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Abstract: Against the backdrop of increasingly severe global climate change, the risk of rainstorm-
induced waterlogging has become the primary threat to the safety of historic and cultural districts
worldwide. This paper focuses on the historic and cultural districts of Beijing, China, and explores
techniques and methods for identifying extreme rainstorm warnings in cultural heritage areas.
Refined warning and forecasting have become important non-engineering measures to enhance
these districts’ waterlogging prevention control and emergency management capabilities. This paper
constructs a rainstorm-induced waterlogging risk warning model tailored for Beijing’s historical and
cultural districts. This model system encompasses three sets of models: a building waterlogging
early-warning model, a road waterlogging early-warning model, and a public evacuation early-
warning model. During the construction of the model, the core concepts and determination methods
of “1 h rainfall intensity water logging index” and “the waterlogging risk index in historical and
cultural districts” were proposed. The construction and application of the three models take into full
account the correlation between rainfall intensity and rainwater accumulation, while incorporating
the characteristics of flood resilience in buildings, roads, and the society in districts. This allows for a
precise grading of warning levels, leading to the formulation of corresponding warning response
measures. Empirical tests have shown that the construction method proposed in this paper is
reliable. The innovative results not only provide a new perspective and method for the early-warning
of rainstorm-induced waterlogging, but also offer scientific support for emergency planning and
response in historical and cultural districts.

Keywords: early-warning model; rainstorm; waterlogging; cultural heritage sites; historic and
cultural districts; emergency management; flood resilience

1. Introduction

Historic and cultural districts are areas with rich cultural relics, concentrated historic
buildings, and the ability to reflect traditional patterns and historic features in a relatively
intact and authentic manner at a certain scale. In the context of global climate change,
extreme rainfall events are becoming increasingly frequent, and rainstorm disasters and
urban waterlogging have become the primary risk threatening the safety of historic and
cultural districts [1–3]. According to incomplete statistics, in just one year, 2021, there were
223 such events that occurred worldwide, far exceeding the number of rainstorm disasters
in the past decade. Flood disasters in historic and cultural districts can be classified into
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seven types: breaches, overflow, waterlogging, flood routing and storage, flash floods,
storm surges, and tsunamis. Waterlogging disaster refers to a disaster caused by excessive
or continuous precipitation that exceeds the urban drainage capacity, resulting in the
accumulation of water within the city that cannot be drained in a timely manner. Cultural
heritage sites located in plain areas are mostly concentrated in the old urban areas of historic
and cultural districts, characterized by a long history, dense population, high development
intensity, low-lying land, and poor regional drainage, making them highly susceptible to
widespread water accumulation and subsequent internal waterlogging risks [4]. These
risks may cause irreversible local damage or destruction to cultural heritage sites. Once the
tangible cultural heritage is damaged, it is difficult to restore, and the losses in terms of
historic, cultural, and economic value resulting from rainstorm-induced waterlogging are
incalculable. Urban waterlogging has become a serious threat to the security of historic
and cultural heritage sites worldwide [5].

In the past two decades, research and practices in international disaster manage-
ment have gradually shifted toward proactive disaster risk management, moving away
from traditional passive response approaches [6]. Regarding strategy selection, there is
an increasing emphasis on integrating structural and non-structural measures to over-
come the limitations of excessive reliance on structural measures and neglect of non-
structural measures [7]. In terms of governance models, there has been a shift from the
traditional top-down approach dominated by historic urban management to a more flexi-
ble and grassroots-oriented governance mechanism for historic and cultural districts [8].
This evolution not only reflects the gradual maturation of the theoretical framework of
disaster management theory, but also provides crucial insights for enhancing the effec-
tiveness of emergency control and management against waterlogging in historical and
cultural districts [9].

Considering the severity of the current situation, waterlogging prevention control has
become a critical and urgent task. In particular, under the constraints of spatial control sys-
tems in historic and cultural districts, non-engineering measures such as refined warning
systems will play a crucial role [10]. Accurate early-warning systems serve as a vital tool,
providing indispensable objective insights into potential disaster-prone regions for effective
emergency preparedness and response [11]. Furthermore, they play a pivotal role in ensur-
ing the seamless and safe execution of rescue and emergency operations within historical
and cultural districts, thus safeguarding their integrity and safety. Therefore, research and
practices in refined warning systems for rainstorm-induced waterlogging should be highly
valuable [12]. Scientific methods and technological means should be employed to enhance
the accuracy and timeliness of warnings, providing strong decision-making support for
waterlogging prevention control efforts in historic and cultural districts [13].

Certain research achievements have accumulated in the field of rainstorm-induced
waterlogging risk warning [14]. These studies mainly focus on constructing models
and consider core elements such as meteorological rainfall warnings [15,16], warning
indicators [17,18], waterlogging depths [19], warning thresholds [20,21], and emergency
plans [22], demonstrating a certain level of practicality. However, when such early-warning
models are applied to small-scale areas such as historic and cultural districts, issues arise,
including imprecise guidance and underestimated risk assessments. The root causes of
the issues can be primarily attributed to the following four aspects: Firstly, the assessment
methods of early-warning models possess limitations. Some research outcomes rely on
indicator system approaches to evaluate flood risk levels [23]. However, this method strug-
gles to accurately capture the specific flood risk differences among various hazard-affected
bodies within urban districts, such as buildings, roads, and the public. Consequently, the
classification of warning levels tends to be overly general and even underestimates the
actual risks. Therefore, independent assessments and warning systems tailored for critical
hazard-affected bodies like buildings, roads, and the public are imperative to enhance
the precision and effectiveness of early warnings. Secondly, the determination methods
for the relationship between meteorological forecasts and urban waterlogging responses
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require further optimization. Current monitoring-reliant warning technologies are subject
to uncertainties and lags, which undermine the accuracy and timeliness of early warn-
ings [24]. Hence, there is a need to explore warning methods that are independent of
monitoring data. Thirdly, the evaluation of waterlogging risks for different hazard-affected
bodies within districts, including buildings, roads, and the public, remains inadequate.
Compared to traditional risk assessment methods, flood resilience evaluation offers a more
effective reflection of the actual risks posed by rainstorm-induced waterlogging [25–28].
Therefore, it is crucial to strengthen the assessment and research on the flood resilience of
various hazard-affected bodies to provide a scientific basis for developing more targeted
waterlogging prevention and emergency response measures [29,30]. Lastly, the issue of
bridging the gap between early-warning results and emergency responses is frequently
overlooked. Given the pre-judgment of warning levels, there is an urgent need to formu-
late both technical and non-technical emergency response measures. Consequently, it is
essential to strengthen the linkage between early warnings and emergency responses to
ensure prompt and effective implementation of appropriate emergency measures following
the issuance of warnings, thereby minimizing disaster losses.

