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Abstract: In the past few decades, both natural and human influences have contributed to the unpre-
dictable rates of land use and land-cover change (LUCC) in glacially devastated places. Monitoring
and identifying the geographic and temporal land-cover changes and driving forces in this unique
type of area may help to give the scientific basis needed to understand the effects of climate change
and human activities on LUCC. The Third Pole is one such landscape that provides inevitable key
ecosystem services to over 2 billion people in Asia. However, this important landscape is increasingly
being threatened by the impacts of climate change. Policy and program responses to the Third
Pole’s mounting socioeconomic challenges are inadequate and lack scientific evidence. Using the
land-change model (LCM) and historical data from 1992 onwards, our study attempted to (i) detect
the spatial patterns of land use and land-cover changes in the Third Pole from 1992 to 2020; and
(ii) project them into 2060. Our analysis shows that the land use and land-cover types in the Third
pole are undergoing changes. About 0.07% of the snow and ice have melted in the last three decades,
indicating global warming. This melt has resulted in increasing water bodies (0.08%), especially as
glacial lakes. This has significantly increased the risk of glacial outburst floods. Other key alpine
land-cover types that decreased are bare land (0.6%) and agricultural land (0.05%). These land
types represent important habitats for wild flora and fauna, grazing land for livestock, and food
for nomads, and their loss will directly degrade ecological services and the health and wellbeing of
the nomads. Land cover of forest, shrubs, and scanty vegetation have all increased by 0.3%, 0.02%,
and 0.77%, respectively, inducing socio-ecological changes in the Third pole mountains. Further
predication analysis showed that snow and ice, along with bare land, will continue to recede whereas
forest, grassland, water bodies, shrubland, sparse vegetation, and settlement will increase. These
results indicate the increasing impact of global warming that will continue to change the Third Pole.
These changes have serious implications for designing adaptation and mitigation interventions in
the mountains. We recommend more detailed research to investigate the underlying factors that are
changing the Third Pole to develop policy and programs to help humans, livestock, and biodiversity
adapt to the changes in these remote and harsh mountains. This will also help to mitigate the effects
on downstream communities.

Keywords: land-cover change; land-cover prediction; third pole; nomads; livestock; snow leopards;
human wildlife conflicts

1. Introduction

The most fundamental and obvious landscape characteristic describing the influence of
anthropogenic and natural disturbance on the surface of the Earth is changes in land use and
land cover (LULC), which are significant in the studies of regional and global environmental
changes [1]. Implementing and tracking Sustainable Development Goal (SDG) indicators,
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such as changes in the extent of water-related ecosystems, land consumption rates, and the
percentage of degraded land, are directly correlated with changes in land cover [2–4]. A
dynamic LULC provides an inclusive understanding of the interactions and relationships
that are essential for the management of sustainable land resources [5]. Understanding
the LULC change drivers and dynamics is essential for creating sustainable strategies
and making educated planning decisions. This was considered to produce an estimate of
potential future scenarios in which the LULC change driving forces could be either direct
or indirect for change through time and space [6]. High mountainous regions are most
vulnerable to the impacts of global environmental and climate change due to their fragility.
For instance, the Tibetan Plateau (TP), which is home to Earth’s highest-altitude and the
harshest and most sensitive climate, has experienced significant changes in the last several
decades [7,8].

Outside of the Arctic and Antarctic, the Qinghai–Tibetan Plateau and the mountains
that surround it are referred to as the Third Pole because of the amount of ice they hold [9].
More than 1.5 billion people receive fresh water, food, and other ecosystem services from
the ten major rivers in Asia, which originate from these mountains [10,11]. The region’s
diverse topography and climate support a wide range of biological and social diversity.
Unfortunately, the Third Pole region, along with Antarctica and the Arctic, is undergoing
a considerably faster rate of air temperature increase than other places [10,12,13]. This
warming is higher in the Third Pole mountains compared to the Arctic and Antarctic
regions, resulting in the rapid melting of glaciers, snow, ice, and permafrost that unleashes
disasters such as glacial lake outburst floods (GLoFs). In terms of socioeconomics, the
Third Pole is predominantly agricultural, with many nomadic populations subsisting
off of herding yaks, sheep, goats, etc. These nomads subsist entirely on the produce of
their animals. Due to deteriorating pastures, dwindling water sources, and an increase
in disasters that are made worse by global warming, raising livestock has become more
and more challenging. The majority of the effects of the changing environment are being
felt by nomads and their cattle. The environment surrounding the Third Pole is also a
biodiversity hotspot that is home to threatened species such as the snow leopard and
Tibetan wolf. Conflicts frequently arise between herders, livestock, and wildlife as a result
of increased competition for grazing areas. In places where wolves and snow leopards have
hurt livestock, people kill them in retaliation, putting biodiversity and ecological services
at risk.

