2 0.986 0.186 SP 5-1 0.980 0.128 SP 2-2 0.986 0.186 SP 5-1 0.980 0.127
SP 3-1 0.985 0.179 SP 5-2 0.979 0.128 SP 3-1 0.985 0.179 SP 5-2 0.979 0.127

4.2.2. Identification of Overall Effect Values and Individual Effect Values

As shown by the high fitting accuracy in Section 4.2.1, it is feasible to use the random
coefficient model to extract the overall effect values and individual effect values of sluice
deformation. The common mean coefficients and the corresponding test statistics can be es-
timated by generalized least squares, as shown in Table 2. According to Table 2, the overall
test result, i.e., Wald chi (12) = 209.75, and the significance test result, i.e., Prob > chi2 = 0.0,
mean that using a random coefficient model to describe the sluice’s deformation is reason-
able. The coefficients of h3, h4, and H3 are all equal to 0, as hey are completely collinear
with other explanatory variables of water pressure components. Therefore, h3, h4, and H3

can be removed from the model.

Table 2. Results of common mean coefficients.

Random-Coefficients Model

R-sq: Overall = 0.986 Wald chi2(12) = 209.75 Prob > chi2 = 0.00

var Coefficient Std. Err. z p > z [95% Conf. Interval]

h −20.63 8.85 −2.33 0.020 −37.97 −3.29
h2 1.40 0.60 2.34 0.019 0.23 2.57
h3 0.00 (omitted)
h4 0.00 (omitted)
H 833.66 108.05 7.72 0.000 621.89 1045.43
H2 −50.00 6.49 −7.71 0.000 −62.71 −37.29
H3 0.00 (omitted)
H4 0.053 0.007 7.70 0.000 0.04 0.07
T1 0.035 0.004 8.02 0.000 0.03 0.04
T2 0.018 0.002 7.41 0.000 0.01 0.02
T3 0.012 0.002 5.10 0.000 0.01 0.02
T4 0.021 0.002 9.04 0.000 0.02 0.03
T5 0.013 0.002 5.43 0.000 0.01 0.02
T6 0.010 0.002 4.86 0.000 0.01 0.01
T7 0.015 0.002 6.64 0.000 0.01 0.02
θ −0.445 0.173 −2.57 0.010 −0.78 −0.11

ln θ −0.006 0.033 −0.17 0.863 −0.07 0.06
d −3.200 0.258 −12.4 0 −3.71 −2.69

The overall effect values of sluice deformation can be obtained by substituting the
common mean coefficients in Table 2 into Equation (6), and the individual effect values of
each measurement point can be calculated by subtracting the overall effect values from
the measured value, which represents the degree of deviation from the overall deforma-
tion. Figure 8 displays the values of overall effect and individual effect for the sluice’s
deformation. It can be seen that for each measuring point, the overall effect values are
fixed and do not vary with the position of the measuring point, and the individual effect
values are different from each other due to the nonuniformity of the external load, soil
foundation, and other factors. In addition, individual effect values represent a pattern
with varying measurement point positions. The individual effect values of measurement
points on the 1# and 5# slabs, located on both sides of the sluice, are generally positive,
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implying that individual deformation shows a tendency towards upstream relative to
overall deformation, due to the constraint effect at the bank wall. The individual effect
values of measurement points on the 2–4# slabs, located in the middle of the channel,
are almost negative, indicating that individual deformation shows a tendency towards
downstream relative to overall deformation, because the deformations of measurement
points are mainly affected by the water pressure. This phenomenon is consistent with the
engineering practice, proving that it is rational to distinguish the overall and individual
effects of the sluice by random coefficient model.
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4.3. The Probability Distribution Function of Individual Effect Extreme Values

In Figure 8, it can be seen that the individual effect values of each measurement point
are different. In order to evaluate the health status of nonuniform deformation, we firstly
select the individual effect extreme values for each month, including the maximum and
minimum values, and then calculate the probability distribution function of the extreme
values for each measurement point separately. The coefficients λ0, λ1, λ2, λ3, and λ4 of the
probability distribution function for extreme values are shown in Tables 3 and 4, and the
corresponding cumulative probability curves are shown in Figure 9. It can be observed that
the probability distributions are different and unique for each measurement point.

Table 3. The probability distribution function coefficients of the monthly minimum for each measure-
ment point.