Based on the above research requirements, the objectives of this paper are as fol-
lows: (1) To propose a method for constructing a fine-grained model for early warning
of rainstorm-induced waterlogging in historical and cultural districts, aiming to estab-
lish three sets of fine-grained models, including the building waterlogging early-warning
model, road waterlogging early-warning model, and public evacuation early-warning
model; (2) To introduce the concept of 1 h rainfall intensity water logging index, aiming
to explore a reliable method for determining the response relationship between rainfall
intensity and rainwater accumulation based on model simulation and clustering algorithms
without relying on monitoring data; (3) To put forward the concepts of building water-
logging risk index, road waterlogging risk index, and public evacuation index, aiming
to determine the values of the three indices by assessing the flood resilience of buildings,
roads, and communities in the blocks; and (4) To develop early-warning response measures
for building waterlogging, road waterlogging, and public evacuation in Beijing’s historical
and cultural districts based on the four-level warning grades for buildings, roads, and the
public. The research results of this paper not only contribute to improving the accuracy and
timeliness of early warnings, but also effectively address the issue of how to strengthen the
linkage between early warning, emergency management, and meteorological forecasting
work. This will provide more scientific decision support for the preparation of emergency
response plans and pre-disaster emergency preparations in historical and cultural districts,
providing different levels of warning information for waterlogging control work, thereby
guiding the efficient implementation of emergency rescue and evacuation efforts.

2. Materials and Methods
2.1. Study Area

The research work of this paper was conducted in the historical and cultural districts
of Beijing, China. These districts hold unique heritage value and are an indispensable
part of Beijing’s protection system for its historic and cultural heritage. They embody the
historical memory and cultural essence of Beijing, playing a crucial role in bridging the
past with the future, preserving traditions, and promoting innovation. Over the past three
decades, Beijing has actively delineated and protected its historic and cultural districts,
establishing 49 such districts by the end of 2021. These regions, located in the urban area of
Beijing, experience a temperate monsoon climate with distinct seasons, hot summers with
abundant rainfall, and a relatively high frequency of localized heavy rainstorms. Local
climatic conditions can lead to short-duration, high-intensity, small-scale localized sudden
rainstorms, which can easily cause localized waterlogging. Therefore, selecting Beijing’s
historic and cultural districts as the research focus offers a highly representative case and
provides valuable insights into the practical application of refined early-warning models
for rainstorm-induced waterlogging across diverse urban areas.



Water 2024, 16, 1290 4 of 19

2.2. Construction Method of a Refined Early-Warning Model for Rainstorm-Induced Waterlogging
in the Historic and Cultural Districts of Beijing

The refined early-warning model for rainstorm-induced waterlogging in Beijing’s
historic and cultural districts is composed of three core modules: the building waterlogging
early-warning model, the road waterlogging early-warning model, and the public evacua-
tion early-warning model, as detailed in Figure 1, outlining the technical approach to model
construction. These three sets of models address the diverse warning needs for buildings,
roads, and public evacuations by thoroughly analyzing and characterizing the complex
response relationships among building waterlogging risk, road waterlogging risk, and pub-
lic evacuation and rainfall intensity forecasts. Through the simulation of hydrological and
hydrodynamic models, the correlation between rainfall intensity and the depth of surface
water accumulation in the district is revealed. Currently, models applied to flood simula-
tion both domestically and internationally include SWMM, HEC-RAS, PCSWMM, MIKE,
InfoWorks ICM, etc. After establishing the model network, high-precision DEM raster data
of the study area, as well as vector data of building layers, road layers, river layers, water-
way layers, and greenbelt layers, are imported into the model in sequence [31,32]. Given
that the surface runoff time in Beijing’s historic and cultural districts is generally less than
1 h, in this study, 2 h short-duration design rainfall data with return periods of 100 years,
200 years, 500 years, and 1000 years were selected as the input parameters for simulating
rainstorm events. Based on this correlation, a key indicator, namely, 1 h rainfall intensity
water logging index, was defined. By assessing the flood resilience of disaster-bearing
bodies within the historical and cultural district, significant differences in waterlogging risk
among various disaster-bearing bodies are revealed. The three critical indicators required in
the model, namely, the building waterlogging risk index, the road waterlogging risk index,
and the public evacuation index, are all negatively correlated with their corresponding
flood resilience assessment levels. The three sets of early-warning models are logically
interconnected and functionally complementary, collectively constructing the complete
warning mechanism of the refined early-warning model for rainstorm-induced waterlog-
ging in Beijing’s historic and cultural districts. Detailed discussions will follow from the
perspectives of index determination methods and model construction methods.
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2.2.1. Determination Method for the 1 h Rainfall Intensity Water Logging Index in Beijing’s
Historic and Cultural Districts

The 1 h rainfall intensity serves as a frequently utilized parameter in meteorological
forecasts. Linking the hourly rainfall intensity with the characteristics of rainstorm-induced
waterlogging in the district can effectively inform warning efforts for rainstorm-induced
waterlogging risk in Beijing’s historic and cultural districts. Hence, this paper introduces
the concept and determination method of the 1 h rainfall intensity water logging index.
Utilizing the unsupervised learning algorithm of K-Means clustering, a quantitative as-
sessment of the response relationship between 1 h rainfall intensity and regional water
accumulation in the area was conducted. It should be noted that the xR value is released by
the meteorological department. During early warning, the 1 h rainfall intensity is known
data, and its prediction method and related theories are beyond the scope of this paper.