Although snow cover varies widely from year to year, it has diminished at lower
elevations where snow has given way to rain [14]. The snow line, which is the elevation
above which snow remains all year, has increasingly moved to higher elevations, leaving
fewer areas covered with snow. This not only disrupts hydrological processes but also
contracts habitats for snow biodiversity such as the snow leopards. In reaction to warming,
snow-covered regions and snow volume will likely continue to decrease, and the snow line
will continue to ascend to higher elevations [15]. Only a few studies have looked at varia-
tions in seasonal snow cover in Central Asia. They propose a reduction in the maximum
snow depth and the duration of the snow cover [16]. In this study [17], authors examined
snow cover in northern Central Asia using Advanced Very High-Resolution Radiometer
(AVHRR) 1-km data for 1986–2008 and MODIS data for 2000–2009. The Central Asian
republics, the Kazakh steppe, the Aral–Caspian desert, the Tarim, the Siberian Altai–Sayan,
the Mongolian Altai, the Western Tian Shan, the Eastern Tian Shan, the Central Tian Shan,
the Western Pamir, the Pamiro–Alai, the Central Pamir, and the Eastern Pamir were all
included as high mountains. Asia would likely lose one-third of its glacier mass by the end
of the century even if world average temperatures stabilized at 1.5 ◦C above pre-industrial
levels, with the Himalaya losing half of its glacier mass [15,18]. Rapid melting of glaciers,
snow, and ice disrupts social and ecological processes and unleashes disasters. High moun-
tains of Asia experience a variety of disasters, including high-frequency landslides, floods,
and coastal storms, as well as low-frequency earthquakes [19]. Additionally, there are
increasing indications that human activity is having an adverse effect on the Third Pole’s



Land 2022, 11, 2227 3 of 19

ecosystem [20–22], which, together with projected changes in the future, could endanger
the livelihoods of those who depend on the Third Pole’s resources and environment [23,24].
Continuity, which is required for continuing global challenges such as climate change,
sustainable land management, and SDG implementation monitoring, is one of the key
user requirements for GLC mapping. As a result, several mapping projects offer ongo-
ing and operational land-cover solutions. For instance, the CCI-Land-cover product [25]
provides annual GLC maps from 1992 to 2015 at a 300 m pixel scale. To increase classi-
fication accuracy, researchers have worked hard to develop cutting-edge methodologies
and techniques, such as cellular automata, artificial neural networks, fuzzy logic, intelli-
gent systems, and tree decisions [26]. The dynamics of natural and human systems are
simulated, and their future evolution is predicted using object-based algorithms, such as
CA [27]. It is effective at extracting realistic simulations of land use classes and other spatial
structures despite its simplicity and can display remarkably rich behavior [27]. Previous
works have extensively used this approach to identify LC classes [28–32]. Research has
demonstrated the effectiveness of CA models in simulating land-cover patterns and other
spatial structures in real-world settings. To anticipate LC changes utilizing descriptive
characteristics such as elevation, slope, aspect, and distance from particular sites, the CA
algorithm is an extension of the land change modeler (LCM) [33–36]. The land change
modeler (LCM), although limited, successfully captured the dynamics of the simulated
system and produced a simulation result that closely matched the reference map [37].

This research is probably the first attempt to employ a land change model (LCM) to
assess and detect changes in the Third Pole, as well as to create LULC projections for the
future. In particular, the study attempted to: (1) get multitemporal land-cover data; (2) look
at the spatial and temporal changes of land cover in the Third Pole; (3) get and predict
distribution patterns and look for general trends in land-cover changes; and (4) compare
how land cover changed in each class over the study period.

2. Materials and Methods
2.1. Study Area

Based on information from the Global Land Ice Measurements from Space (GLIMS),
high mountain range, and snow leopard range, we selected the study region. The idea
of a Third Pole, where the temperature, biota, permafrost, and glaciers are such as those
in the Arctic, has emerged as a result of the vast region of high altitudes in Central Asia,
especially the Tibetan Plateau, which averages approximately 4500 m, and nearby mountain
ranges (Figure 1). Permafrost, glaciers, ice, and snow make up the third-greatest reserve
of fresh water in the Third Pole region. The Hindu Kush, Pamir, Tian Shan, and Kunlun
ranges are all located in Central Asia. The Karakorum–Himalayan mountain range and
Tibet are located in the southern region, which covers an area of more than 4.3 million km2

and is shared by Afghanistan, Bangladesh, Bhutan, China, India, Myanmar, Nepal, and
Pakistan [38]. The Himalayas, the Karakoram, the Tianshan, Kunlun, and Altai are the
six greatest mountain ranges. It is home to 10 major river systems that flow through
over 22 nations, including the Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong,
Yangtze, Yellow, Tarim, and Amu Darya. It also features fourteen peaks that rise beyond
8000 m. This region has also been referred to as “the roof of the earth” because of its
features, which include 36,800 glaciers and ice caps covering 49,870 km2 and 1200 lakes
(greater than 1 km2) covering an area of 47,000 km2 [39,40]. The Greater Himalaya, which
has peaks that average 6000 m and soar above 8500 m, the Lesser Himalaya, which is
located in the middle, and the Lower Siwalik, which is located in the south, make up
the 2500 km-long Himalaya. The Himalaya is 250–400 km wide overall. To the west of
the Himalaya are the severely glacierized Karakorum ranges, which are 500 km long and
200 km wide. The southwest–northeast Kunlun mountains are located further west. The
northwestern mountain ranges of Central Asia are the north–south Pamir of Tajikistan
and the east–west Pamir–Alai of southern Uzbekistan–Kyrgyzstan. Together, they span
2000 km. With a height of 7400 m, the central Tian Shan is heavily covered in ice. The Alatau
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ranges, which reach a height of about 5000 m, are part of the western Tian Shan. Whereas
the northwest of the Pamir possesses alpine relief, the southwest is severely glacierized
between 2500 and 5000–6000 m, including the 75 km-long Fedchenko Glacier. Peaks in the
southeasterly Pamir range in height from 5000 to 5500 m.
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Figure 1. Study area of elevation map of the Third Pole and the snow leopard region of Asia.