Coefficient SP1-1 SP1-2 SP2-1 SP2-2 SP3-1 SP3-2 SP4-1 SP4-2 SP5-1 SP5-2

λ0 −0.59 −0.22 −0.02 −4.43 −2.50 −4.73 −3.75 −10.58 0.65 0.86
λ1 2.90 2.71 −3.35 −17.96 −8.88 −47.72 −10.45 −29.75 2.34 2.67
λ2 2.51 0.71 −1.87 −33.56 −20.50 −149.51 −12.97 −22.07 −3.61 −17.26
λ3 2.47 6.11 10.05 −32.01 −34.38 −199.97 −11.73 −2.24 −11.71 −30.1
λ4 −19.89 −29.66 −8.64 −11.62 −20.49 −100.20 −5.08 0.99 −109.19 −25.23

Table 4. The probability distribution function coefficients of the monthly maximum for each measure-
ment point.

Coefficient SP1−1 SP1−2 SP2−1 SP2−2 SP3−1 SP3−2 SP4−1 SP4−2 SP5−1 SP5−2

λ0 −2.89 −7.96 −0.92 −0.15 −0.11 0.35 0.04 0.11 −1.11 −1.51
λ1 5.96 12.94 −0.05 −0.05 1.23 1.39 0.20 −1.13 2.44 7.17
λ2 −7.10 6.02 −0.33 −4.06 −2.31 −2.02 −4.34 −7.48 −3.81 −6.85
λ3 8.18 −2.09 2.01 −5.05 −5.95 −4.43 −5.07 −10.09 9.92 −0.05
λ4 −3.85 −9.79 −1.28 −1.92 −3.69 −30.63 −1.79 −5.62 −7.86 0.19
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4.4. Determination of Early Warning Indicators

Before determining the early warning indicators, we should first select the significance
level Pα, that is, the possibility of a small-probability event occurring. In statistics, a
small-probability event can be considered an almost impossible event, and if it occurs,
this indicates that the deformation of the sluice is in an abnormal or warning state. The
significance level is generally taken as 0.01, referring to the literature [30], and then the
early warning indicators can be obtained for each measurement point, as shown in Table 5.
Based on the overall effect values, we can determine the normal deformation range for each
measurement point; for instance, the normal deformation ranges of points SP3-2 and SP5-2
are shown in Figure 10. When the measured values are in the normal range, it indicates
that the nonuniform deformation of measurement points is in a normal state, which can
assist in the judgment of the uneven deformation state of the sluice structure.

Table 5. Early warning indicator of individual effect values for each measurement point.

Measuring Point SP1-1 SP1-2 SP2-1 SP2-2 SP3-1 SP3-2 SP4-1 SP4-2 SP5-1 SP5-2

Lower limit/mm −0.417 −0.363 −0.580 −1.389 −1.084 −0.838 −1.399 −1.451 −0.335 −0.457
Upper limit/mm 1.504 1.020 1.657 0.521 0.599 0.479 0.536 0.368 1.141 1.190
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5. Conclusions

Consideration of the sluice structure should focus on the issue of nonuniform deforma-
tion due to the uneven property of soft soil foundation. When analyzing the deformation
state of a sluice, the traditional methods could not take the nonuniform deformation into
account, which is a potential risk in structural safety evaluation. From the perspective of
nonuniform deformation, this article proposes a method to determine the deformation
behavior of sluice structures. Firstly, we divide the deformation of sluice structures into
overall effect and individual effect based on their homogeneity and heterogeneity char-
acteristics, describing the overall deformation trend of the sluice structure and deviation
degree between the deformation of single points and the overall deformation separately.
Then, in order to explore the influence of hidden factors, panel data theory is introduced
to identify the values of overall and individual effects for sluice deformation. Finally, the
probability distribution function of individual effect values at each measurement point can
be solved based on the maximum entropy principle, and furthermore, the deformation
warning indicators for each measurement point can be determined, which provides a novel
approach to judging the deformation status of sluice structures.

It should be noted that only the sluice structure is investigated in this study, and future
research should consider the potential effects of uneven deformation on other hydraulic
structures such as earth dams, embankments, and pump station buildings more carefully.