The segmentation function of 1 h rainfall intensity water logging index f (xR) in
historic and cultural districts is shown in formula (1), where

f (xR) =


1, xR < xR1
2, xR1 ≤ xR < xR2
3, xR ≥ xR2

(1)

where f (xR) is 1 h rainfall intensity water logging index; xR is the forecasted value of the
1 h rainfall intensity by the meteorological department (mm/h); xR1 is the upper threshold
of 1 h rainfall intensity corresponding to low risk of waterlogging (mm/h); xR2 is the upper
threshold of 1 h rainfall intensity corresponding to moderate risk of waterlogging (mm/h).

2.2.2. Determination Method for the Waterlogging Risk Index in Beijing’s Historic and
Cultural Districts

The waterlogging risk index in historic and cultural districts comprises three indi-
cators: the building waterlogging risk index, the road waterlogging risk index, and the
public evacuation index. These indicators are used to quantitatively assess the resis-
tance, absorption, adaptability, and recovery capabilities of buildings, roads, and the
public in the districts during waterlogging risk, which are represented by piecewise
functions, respectively.

In this paper, flood resilience refers to the comprehensive response capability demon-
strated by historical and cultural districts when encountering rainstorm waterlogging
disasters, including resistance, coping, absorption, adaptation, and recovery. The resilience
indicators encompass multiple dimensions such as physical resilience, organizational
resilience, social resilience, and economic resilience [33–37].

Based on the method for calculating flood resilience in historic and cultural districts,
the mathematical relationships between the flood resilience of buildings, roads, and so-
ciety and characteristic parameters such as waterlogging depth and flow velocity can
be determined. After cluster analysis, resilience levels can be obtained. The segmented
values of these resilience levels are variable and should be dynamically adjusted based on
each district’s actual resilience calculation results. The higher the flood resilience levels of
buildings, roads, and society in a district are, the lower the corresponding waterlogging
risk, thus revealing a negative correlation between flood resilience levels and waterlogging
risk indices. This paper divides flood resilience into three levels, namely, high, medium,
and low, corresponding to risk indices of 1, 2, and 3, respectively.

The segmentation functions for the building waterlogging risk index f (ResBD), road
waterlogging risk index f (ResRD), and public evacuation index f (ResOC) are represented
by Equations (2)–(4), respectively. These equations depict the potential risk levels that
buildings, roads, and the public may face during rainstorm-induced waterlogging.

f (ResBD) =


1, ResBD ≥ ResBD1
2, ResBD2 ≤ ResBD < ResBD1
3, ResBD < ResBD2

(2)
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f (ResRD) =


1, ResRD ≥ ResRD1
2, ResRD2 ≤ ResRD < ResRD1
3, ResRD < ResRD2

(3)

f (ResOC) =


1, ResOC ≥ ResOC1
2, ResOC2 ≤ ResOC < ResOC1
3, ResOC < ResOC2

(4)

where f (ResBD) is the building waterlogging risk index; ResBD1 is the lower threshold
value corresponding to high flood resilience of district buildings (dimensionless); ResBD2 is
the lower threshold value corresponding to medium flood resilience of district buildings
(dimensionless); f (ResRD) is the road waterlogging risk index; ResRD1 is the lower thresh-
old value corresponding to high flood resilience of district roads (dimensionless); ResRD2
is the lower threshold value corresponding to medium flood resilience of district roads
(dimensionless); f (ResOC) is the public evacuation index of the district; ResOC1 is the lower
threshold value corresponding to the high flood resilience of the district society (dimen-
sionless); ResOC2 is the lower threshold value corresponding to medium flood resilience of
the district society (dimensionless).

2.2.3. Construction Method for a Waterlogging Early-Warning Model in Beijing’s Historic
and Cultural Districts

To ensure consistency with the rainstorm warning level system issued by the meteoro-
logical department and district-level flood warning systems in Beijing, the waterlogging
early-warning models for buildings, roads, and public evacuation in the district use a
standardized four-level warning system, represented by blue, yellow, orange, and red
colors. This standardized warning system not only improves the efficiency and accuracy of
responding to rainstorms and waterlogging disasters but also helps emergency response
departments, rescue personnel, and the general public understand and promptly respond
to warning information. Using intuitive color coding allows for clear differentiation of
potential emergency response needs for different buildings, roads, and evacuation areas,
ensuring the prompt implementation of effective measures to safeguard people’s lives and
property to the greatest extent possible.

The building waterlogging early-warning model is denoted as f (WBD), the road
waterlogging early-warning model is denoted as f (WRD), and the public evacuation early-
warning model is denoted as f (WOC). These early-warning models comprehensively reflect
the coupling relationships between hourly rainfall intensity and building waterlogging
risk, road waterlogging risk, and public evacuation. Mathematically, they are expressed
as the product of 1 h rainfall intensity water logging index and the building waterlogging
risk index, road waterlogging risk index, and public evacuation index. The mathematical
expressions for the function models are given by Equations (5)–(7).

f (WBD) = f (xR)× f (ResBD) =


Blue Alert, WBD = 1
Yellow Alert, WBD = 2
Orange Alert, WBD ∈ [3, 4]
Red Alert, WBD ∈ [6, 9]

(5)

f (WRD) = f (xR)× f (ResRD) =


Blue Alert, WRD = 1
Yellow Alert, WRD = 2
Orange Alert, WRD ∈ [3, 4]
Red Alert, WRD ∈ [6, 9]

(6)

f (WOC) = f (xR)× f (ResOC) =


Blue Alert, WOC = 1
Yellow Alert, WOC = 2
Orange Alert, WOC ∈ [3, 4]
Red Alert, WOC ∈ [6, 9]

(7)
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where f (WBD) is the building waterlogging early-warning model for the district; f (WRD) is
the road waterlogging early-warning model for the district; f (WOC) is the public evacuation
early-warning model for the district; WBD is the numerical value obtained from the product
of 1 h rainfall intensity water logging index f (xR) and the building waterlogging risk index
f (ResBD); WRD is the numerical value obtained from the product of 1 h rainfall intensity
water logging index f (xR) and the road waterlogging risk index f (ResRD); WOC is the
numerical value obtained from the product of 1 h rainfall intensity water logging index
f (xR) and the public evacuation index f (ResOC).