2.2. Data and Preprocessing
2.2.1. Satellite Data Acquisition

We used the newly available annual ESA (European Space Agency) CCI (climate
change initiative) land-cover maps to give continuous information about land-cover
changes at a resolution of 300 m for the period between 1992 and 2020. This dataset’s base-
line was established by integrating the outcomes of machine learning and unsupervised
techniques [41]. Using the United Nations Land-Cover Classification System (UN-LCCS),
the ESA CCI represents the surface of planet Earth classified into 37 initial land-cover
classes [42].

2.2.2. Preprocessing and Reclassification

This investigation included the following primary steps: (i) image reclassification and
history LC map extraction; (ii) monitoring land-cover changes for historical maps; and
(iii) LC change prediction by applying a land change modeler (LCM) that we showed in
Figure 2.

In this study, we reclassified the ESA CCI LC classes based on the IPCC land categories
as Table 1 [41] into ten distinct classes to detect and predict decadal change for the years 1992,
2000, 2010, and 2020, and the years 2030, 2040, 2050, and 2060, respectively. The ESA CCI LC
product is comprised of 37 distinct land-cover classes; hence, every pixel in the land-cover
image is assigned a class between 1 and 37. In order to reclassify the land-cover image in
GRASS (Geographic Resources Analysis Support), a new mapset was built. Because the
format of the data in GRASS is different from QGIS (Quantum GIS), the data were imported
to the GRASS mapset with the r.in.gdal command (Import GDAL supported raster file into
a binary raster map layer). The 37 subcategories were then reclassified into ten new classes
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using the same GRASS command, r.reclass, as described in this manual [43] as Table 1. We
integrated each class based on an increased understanding of how the LC class definitions
are interpreted to calculate each LC class allocation. Regarding the accuracy assessment
of reclassification, ESA-CCI-LC data already had accuracy assessment data; however, we
performed an accuracy assessment for the reclassified map before in this study [44].
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Table 1. Classes of ESA and this study.

Category in Model Code LULC Class of ESA CCI

10, 11, 12 Rainfed cropland
20 Irrigated cropland

Cropland 30 Mosaic cropland (>50%)/natural vegetation (tree, shrub,
herbaceous cover) (<50%)

40 Mosaic natural vegetation (tree, shrub, herbaceous cover)
(>50%)/cropland (<50%)

50 Tree cover, broadleaved, evergreen, closed to open (>15%)
60, 61, 62 Tree cover, broadleaved, deciduous, closed to open (>15%)
70, 71, 72 Tree cover, needle leaved, evergreen, closed to open (>15%)

Forest 80, 81, 82 Tree cover, needle leaved, deciduous, closed to open (>15%)
90 Tree cover, mixed leaf type (broadleaved and needle leaved)

100 Mosaic tree and shrub (>50%)/herbaceous cover (<50%)
160 Tree cover, flooded, fresh or brackish water
170 Tree cover, flooded, saline water

110 Mosaic herbaceous cover (>50%)/tree and shrub (<50%)
Shrubland 120, 121, 122 Shrubland

Grassland 130 Grassland

140 Lichens and mosses
Sparse vegetation 150, 151, 152, 153 Sparse vegetation (tree, shrub, herbaceous cover)
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Table 1. Cont.

Category in Model Code LULC Class of ESA CCI

Wetland 180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water

Urban 190 Urban areas

Bare area 200, 201, 202 Bare areas

Water 210 Water bodies

Snow ice 220 Permanent snow, ice, and glacier

2.2.3. Land-Cover Change Model

A land change modeler (LCM) is an empirically driven, step-by-step approach [45]
that performs change analysis, transition potential modeling, and change prediction based
on the historical change from time 1 (2000) to time 2 (2010). Multi-Layer Perceptron Neural
Network (MLP-NN) and Cellular Automata–Markov Chain models are combined in the
prediction task (CA-MCM). Changes at the highest-ranking pixels in the transition potential
maps have been verified by LCM, as demonstrated by [46]. Other studies [47,48] found
that when explanatory factors generate disconnected patches with high transition potential,
LCM tends to mimic new patches. In order to account for interactions between different
variables, neural networks employ non-linear functions. To account for the fact that a single
variable may have varying influences across the study area, the model might make use of
machine learning techniques [49,50].

2.2.4. Change Analysis Module

Equations describing the CA-MC analysis module used to detect land-cover change
between two years are provided below (Equation (2)) [51,52]:

S(t,t+1)=PI J × S(i) (1)

where S(t) is the system status at time of t, S(t+1) is the system status at time t + 1; the
matrix Pij representing the probabilities of transition between states is determined by the
formula [52,53]:

Pij =

∣∣∣∣∣∣∣∣∣
P11 P12 . . . P1n
P21 P22 . . . P2n

...
...