Author Contributions: Conceptualization, B.L. and Z.M.; Data curation, X.L. (Xiang Luo); Formal
analysis, B.L. and Z.M.; Funding acquisition, Z.S. and F.M.; Investigation, D.L.; Methodology, B.L.
and Z.M.; Project administration, F.M.; Resources, F.M. and B.L.; Software, W.Y.; Supervision, B.L.;
Validation, B.L., Z.M. and Z.S.; Visualization, X.L. (Xing Li); Writing—original draft, B.L. and Z.M.;
Writing—review and editing, B.L. and Z.M. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the Modern Multimodal Transportation Laboratory Open
Fund Project, grant number MTF2023010, the Yellow River Water Science Research Joint Fund, grant
number U2243244, and the National Natural Science Foundation of China, grant number 52179130
and 52209165.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Liang, J.; Li, Z.; Ji, Q.; Lu, W.; Cao, Q.; Ahmed, E. Global Sensitivity Analysis of The Deformation Behavior of Sluice Chamber

Structure. Structures 2021, 34, 4682–4693. [CrossRef]
2. Gu, Z.; Cao, X.; Liu, G.; Lu, W. Optimizing Operation Rules of Sluices in River Networks Based on Knowledge-driven and

Data-driven Mechanism. Water Resour. Manag. 2014, 28, 3455–3469. [CrossRef]
3. Peng, J.; Xie, W.; Wu, Y.; Sun, X.; Zhang, C.; Gu, H.; Zhu, M.; Zheng, S. Prediction for the Sluice Deformation Based on

SOA-LSTM-Weighted Markov Model. Water 2023, 15, 3724. [CrossRef]
4. Zhang, G.; Yu, C.; Guo, G.; Li, L.; Zhao, Y.; Li, H.; Gong, Y. Monitoring Sluice Health in Vibration by Monocular Digital

Photography and a Measurement Robot. KSCE J. Civ. Eng. 2019, 23, 2666–2678. [CrossRef]

https://doi.org/10.1016/j.istruc.2021.10.072
https://doi.org/10.1007/s11269-014-0679-y
https://doi.org/10.3390/w15213724
https://doi.org/10.1007/s12205-019-0869-5


Water 2024, 16, 1287 15 of 15

5. Xue, B.; Zhang, S.; Fang, H.; Li, M.; Shi, M. Design Method of Polymer Cut-off Wall Density for Earth Dams Based on Multi-
Objective Optimization. Structures 2023, 53, 199–204. [CrossRef]

6. Xu, W.; Niu, X.; Zhu, Y. Deformation Behavior and Damage Evaluation of Fly Ash-Slag Based Geopolymer Concrete Under Cyclic
Tension. J. Build. Eng. 2024, 86, 108664. [CrossRef]

7. Li, F.; Wang, Z.; Liu, G.; Fu, C.; Wang, J. Hydrostatic Seasonal State Model for Monitoring Data Analysis of Concrete Dams. Struct.
Infrastruct. Eng. 2015, 11, 1616–1631. [CrossRef]

8. Gamse, S.; Oberguggenberger, M. Assessment of Long-term Coordinate Time Series Using Hydrostatic-Season-Time Model for
Rock-Fill Embankment Dam. Struct. Control Health Monit. 2017, 24, e1859. [CrossRef]

9. Song, J.; Zhang, S.; Chen, Y. Long-term Deformation Safety Evaluation Method of Concrete Dams Based on The Time-Varying
Stability of Concrete Material. Mater. Today Commun. 2023, 36, 106468. [CrossRef]

10. Salazar, F.; Morán, R.; Toledo, M.; Oñate, E. Data-Based Models for The Prediction of Dam Behaviour: A Review and Some
Methodological Considerations. Arch. Comput. Methods Eng. 2017, 24, 1–21. [CrossRef]

11. Ma, L.; Ma, F.; Cao, W.; Lou, B.; Luo, X.; Li, Q.; Hao, X. A Multi-Strategy Improved Sooty Tern Optimization Algorithm for
Concrete Dam Parameter Inversion. Water 2024, 16, 119. [CrossRef]

12. Cao, M.; Qiao, P.; Ren, Q. Improved Hybrid Wavelet Neural Network Methodology for Time-Varying Behavior Prediction of
Engineering Structures. Neural Comput. Appl. 2009, 18, 821–832. [CrossRef]

13. Mata, J. Interpretation of Concrete Dam Behaviour with Artificial Neural Network and Multiple Linear Regression Models. Eng.
Struct. 2011, 33, 903–910. [CrossRef]
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