3. Results and Discussion

In this paper, the InfoWorks ICM software(9.5.5.19020) was utilized to establish a
simulation model for rainstorm-induced waterlogging in Beijing’s historic and cultural
districts [38,39]. Using the Beijing II region rainfall intensity calculation formula, a 120 min
rainfall process was inferred, and the maximum rainfall in each period with a time step of
5 min was accurately distributed [40–42].

The model to be validated in this study is the overland flow model. Model validation
was performed using actual rainfall data from 9 August 2020, with a rainfall time step of
5 min. The model’s accuracy was assessed through a comparative analysis between the
simulation results and the actual waterlogging locations, achieving an average likelihood
of 84%. A total of five locations were evaluated. Specifically, at Location 1, the maximum
simulated depth was 12 cm compared to the measured waterlogging depth of 15 cm,
yielding a likelihood of 80%. For Location 2, the maximum simulated depth was 14 cm
versus the measured depth of 15 cm, resulting in a likelihood of 93%. At Location 3, the
maximum simulated depth was 28 cm compared to the actual depth of 32 cm, giving
a likelihood of 88%. For Location 4, the maximum simulated depth was 16 cm while
the measured depth was 20 cm, leading to a likelihood of 80%. Finally, at Location 5,
the maximum simulated depth was 10 cm compared to the measured depth of 13 cm,
which corresponded to a likelihood of 77%. The model demonstrated high simulation
accuracy and good applicability and reliability through calibration and validation with
actual rainfall data. This hydrologic and hydrodynamic model can provide simulated data
on the waterlogging depth, velocity, and duration, which can be used for the determination
of the 1 h rainfall intensity water logging index and the evaluation of flood resilience levels
in historic and cultural districts. Figure 2 illustrates the simulated results of the maximum
waterlogging depth and the distribution of waterlogging in a historic and cultural district
in Beijing under four typical return periods.
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Figure 2. Distribution map of simulated results for the maximum waterlogging depth in a historic
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In Figure 2, the red areas represent high-risk zones, orange areas represent medium-
high risk zones, green areas represent medium-risk zones, and blue areas represent low-risk
zones. The main waterlogging areas in this block are located in the red and orange
zones, primarily distributed in the central, southern, and northern regions of the block.
The water accumulation in the central red high-risk zone is primarily attributed to the
local topographical depression, where water from surrounding areas accumulates in the
depression. A large orange medium–high-risk area appears in the southern region because
water from the higher ground in the central region flows along the roads and converges in
the orange low-lying areas, forming a large area of waterlogging. The cause of waterlogging
in the northern region is due to the inflow of rainwater runoff from outside the block. A
large amount of rainwater from outside the block flows into the block along the roads in
the west. The depth and extent of waterlogging gradually increase with increasing rainfall
intensity. This is reflected in the figure as the green medium-risk area gradually evolving
into an orange medium–high-risk area, with the orange area appearing to be the largest in
Figure 2d.

3.1. Determination of 1 h Rainfall Intensity Water Logging Index in Beijing’s Historic and
Cultural Districts

By utilizing the hydrologic and hydrodynamic model for simulation and adhering
to the principle of worst-case scenario analysis, it is feasible to accurately pinpoint the
most waterlogging-prone and critical locations within a designated historic and cultural
district in Beijing. Furthermore, a detailed analysis is conducted to investigate the response
relationship between the 1 h rainfall intensity and the depth of accumulated rainwater at
the waterlogging-prone point under four typical return periods. The correlation between
the two factors is identified, and based on this, 1 h rainfall intensity water logging index
for a certain historic and cultural district is ultimately derived. As shown in Figure 3
below, the waterlogging-prone point begins to accumulate rainwater when the 1 h rainfall
intensity exceeds 29.96 mm/h under the P100 scenario, exceeds 33.99 mm/h under the P200
scenario, exceeds 35.97 mm/h under the P500 scenario, and exceeds 40.00 mm/h under the
P1000 scenario.
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To further quantify the clustering effect between 1 h rainfall intensity and district
waterlogging, this paper utilized a centroid-based clustering algorithm (K-Means algorithm)
to conduct a cluster analysis on the simulated model data of a specific waterlogging-prone
point in the district under the four typical return periods, as depicted in Figure 2 above. As
one of the classic clustering algorithms, the K-means algorithm has been widely applied in
engineering fields and has significant advantages in handling datasets and discovering the
inherent structure among data [43,44]. The Euclidean distance was chosen as the measure
of similarity between data samples, where data samples within each cluster exhibited a
certain degree of similarity in terms of both rainfall intensity and waterlogging depth.
Through multiple iterations of calculation, the sum of the distances between each sample
and the center of its respective cluster was minimized, ultimately dividing the sample data
into eight categories. The analysis results are presented in Table 1 below. Among them,
cluster 1 has a frequency of 42, accounting for 42.0% of the total; while cluster 5 has a
frequency of 21, accounting for 21.0%. This indicates that clusters 1 and 5 exhibit strong
data clustering effects. In contrast, the proportions of other clusters are relatively lower,
with percentages below 11%.

Table 2 presents the outcomes of the differential analysis pertaining to the quantitative
data fields obtained from the cluster analysis. The data include the mean value ± standard
deviation, F test results, and significant p-values. The significance p-value of the variable
“rainfall intensity” (mm/h) is 0.000. The significance p-value of the variable “waterlogging
depth” (m) is 0.003. Both variables exhibit significance at the specified level, rejecting
the null hypothesis. This indicates that there are significant differences in “rainfall inten-
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sity” (mm/h) and “waterlogging depth” (m) among the clusters identified through the
clustering analysis.

Table 1. The clustering analysis results of the relationships between 1 h rainfall intensity and
waterlogging depth at a specific waterlogging-prone points in a Beijing’s historic and cultural districts
under four typical return periods.