...
...

Pn1 Pn2 . . . Pnn

∣∣∣∣∣∣∣∣∣,
(
0 < Pij < 1

)
(2)

where P is the Markov probability matrix and Pij is the transition probability from state
I to j at the next time step. The probabilities of a low transition and a high transition are,
roughly speaking, 0 and 1 [52,53]. Once the changes were classified as gains and losses to
each land-cover category, transitions from one land-cover state to another were used to
generalize the geographic altering pattern [54,55]. Categorical variables can be included in
the analysis extremely well using the evidence likelihood transformation panel [56]. By
calculating the relative frequency with which various land-cover types occur, evidence of
likelihood was created.

2.2.5. MLP-NN Performance Evaluation

MLP-backpropagation NN’s algorithm (BP) learning technique employs transition
potential; forward and backward passes continue until the network acquires the charac-
teristics of all classes [57]. Prior to performing any land-cover modification simulation, it
is crucial to conduct a sensitivity analysis on the model, as the selection of appropriate
variables affects the learning accuracy of the model [58]. Using the MLP classifier’s image
processing toolkit, parameters and model performance were tested. The model was trained
procedurally using all explanatory factors and land cover; thereafter, the system repeatedly
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executes skill tests to determine the relative effectiveness of explanatory variables while
holding the inputs from specific variables constant [56]. Therefore, the skill gap informs us
of the strength of that variable. To evaluate the skill S (Equation (3)), three distinct parame-
ter sensitivity studies were conducted: forcing all independent variables except one to be
constant; forcing a step-by-step constant forcing mechanism; and forcing all independent
variables to be constant. The skill metric has a range of 1 to −1, with 1 indicating great
forecasting, −1 indicating worse than chance, and 0 indicating random chance [58].

s =
(A − E(A))

(1 − E(A))
(3)

where A is measured accuracy, and E(A) is expected accuracy which is determined by using
the number of transitions in the sub-model, T and the number of persistence classes, P as
(Equation (4)):

E(A) =
1

(T + P)
(4)

Using RMSE (Equation (5)), Ref. [59] evaluated the performance and prediction
accuracy of the MLP-NN. RMSE is a measure of the variance between predicted and
observed values. The lower the value, the more precise the forecast [59].

RMSE =

√
∑N

i=1 (ui − u)2

N
(5)

where ui is the modelled for sample i, ui is the observed data for sample i and N is the total
number of samples.

2.2.6. Transition Potential Modeling and Land-Cover-Change Prediction

Using RMSE (Equation (4)), Ref. [59] evaluated the performance and prediction
accuracy of the MLP-NN. RMSE is a measure of the variance between predicted and
observed values. The lower the value, the more precise the forecast [59]. The transition
sub-model of the LCM was imported with skill-tested driving variables, and MLP-NN was
then utilized to construct prospective transition maps utilizing the dependent variables
(T1 and T2 images). At this time, the transition potential images adequately reflected the
influence of the driver variables in determining if cell transformation was suitable for a
certain land cove [51,58,60]. The driver elements were selected based on the literature
review [61,62] and the author’s experience with the subject area.

2.2.7. Verification of Model Results

To verify the validity and acceptability of the MLP-CA-MC model in predicting
future land cover [51,63], the validation method measured the current agreement and
disagreement between the actual satellite-driven (T3) and simulated (T’3) LULC maps
of 2020. In this investigation, both hard and soft predictions were used in two separate
validations. The VALIDATE and ROC modules were utilized for this purpose. The T’3
soft prediction is used as a comparison map when calculating the area under the receiver
operating characteristic curve (AUC) using ROC statistics [56]. AUC values range from
0 to 1, with 0 indicating an entirely inaccurate test and 1 indicating an entirely accurate
test [57,64–67]. Using the T’3 hard prediction as a comparison map, the VALIDATE module
calculates three types of kappa index statistics: kappa for grid cell level location (Klocation),
kappa for no information (Kno), and kappa for stratum-level location (KlocationStratum),
and kappa standard (Kstandard). Values of 80% or higher are generally associated with
a significant and favorable AUC and kappa value [56–58]. In this study, the model is
calibrated and validated using land-cover data from 2000 and 2010, after which a land-
cover map for 2020 is simulated and validated using a reference land-cover map from 2020.
Hits and Correct Rejection are the two components of agreement, whereas Misses, False
Alarm, and Wrong Hits are the three components of disagreement.
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3. Results and Discussion
3.1. Modeling Verification

An essential need for research that tries to predict LULC changes is model vali-
dation [32,68]. The kappa statistic, which ranges from −1 to +1 [69], is a great exam-
ple of frequently used techniques for determining a model’s predictive power [70,71].
Other researchers [70,72] categorize kappa values as follows: 0 shows no agreement,
0.0–0.2 suggests slight agreement, 0.0–0.41 indicates poor agreement, 0.41–0.60 indicates
moderate agreement, 0.60–0.80 indicates considerable agreement, and 0.81–1.0 indicates
practically perfect agreement.

Based on the land-cover maps from 2000 and 2010, our study used the MLP-CA-
MC model to: (i) simulate the soft and hard land-cover patterns in 2020, 2030, 2040,
and 2050–2060 for validation purposes; and (ii) generate kappa statistics based on the
comparison between the hard simulation and the 2020 reference map. The statistics show
that Klocation, Kno, and Klocation Strata all have values of 82 percent, and the overall
kappa value was 94.8 percent, which means that the simulated and observed land-cover
maps agree perfectly.

There is a quantity disagreement when a cell amount that falls within the same
category as T’3 differs from T3 [58]. Every time a cell in the same group as T’3 differs
from T3, there will be a location disagreement. The percentages of those who agree and
disagree are shown in Figure 3. For MLP-CA-MC, the total components of disagreement
were 15.9 percent, which is the sum of misses (8.7 percent) and false alarms (7.2 percent).
The overall proportion of correct was 84.1 percent, which is the sum of hits (2.6 percent)
and correct rejections (81.5 percent) (soft prediction). In the current study, a satisfactory
after controlling for confounding variables, an AUC of 0.75 was found.
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3.2. Land-Cover Monitoring and Changes of 1992–2020

Studies [40,54,73,74] have repeatedly demonstrated the Third Pole has been warming
significantly in recent decades (annual rate of 0.34 ◦C/decade), with bigger trends than the
Northern Hemisphere (0.290.34 ◦C/decade) and the global average (0.190.34 ◦C/decade).
Since the latter half of the 20th century, this growth has been rapid, with warming rates
quickly increasing from +0.16 to +0.36 ◦C/decade since the 1950s to +0.50–+0.67 ◦C/decade
from the 1980s onward [75]. Further studies by [76] indicated that the Third Pole has
warmed significantly between 1979 and 2020, with an annual rate of 0.34 ◦C/decade,
which is higher than the rates for the northern hemisphere (0.29 ◦C/decade) and the global
average (0.19 ◦C/decade) for the same period. Such amplifications could hasten changes in
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the mountain ecosystem, cryosphere, hydrosphere, biodiversity, and nomads’ way of life in
the mountains of the Third pole and its surroundings [77–79].

We used land-cover data from 1992 to 2020, coinciding with exacerbated warming, to
detect the observable impact of warming on land-use changes in the Third Pole. At the high
altitudes, the Third Pole mountain landscape should ideally be dominated by cryosphere
(snow, ice, permafrost), bareland, grassland, and sparse vegetation, with agriculture and
forests in the lower pockets of the mountains. Spatiotemporal land-cover changes from
1992 to 2020 show overwhelming changes in the land-cover types in 2020 compared to 1992
(Table 2). Results indicate that the Third Pole was dominated by grassland, covering 56%
of the land in 1992. This was followed by bare ground (20.1%), forest (8.63%), agriculture
(6.22%), sparse vegetation (3.52%), snow and ice (2.98%), and water (1.26%). Except for high
forest cover at that altitude, the statistics of land-cover types in 1992 were not far away from
what is expected. Relative change from 1992 to 2020 showed a decrease in most of these
dominant land types; for instance, bareland (−0.6%), grassland cover (−0.5%), snow and
ice (−0.07), and agriculture (−0.05%). However, there was a significant increase in forested
cover (0.3%), followed by spare vegetation (0.77%), and water (0.08%). All these changes are
attributable to warming temperatures. Warmer climates provide more favorable conditions
for trees, plants, and shrubs to thrive, especially in these very hard environments. The
reduced coverage of snow and ice on grassland is attributable to global warming, and the
melting of the latter may have increased water. Increasing water coverage in the mountains
is dangerous and a sign of potential glacial lake outburst floods (GLOFs) in the future.
Analyses at different time intervals between 1992 and 2020 allow us to investigate the
direction and magnitude of how these changes have happened since 1992 (Table 2 and
Figure 4); further, we showed the Third Pole’s main transferred land-cover trends in the
Figure 5.

Snow and ice decreased by 980 km2 in 2000 compared to 1992. This decrease increased
to 1154.0 km2 between 2000 and 2010, followed by a slightly smaller decrease of 831.0 km2

between 2010 and 2020. Overall, the Third Pole lost about 2965 km2 of snow and ice in just
three decades. Between 1992 and 2020, this melt increased the coverage of water bodies in
the Third Pole by approximately 3335.8 km2. It can be concluded that human activities are
involved in land-cover change and that the extreme sensitivity of glaciers to climate change
often drives land-cover change processes in nonglacial locations. Furthermore, global
climate change is a mutual feedback mechanism influenced by both human activity and
land-cover change. More than in other parts of the world, places that have been impacted
by glaciers feel the full force of the feedback loop between climate change, land-cover
change, and human activity.

Table 2. Decadal Land-cover changes at the Third Pole from 1992 to 2020.