Index Cluster Category Frequency Percentage%

1 Cluster 1 42 42.0
2 Cluster 2 6 6.0
3 Cluster 3 4 4.0
4 Cluster 4 11 11.0
5 Cluster 5 21 21.0
6 Cluster 6 4 4.0
7 Cluster 7 8 8.0
8 Cluster 8 4 4.0

Total 100 100

Table 2. Results of the clustering analysis of the quantitative field variability data.

Cluster Category (Mean Value ± Standard Deviation)
F pCluster 1

(n = 42)
Cluster 5
(n = 21)

Cluster 4
(n = 11)

Cluster 7
(n = 8)

Cluster 2
(n = 6)

Cluster 6
(n = 4)

Cluster 8
(n = 4)

Cluster 3
(n = 4)

Rainfall
Intensity
(mm/h)

32.852
± 5.530

52.400
± 6.269

78.228
± 8.733

109.841
± 10.828

154.425
± 13.029

215.261
± 12.265

0.000
± 0.000

264.909
± 14.200 895.328 0.000

Waterlogging
Depth (m)

0.306
± 0.104

0.398
± 0.023

0.349
± 0.169

0.272
± 0.205

0.220
± 0.161

0.202
± 0.055

0.298
± 0.014

0.232
± 0.056 3.437 0.003

To validate the reliability of the clustering analysis results after multiple iterations,
further calculations were conducted to evaluate the contour coefficient, DBI, and CH
index. The higher the value of the contour coefficient index, the better the clustering
effect. The smaller the value of the DBI metric, the better the clustering effect it represents.
Similarly, a larger value of the CH indicates superior clustering performance. Through
trial calculations with cluster numbers ranging from 3 to 9, it was determined that the
comprehensive performance of all three metrics is optimal when the number of clusters is
8. As shown in Table 3, the clustering analysis exhibited excellent clustering performance.
Using the K-means clustering algorithm to analyze the correlation between rainfall intensity
and waterlogging depth demonstrates significant rationality and practicality, providing an
analytical basis for determining the 1 h rainfall intensity water logging index.

Table 3. Evaluation metrics for clustering analysis.

Contour Coefficient DBI CH

0.592 0.432 895.137

To comprehensively determine the values of xR1 and xR2 in formula (1), it is necessary
to further identify the response relationship between 1 h rainfall intensity of moderate to
low intensity and waterlogging depth. Based on the clustering analysis results shown in
Figure 4, Clusters 1 and 5 encompass data on moderate- and low-intensity 1 h rainfall,
with numerical ranges between 23.57 and 63.79 mm/h. Consequently, this paper conducts
an in-depth analysis of the data results for Clusters 1 and 5 to more precisely reveal the
intrinsic link between rainfall of moderate to low intensity and waterlogging depth.



Water 2024, 16, 1290 11 of 19

Water 2024, 16, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 4. Scatter Plot of the clustering analysis for the response relationships between hourly rainfall 
intensity and waterlogging depth at a specific waterlogging point in Beijing’s historic and cultural 
districts under four typical return periods. 

As shown in Table 4, Cluster 1 mainly groups the response data with 1 h rainfall 
intensity ranging from 23 to 42 mm/h and waterlogging depth ranging from 0 to 0.39 m. 
According to the principles of compiling urban waterlogging risk maps in Beijing, 0.27 m 
is the critical threshold between low and moderate risk of waterlogging. For the corre-
sponding four sets of data in Table 4, where the waterlogging depth is 0, the range of 1 h 
rainfall intensity values corresponds to 30 and 40 mm/h. Therefore, 40 mm/h is selected as 
the corresponding 1 h rainfall intensity value 𝑥  for the critical threshold between low 
and medium risks. This value is consistent with the cumulative rainfall amount of 41 mm 
for a design rainfall intensity for a 2-year return period with a 1 h duration, which aligns 
with the current drainage capacity of Beijing’s historical and cultural districts. 

Table 4. List of the response relationships between 1 h rainfall intensity and waterlogging depth in 
Cluster 1. 

Index 
Cluster Cate-

gory 

Rainfall 
Intensity 
(mm/h) 

Waterlogging 
Depth (m) Index 

Cluster Cate-
gory 

Rainfall In-
tensity 
(mm/h) 

Waterlogging 
Depth (m) 

1 Cluster 1 40 0.39 22 Cluster 1 32 0.33 
2 Cluster 1 41 0.39 23 Cluster 1 24 0.33 
3 Cluster 1 42 0.39 24 Cluster 1 27 0.33 
4 Cluster 1 36 0.38 25 Cluster 1 37 0.32 
5 Cluster 1 38 0.38 26 Cluster 1 31 0.32 
6 Cluster 1 34 0.37 27 Cluster 1 24 0.32 
7 Cluster 1 39 0.37 28 Cluster 1 41 0.32 
8 Cluster 1 30 0.37 29 Cluster 1 28 0.32 
9 Cluster 1 37 0.36 30 Cluster 1 35 0.31 

10 Cluster 1 33 0.36 31 Cluster 1 27 0.31 
11 Cluster 1 28 0.36 32 Cluster 1 24 0.31 
12 Cluster 1 39 0.35 33 Cluster 1 39 0.31 
13 Cluster 1 33 0.35 34 Cluster 1 31 0.30 
14 Cluster 1 30 0.35 35 Cluster 1 23 0.30 
15 Cluster 1 25 0.35 36 Cluster 1 34 0.30 
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As shown in Table 4, Cluster 1 mainly groups the response data with 1 h rainfall
intensity ranging from 23 to 42 mm/h and waterlogging depth ranging from 0 to 0.39 m.
According to the principles of compiling urban waterlogging risk maps in Beijing, 0.27 m is
the critical threshold between low and moderate risk of waterlogging. For the correspond-
ing four sets of data in Table 4, where the waterlogging depth is 0, the range of 1 h rainfall
intensity values corresponds to 30 and 40 mm/h. Therefore, 40 mm/h is selected as the
corresponding 1 h rainfall intensity value xR1 for the critical threshold between low and
medium risks. This value is consistent with the cumulative rainfall amount of 41 mm for a
design rainfall intensity for a 2-year return period with a 1 h duration, which aligns with
the current drainage capacity of Beijing’s historical and cultural districts.

Table 4. List of the response relationships between 1 h rainfall intensity and waterlogging depth in
Cluster 1.

Index Cluster
Category

Rainfall
Intensity (mm/h)

Waterlogging
Depth (m) Index Cluster

Category
Rainfall

Intensity (mm/h)
Waterlogging

Depth (m)

1 Cluster 1 40 0.39 22 Cluster 1 32 0.33
2 Cluster 1 41 0.39 23 Cluster 1 24 0.33
3 Cluster 1 42 0.39 24 Cluster 1 27 0.33
4 Cluster 1 36 0.38 25 Cluster 1 37 0.32
5 Cluster 1 38 0.38 26 Cluster 1 31 0.32
6 Cluster 1 34 0.37 27 Cluster 1 24 0.32
7 Cluster 1 39 0.37 28 Cluster 1 41 0.32
8 Cluster 1 30 0.37 29 Cluster 1 28 0.32
9 Cluster 1 37 0.36 30 Cluster 1 35 0.31

10 Cluster 1 33 0.36 31 Cluster 1 27 0.31
11 Cluster 1 28 0.36 32 Cluster 1 24 0.31
12 Cluster 1 39 0.35 33 Cluster 1 39 0.31
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Table 4. Cont.

Index Cluster
Category

Rainfall
Intensity (mm/h)

Waterlogging
Depth (m) Index Cluster

Category
Rainfall

Intensity (mm/h)
Waterlogging

Depth (m)

13 Cluster 1 33 0.35 34 Cluster 1 31 0.30
14 Cluster 1 30 0.35 35 Cluster 1 23 0.30
15 Cluster 1 25 0.35 36 Cluster 1 34 0.30
16 Cluster 1 37 0.35 37 Cluster 1 26 0.29
17 Cluster 1 34 0.34 38 Cluster 1 30 0.29
18 Cluster 1 31 0.34 39 Cluster 1 30 0
19 Cluster 1 27 0.33 40 Cluster 1 33 0
20 Cluster 1 24 0.33 41 Cluster 1 36 0
21 Cluster 1 32 0.33 42 Cluster 1 40 0

Table 5 demonstrates that Cluster 5 primarily encompasses response data charac-
terized by 1 h rainfall intensities ranging from 43 to 63 mm/h and waterlogging depths
varying between 0.35 and 0.43 m. Pursuant to the guidelines for compiling Beijing’s urban
waterlogging risk maps, 0.40 m establishes the demarcation between moderate and higher
risks of waterlogging. In alignment with this principle, Table 5 illustrates a corresponding
1 h rainfall intensity range of 44 to 50 mm/h. Consequently, 50 mm/h is designated as
the benchmark for the 1 h rainfall intensity threshold xR2, serving as a clear demarcation
between moderate and high risk levels of waterlogging.

Table 5. List of the response relationships between 1 h rainfall intensity and waterlogging depth in
Cluster 5.

Index Cluster
Category

Rainfall
Intensity (mm/h)

Waterlogging
Depth (m) Index Cluster

Category
Rainfall

Intensity (mm/h)
Waterlogging

Depth (m)

1 Cluster 5 61 0.43 12 Cluster 5 45 0.40
2 Cluster 5 63 0.43 13 Cluster 5 50 0.40
3 Cluster 5 56 0.42 14 Cluster 5 47 0.39
4 Cluster 5 54 0.42 15 Cluster 5 43 0.38
5 Cluster 5 52 0.42 16 Cluster 5 63 0.38
6 Cluster 5 50 0.41 17 Cluster 5 48 0.37
7 Cluster 5 60 0.41 18 Cluster 5 58 0.37
8 Cluster 5 54 0.41 19 Cluster 5 44 0.36
9 Cluster 5 49 0.41 20 Cluster 5 52 0.36

10 Cluster 5 47 0.40 21 Cluster 5 49 0.35
11 Cluster 5 44 0.40

In conclusion, the piecewise function for 1 h rainfall intensity water logging index
f (xR) is obtained, as shown in Equation (8):

f (xR) =


1, xR < 40
2, 40 ≤ xR < 50
3, xR ≥ 50

(8)

3.2. Determination the Warning Levels for Building Waterlogging, Road Waterlogging, and Public
Evacuation in Beijing’s Historic and Cultural Districts

According to the meteorological warning standards specified in the “Beijing water-
logging prevention control Emergency Plan (Revised in 2022),” when the meteorological
department issues a blue warning, the expected rainfall intensity in the next 1 h will exceed
30 mm/h. A yellow warning signifies an expected rainfall intensity of more than 50 mm/h;
an orange warning indicates an expected intensity exceeding 70 mm/h, and a red warning
suggests an intensity exceeding 100 mm/h. Based on the principle of determining the
1 h rainfall intensity water logging index f (xR) for a specific historical and cultural district
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in Beijing according to formula (8), the specific values for the 1 h rainfall intensity water
logging index in the third column of Table 6 can be derived. By multiplying these values
with the risk indices for building waterlogging, road waterlogging, and public evacuation,
it is possible to accurately assess the warning levels faced by buildings, roads, and the
public in the district. It is essential to classify these indicators separately as buildings, roads,
and public evacuation exhibit distinct resilience characteristics during the early-warning
process. The importance of this classification lies in highlighting the disparities among the
three, emphasizing their unique attributes and responses to potential risks. In Table 6, blue
represents low risk, yellow represents moderate risk, orange indicates relatively high risk,
and red signifies high risk.

Table 6. The correspondence between the warning level and the meteorological rainstorm warning
level, the 1 h rainfall intensity water logging index, and the waterlogging risk index in historical and
cultural districts.