Area Changes (km2) Total Change

Land-Cover Type 1992 2000 2010 2020 1992–2020

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%) Area (km2) Area

(%)

Agriculture 255,490.4 6.22 258,701.1 6.30 255,607.7 6.22 253,381.0 6.17 −2109.4 −0.05
Forest 354,709.7 8.63 357,400.9 8.70 361,835.7 8.81 366,821.0 8.93 12,111.2 0.3

Grassland 23,17,869.0 56.4 2,307,435.6 56.2 2,315,319.1 56.4 2,297,093.1 55.9 −20,775.8 −0.5
Shrubland 26,815.9 0.65 27,115.3 0.66 27,263.4 0.66 27,505.4 0.67 689.5 0.02

Sparse vegetation 144,702.5 3.52 152,819.1 3.72 160,866.5 3.92 176,422.6 4.29 31,720.0 0.77
Wetland 8357.1 0.20 8522.5 0.21 8340.9 0.20 8351.0 0.20 −6.1 0.00

Settlement 464.8 0.01 532.7 0.01 986.3 0.02 1634.1 0.04 1169.3 0.03
Bareland 825,871.1 20.1 822,545.6 20.0 803,907.2 19.6 802,701.6 19.5 −23,169.5 −0.6

Water body 51,877.2 1.26 52,064.9 1.27 54,164.9 1.32 55,213.0 1.34 3335.8 0.08
Snow and ice 122,630.8 2.98 121,650.8 2.96 120,496.8 2.93 119,665.8 2.91 −2965.0 −0.07
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Figure 4. A graph shows the Third Pole’s decadal land-cover trends between 1992 and 2020 (Percent).
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This could be attributed to the initial melt probably being frozen into ice. A number
of studies have also attributed an extraordinary shrinkage and negative mass balance of
glaciers in several parts of the Third Pole [78,80–84] to global warming. Studies [76,85–87]
have also found a general decrease in snow cover and depth, even though there are
differences between regions and times of the year. In sync with the decreasing patterns
of snow and ice, the water body increased the most between 2000 and 2010 (2100 km2),
followed by 1048.1 km2 between 2010 and 2020. This is an interesting finding as the
amount of snow and ice melt was greater during the 1992–2000 period compared to the
2010–2020 period. Studies in Hindukush and the Tibetan plateau also indicated increasing
water bodies primarily due to growing mass of glacial lakes and emergence of new glacial
lakes [88].

Another important high-altitude resource that decreased significantly was grassland
between 1992 and 2000, with a loss of 10,433.3 km2 but grassland has continuous increasing
from 2000 to 2010. However, due to the large decrease from 1992 to 2000, the total change
from 1992 to 2020 showed a slight decrease in grassland cover (−0.5%). Specifically,
grassland increased by 7883.4 km2 between 2000 and 2010, but lost 18,225.9 km2 between
2010 and 2020. Previous research [9,89] demonstrated that the Third Pole has experienced a
threefold increase in the rate of global warming over the past 50 years. Meanwhile, natural
grasslands in the region have been deteriorating since the 1980s, likely as a result of climate
change, population increase, grazing pressure, and rodent damage [75,90–92]. In China,
previous research [93] discovered that alpine-steppe vegetation increased significantly,
particularly in low-coverage grasslands (30%), which grew by 10%. It is therefore likely
that warming will raise the distribution and upper limit of alpine meadows [94–98]. The
semi-humid southeast Tibetan Plateau had an increase in vegetation due to warming,
whereas the dry and semi-arid northwest Tibetan Plateau saw a rise in vegetation due to
increasing precipitation [93]. Grasslands are important, especially as habitats for wild flora
and fauna, as well as grazing grounds for livestock. Livestock is the major source of food
(meat, milk, cheese, and butter), energy (dung), transportation (draught energy), and for
making clothing, tents, and containers (such as bags and even water storage) from hair
and hide. The decrease in grassland was the most significant during the 1992–2000 period,
with a loss of 10.433.4 km2. A similar decrease in grassland growth rate by 1.8 percent was
also reported in China by other studies [99]. This decrease is accompanied by an overall
increase in forest cover of 12,111.26 km2 between 1992 and 2020, with an increasing rate
of coverage during the period. Studies by [93] indicated that the forest area increased
continuously after 1998 in the Third pole region. It is probable that the department’s
stringent implementation of conservation and management measures, as well as plantation
activities, will have an impact. That is a good sign that the forest service’s reforestation
initiatives and management efforts have helped slow down the rate at which trees are being
cut down.

This is a clear indication that warming temperatures are facilitating the trees to climb
higher and perhaps take over grasslands. Barelands, including rocky outcrops, are a key
characteristic of the high mountain landscapes and provide key ecological services to alpine
flora and fauna.

Between 1992 and 2020, bareland in the Third Pole shrank by 23,169.56 km2 with
increasing intensity. This decrease was also matched with an increase in sparse vegetation
and shrubland by 31,720.6 km2 and 689.56 km2, respectively. Since 1992, areas with
relatively little vegetation have grown the most, which is a clear sign that warming is
helping plants grow.

Human settlements have also grown between 1992 and 2020 by 1169.3 km2. The
settlements increased consistently between the periods 2000, 2010, and 2020 by 464.8, 532.7,
986.3, and 1635.1 km2, respectively. The trajectory indicates that the nomad population
is increasing rapidly, resulting in more settlements. Population growth under limited
resources and a changing climate can exert additional pressure on natural resources as well
as reduce the adaptive capacity of social ecological systems, thereby making adaptation and
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mitigation efforts difficult. Despite the growth in settlements, agricultural land coverage
decreased, indicating a food security problem. Food in the mountains is scarce and limited
by environmental conditions. Global warming can facilitate the growth of more crops and
improve the food security situation. However, the declining agriculture in the Third Pole
necessitates additional interventions. Wetland coverage bounced up and down with no
consistent pattern. However, compared to the 1992 area, it has decreased by 8351 km2 by
2020, indicating that wetlands are disappearing. Wetlands in high altitude areas provide
vital ecological services, including ground water regulation, habitat for wetland fauna, and
carbon sequestration, etc.

When discussing human-caused factors, population expansion must naturally come
up first [100]. Population expansion should be identified as a key factor in LUCC because
rising demands for both food and shelter encourage people to cultivate and develop more
land. Human activities, especially those motivated primarily by economic goals, are another
anthropogenic component that cannot be discounted. The improvement of productivity
and production technologies have increased the impact of human actions on regional LUCC.
Ground-use patterns have shifted as a result of human activities such as clearing of forests,
overgrazing, reclaiming of barren land, and building [101].

3.3. Prediction of Decadal Changes in Land Cover at the Third Pole from 2020 to 2060

We predicted the LULC for 2030, 2040, 2050, and 2060 after the model had been suc-
cessfully validated. Figure 6a–d and Table 3 show the results of the LULC prediction study
for the Third Pole for the four decades (2020–2030, 2030–2040, 2040–2050, and 2050–2060).
Between 2020 and 2060, bareland, agriculture, and snow and ice continued to decline,
losing a total predicted area of 79,870.5 km (1.94%), 8295.5 (0.20%), and 3373.0 (0.08%),
respectively. Despite a net loss of grassland during the 1992 to 2020 period, the prediction
analysis showed a net gain of 42,161.2 km2 of grassland in the Third Pole. Other land types
have all increased, with forest land gaining the most (18,727.7 km) during the prediction
period, followed by sparse vegetation (12,782.2 km), and water bodies (9054.1 km). Forest
plantation efforts, especially in China, may have also added to this increase [102]. Settle-
ments, which have also increased, mostly in lower valleys, have taken over agricultural
lands, which could threaten food security.

According to the prediction analysis, grassland areas will continue to expand through-
out the entire period, with the fastest growth occurring between 2020 and 2030, when
they will increase by 30,153.3 km2, followed by 2030 to 2040, 2040 to 2050, and 2050 to
2060, when they will increase by 2458.4 km2, 6224.0 km2, and 3325.5 km2, respectively.
This increase may impact the bareland flora and fauna but can benefit the ever-increasing
livestock population in the Third Pole. Recent research indicates that climate change [103]
and increasing precipitation [93] are significantly promoting plant growth on the Tibetan
plateau of the Third Pole. During 2071–2100, relative to 1950–2005, both RCP4.5 and RCP8.5
forecast a 15.8-day and 34.1-day increase, respectively, in the average first leaf date of alpine
vegetation [104]. This indicates that the grassland, wetland, settlement, bareground, and
water body areas will continue to expand in the future. The period between 2020 and 2030
exhibited the rate of increase in wetland cover, whereas the increase in water surface area
amounted to 2960 km2. In subsequent years, the region will lose its ice and snow cover
(Table 3). Recent research using the CMIP6 model predicts that the annual mean snow water
equivalent will continue to decrease at the Third Pole under all three scenarios. A previous
study [105] suggested a significant decrease in snow cover area in the small watershed
of the Indus basin by the end of the century under the warm–dry climate conditions of
RCP8.5 scenarios. The simulation shows that the retreat of the Tian Shan glacier’s terminal
will be gradual and dramatic up until 2040, and then rapid thereafter [106]. Under the
warmer RegCM3 scenario, the Qiangtang No. 1 glacier on the Tibetan Plateau is projected
to lose 11–18% of its area and 19–30% of its volume by 2050 [107]. According to models,
two well-studied Himalayan glaciers in Nepal and India will disappear between 2050 and
2100 [108,109]. As glacier tongues retreat, over-deepening causes existing lakes to enlarge
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and new lakes to form [110], resulting in a threat of glacial lake outburst floods that is pro-
jected to triple by the end of the century [88]. Enhanced precipitation and warming-induced
glacier meltwater were linked to the simulated lake expansion and level rise [111].
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Table 3. Shows a decadal prediction of land-cover changes in the Third Pole from 2020 to 2060.