Meteorological
Rainstorm
Warning

Level

Rainfall
Intensity in
the Next 1 h

(mm/h)

1 h Rainfall
Intensity

Water
Logging

Index

Building
Water

Logging
Risk Index

Building
Water

Logging
Warning

Levels

Road Water
Logging

Risk Index

Building
Water

Logging
Warning

Levels

Public
Evacuation

Index

Public
Evacuation

Warning
Levels

Blue
Alert 30 1

1 Blue 1 Blue 1 Blue
2 Yellow 2 Yellow 2 Yellow
3 Orange 3 Orange 3 Orange

Yellow
Alert 50 2

1 Yellow 1 Yellow 1 Yellow
2 Orange 2 Orange 2 Orange
3 Red 3 Red 3 Red

Orange
Alert

70

3

1 Orange 1 Orange 1 Orange
2 Red 2 Red 2 Red
3 Red 3 Red 3 Red

Red
Alert 100

1 Orange 1 Orange 1 Orange
2 Red 2 Red 2 Red
3 Red 3 Red 3 Red

3.3. Development of Early-Warning Response Measures for Building Waterlogging, Road
Waterlogging, and Public Evacuation in Beijing’s Historic and Cultural Districts

When a heavy rainstorm approaches, the waterlogging prevention control headquar-
ters of the historic and cultural districts should issue warning information. The emergency
response work for rainstorm-induced waterlogging should follow the procedures outlined
in Table 7. With changes in the hourly rainfall intensity forecast by the meteorological
department, the warning level should be dynamically adjusted and updated information
should be issued. The responding entities should dynamically adjust their warning re-
sponse measures. These response measures should include both technical and non-technical
aspects that complement each other. The emergency response entities should immediately
activate the response measures according to their respective responsibilities. The following
response measures should be included in the emergency waterlogging prevention plan and
adjusted and revised in time according to various changes in the pre-waterlogging warning
targets, response measures, and responding entities. The issuance, modification, and lifting
of warnings for building waterlogging, road waterlogging, and public evacuation in the
district should be highly consistent with the heavy rain warning information issued by the
municipal meteorological department and the district-level flood warning.
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Table 7. Early-warning response measures for building waterlogging, road waterlogging, and public
evacuation in the district.

Alert Objects
in the District

Warning
Levels

Risk
Characteristics

Response Measures
Response Entities

Technical Nontechnical

District’s
buildings

Blue
Alert

Potential water
ingress

Prepare flood barriers
and sandbags

Inspection and
investigation;

Information submission

Waterlogging
prevention control
headquarters of the

street where the
historic and cultural

district is located;
Waterlogging

prevention control
headquarters of
cultural heritage

units;
Various emergency

rescue teams;
The public in
historical and

cultural districts

District’s roads Potential water
accumulation

Water pumping
operation;

Clear blockage at
rainwater outlets

Inspection and
investigation;

Information submission

District’s
residents

Pose risks to
occupants of
dangerous
buildings

Evacuation and
relocation of occupants
in dangerous buildings

and elderly people
living alone

Inspection and
investigation;

Information submission

District’s
buildings

Yellow
Alert

High risk of water
ingress;

Potential roof leaks

Install flood barriers,
sandbags, and drainage

pumps;
Use tarpaulin or roofing
felt to cover and repair

leaking roofs

Inspection and
investigation;

Information submission;
Emergency repair

scheduling

District’s roads High risk of water
accumulation

Clear away the
accumulated water;

Install drainage units;

Inspection and
investigation;

Information submission;
Forced drainage

scheduling

District’s
residents

Threat to elderly
and children

Organize the evacuation
of elderly and children

as needed

Household survey;
Shelter preparation;

Information submission

District’s
buildings

Orange
Alert

High risk of water
ingress; Potential

roof leaks

Start the operation of
drainage pumps as

needed; Use tarpaulin or
roofing felt to cover and

repair leaking roofs

Inspection and
investigation;

Information submission;
Emergency repair

scheduling

District’s roads High risk of water
accumulation

Start the operation of
drainage pumps as

needed

Inspection and
investigation;

Information submission;
Road closure control;
Personnel and vehicle

detour;
Notify to move vehicles

District’s
residents

Significant threat
to elderly and

children

Organize the evacuation
of elderly and children

as needed;
Evacuate personnel
from schools, scenic

areas, and organizations
within the neighborhood

Inspection and
investigation;

Information submission;
Organize evacuation
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Table 7. Cont.

Alert Objects
in the District

Warning
Levels

Risk
Characteristics

Response Measures
Response Entities

Technical Nontechnical

District’s
buildings

Red
Alert

Water ingress
occurs; Extensive
roof leaks occur

Start the operation of
drainage pumps as

needed;
Use tarpaulin or roofing
felt to cover and repair

leaking roofs

Inspection and
investigation;

Information submission;
Emergency repair

scheduling

Waterlogging
prevention control
headquarters of the

street where the
historic and cultural

district is located;
Waterlogging

prevention control
headquarters of
cultural heritage

units;
Various emergency

rescue teams;
The public in
historical and

cultural districts

District’s roads

Water
accumulation

occurs;
Road surface

collapse occurs

Start the operation of
drainage units;

Road repair and
barricading

Inspection and
investigation;

Information submission;
Road closure control;
Personnel and vehicle

detour

District’s
residents

Poses a threat to
the majority of the

public

Public prepares for
evacuation;

Organize public
evacuation as needed;
Emergency medical

rescue

Inspection and
investigation;

Information submission;
Organize evacuation

This paper adopts a comprehensive approach that integrates mathematical modeling,
model simulations, and resilience assessments to establish a refined waterlogging warning
system tailored for a historic and cultural district in Beijing, China, under rainstorm sce-
narios. When crafting the refined rainstorm-induced waterlogging early-warning model,
this study fully considers the limitations of monitoring data, particularly for rainstorm
events that occur once a century or are rarer. Due to their extremely low occurrence fre-
quency, corresponding historical monitoring data are severely insufficient. Therefore, we
adopt the method of model simulation to compensate for data deficiencies by simulating
the interaction between rainfall intensity and water accumulation depth. The simulation
methodology for rainstorm-induced waterlogging models is well established and widely
employed in the academic community, providing strong support for this article [45–47].
Building upon previous research, this paper further expands the analytical approach for
simulation results by applying cluster analysis to reveal the relationship between rainfall
intensity and water accumulation depth. Additionally, flood resilience assessment is in-
troduced as an important component of the warning model construction. Flood resilience
assessment can more accurately reflect the resistance, absorption, adaptation, and recovery
capabilities of disaster-bearing bodies during rainstorm events [48–50], exhibiting stronger
objectivity compared to traditional risk level assessment methods for rainstorm water-
logging. Through resilience assessments, it becomes possible to derive the waterlogging
risk index more accurately, providing a more scientific and reasonable decision-making
basis for waterlogging warnings and pre-disaster emergency responses in historical and
cultural districts.

Through a rigorous analysis and determination of the 1 h rainfall intensity water
logging index within a historic and cultural district in Beijing, this study establishes critical
thresholds for meteorological forecasts. Specifically, the thresholds for low and medium
risks of future 1 h rainfall are set at 40 mm/h, whereas the thresholds for medium and
high risks are designated as 50 mm/h. Upon comparing these thresholds with available
data, it becomes evident that they closely correlate with the meteorological characteristics
of Beijing’s urban landscapes and the current drainage capabilities of its historic and
cultural districts [51,52]. Furthermore, these thresholds align seamlessly with the prevailing
meteorological warning standards in Beijing, thus underscoring the scientific validity of
the determination method employed in this study for the 1 h rainfall intensity water
logging index.
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Compared to the traditional monitoring-based waterlogging early-warning models,
the refined early-warning model introduced in this article offers distinct advantages in
terms of pre-disaster positioning and control [53,54]. Within the confines of meteorological
forecast timeframes, this model can accurately assess the warning levels for buildings, roads,
and the general public within the historic and cultural district. Depending on the severity
levels indicated by the red, orange, yellow, and blue warnings, appropriate emergency
response measures can be promptly implemented, including evacuating residents, closing
roads, activating drainage facilities, and so on (detailed in Table 7). This approach helps
to enhance the accuracy and timeliness of waterlogging warnings, thereby reducing the
impact of waterlogging disasters on the historic and cultural district.

Furthermore, this model possesses high flexibility and scalability, allowing for adjust-
ments and optimizations based on actual conditions to cater to the waterlogging warning
needs of various historic and cultural districts under different rainfall conditions.

4. Conclusions

This article proposes a method for constructing a refined early-warning model for
rainstorm-induced waterlogging in Beijing’s historic and cultural districts. By establishing
the mathematical relationships between 1 h rainfall intensity water logging index and the
building waterlogging risk index, road waterlogging risk index, and public evacuation in-
dex, we derive a building waterlogging early-warning model f (WBD), a road waterlogging
early-warning model f (WRD), and a public evacuation early-warning model f (WOC).

This paper thoroughly discusses the determination method of the piecewise function
f (xR) for the 1 h rainfall intensity water logging index. The 1 h rainfall intensity water
logging index serves as the pivotal indicator for establishing the response relationship
between meteorological forecast warnings and the characteristics of waterlogging in the
district. In terms of method integration, the simulation method of the hydrological and
hydrodynamic model of the district is coupled with cluster analysis to objectively reveal
the dynamic relationship between the designed rainfall intensity and waterlogging in the
district. In the numerical analysis, 0.27 m and 0.4 m are chosen as two critical thresholds
for determining the risk of waterlogging, which are used to derive the designed rainfall
intensity corresponding to the critical thresholds, thus obtaining a piecewise function f (xR)
that meets the characteristics of waterlogging risk in Beijing’s historic and cultural districts.

Based on the evaluation of flood resilience in buildings, roads, and society within the
historic and cultural districts, the determination method of the waterlogging risk index
for the district is discussed. The flood resilience of buildings, roads, and society within
the district can directly reflect the correlation between characteristic parameters such as
depth, flow velocity, and the risk of functional loss after waterlogging. Therefore, this study
proposes a method for deriving the segmentation functions of the building waterlogging
risk index f (ResBD), road waterlogging risk index f (ResRD), and public evacuation index
f (ResOC) based on resilience level assessments. This method can more accurately describe
the dynamic process of waterlogging risks varying with rainfall intensity and better align
with the actual situation of waterlogging risks in the district.

Empirical validation was conducted on the refined early-warning model for rainstorm-
induced waterlogging in Beijing’s historic and cultural districts proposed in this paper,
using actual cases from these districts. By determining 1 h rainfall intensity water logging
index for the districts, clarifying warning levels, and formulating scientifically reasonable
warning response measures, the practical application value of this model in emergency
waterlogging prevention control and rescue work in Beijing’s historic and cultural districts
was elucidated. Assessing and dynamically adjusting the warning levels and response
measures for buildings, roads, and the public in the district are crucial, as they will con-
tribute to improving the efficiency and accuracy of rescue operations within the precious
forecast time.

Future research should further focus on the applicability of the refined early-warning
model in different flood disasters, not just rainstorm-induced waterlogging, deeply analyz-



Water 2024, 16, 1290 17 of 19

ing its warning function throughout the entire lifecycle of flood prevention and emergency
management. Additionally, it is necessary to strengthen and explore the linkage mech-
anism between rainstorm waterlogging monitoring and early warning, ensuring close
coordination between the two. By fully utilizing daily monitoring data and historical
disaster information, objective evidence can be provided for validating and optimizing
the refined early-warning model for rainstorm-induced waterlogging. Moreover, attention
should be given to the continuous optimization and improvement of warning response
measures to ensure the precision and efficiency of warning management strategies. The
amount of early-warning time that can be saved through these efforts remains a question
worthy of deep reflection, as it involves not only issues with early-warning methods but
also numerous management considerations. This article only explores the subject from the
perspective of methods to improve the accuracy and timeliness of early warnings, without
conducting a comprehensive social survey on the emergency management capabilities of
historic and cultural districts. Therefore, quantifying and evaluating the early-warning
issuance time for different historic and cultural districts remains a topic worthy of continu-
ous and in-depth research. In summary, sustained and profound exploration in this field is
of great significance for ensuring the sustainable development of historic cities and historic
and cultural districts.
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