Area Changes Total Change

2020 2030 2040 2050 2060 2020–2060

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Area
(km2)

Area
(%)

Agriculture 253,381.0 6.17 250,762.2 6.10 248,665.2 6.05 246,790.2 6.01 245,085.5 5.96 −8295.5 −0.20
Forest 366,821.0 8.93 371,529.3 9.04 376,256.6 9.16 380,852.2 9.27 385,548.7 9.38 18,727.7 0.46

Grassland 2,297,093.1 55.9 2,327,246.4 56.6 2,329,704.9 56.7 2,335,928.8 56.9 2,339,254.3 56.9 42,161.2 1.03
Shrubland 27,505.4 0.67 27,763.7 0.68 28,172.8 0.69 28,336.3 0.69 28,734.1 0.70 1228.7 0.03

Sparse vegetation 176,422.6 4.29 171,759.1 4.18 177,988.9 4.33 183,874.2 4.48 189,204.8 4.60 12,782.2 0.31
Wetland 8351.0 0.20 10,790.4 0.26 13,397.2 0.33 13,997.5 0.34 14,475.8 0.35 6124.8 0.15

Settlement 1634.1 0.04 2003.4 0.05 2413.5 0.06 2653.9 0.06 3094.3 0.08 1460.2 0.04
Bareland 802,701.6 19.5 770,675.3 18.8 754,404.1 18.4 737,394.3 17.9 722,831.1 17.6 −79,870.5 −1.94

Water body 55,213.0 1.34 58,174.0 1.42 60,321.6 1.47 62,148.3 1.51 64,267.1 1.56 9054.1 0.22
Snow and ice 119,665.8 2.91 118,084.8 2.87 117,463.8 2.86 116,812.8 2.84 116,292.8 2.83 −3373.0 −0.08

We found that between 1992 and 2060, snow, ice and glacier cover, bareland, and
agriculture decreased significantly due to climate change. Nevertheless, between 1992 and
2060, water bodies, settlements, and wetland and forest grew.

4. Technical Significance and Limitations, Future Directions

The present investigation was conducted without major difficulties, but there were
limitations. The first of these is that prediction analysis using the LCM model has not
been evaluated at the regional scale, nor has prior research in the field been evaluated
in the study area, whereas another is the adequacy of data collection and analysis. We
determine the limits of this research area based on a number of primary factors. It is a
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new boundary that includes the current international Third Pole boundary and the Tibet
Plateau. Therefore, our boundary is larger than the boundaries of all other research studies
pertaining to the Third Pole. Consequently, obtaining citations and comparing them with
other studies is one of the difficulties. For a regional prediction and analysis of net change,
only high-quality data should be selected, sectioned, and then combined. When figuring
out the prediction and net change for a regional analysis, you must be very careful at every
step because mistakes can be made at each step and add up over time.

5. Conclusions

The Third Pole landscape faces a serious challenge from global warming, which is sig-
nificantly changing land use and land-cover types. Results indicate that from 1992 to 2060,
the Third Pole experienced a decline in snow, ice, and glacier cover, bareland, and agricul-
ture, as well as an increase in water bodies, settlements, wetland, and forest. Recognizing
the driver variables of land-cover changes in the Third pole is important for enhancing
the efficacy of conservation efforts to prevent further degradation of the region’s unique
ecosystem, which is why this study is so important. A proper management plan and
strategy are required, as is the guarantee of their rigorous application. Continuous melt-
ing of the cryosphere, loss of bareland accompanied by increasing water bodies, forest
cover and other vegetation types, and settlements indicate that the Third Pole is being
impacted by global warming. Melting snow and ice (components of cryosphere) are seri-
ously threatening access to water, food, and energy in the Third Pole mountains and river
basins, significantly changing livelihood systems. LUCC in the Third Pole was significantly
influenced by human-caused climate change and other human-caused activities. The rate
at which ice and snow cover melted was sped up by global warming, releasing a quantity
of water resources further downstream. Further, the availability of water helped accelerate
the pace of human development. The complicated coupling relationship between human
activities and climate change is manifested in the Third Pole glacier-affected regions by
LULC. High-altitude biodiversity is also threatened by habitat loss caused by a shrinking
cryosphere, bareland, and expanding water bodies and forestland. In particular, signifi-
cant loss of snow and bareland is a direct threat to the globally vulnerable snow leopard
and other alpine flora and fauna. Changing biodiversity and ecosystem composition has
socio-environmental consequences, including the degradation of key ecological services.
Melting of the cryosphere directly leads to an increase in the number and volume of glacial
lakes, thereby increasing the risk of glacial lake outburst floods that continue to inflict
immense damage, including landslides, loss of agricultural land, infrastructure, properties,
and human lives. This problem is further exacerbated by the increasing population, as
indicated by the increasing settlements, who are directly dependent on natural resources.
The increasing number of livestock to feed the increasing population degrades pastures and
expediates alpine desertification. This competition also leads to conflicts between wildlife
and herders when herds are killed by wildlife. The impact of global warming on the Third
Pole in the absence of poor management policies and a lack of proper knowledge and early
warning systems further worsens the situation. Our study shows that there is an urgent
need to address adaptation and mitigation needs to secure water, food, energy security,
and ecosystem integrity in the Third Pole, and this needs to be performed with urgency.
It is a priority to conduct long-term scientific field research into more detailed land-use
changes and disaster prediction in the Third Pole. We also suggest that a model specifically
for detecting and predicting LULC in the Third Pole is needed.

Author Contributions: M.L. methodology, evaluation and results; writing original draft preparation;
W.-K.L. Writing—review & editing, project administration; S.W.W. conceptualization of the study
framework, development of the objectives, improvement of the original draft, review, language
edits, and funding the research. All authors have read and agreed to the published version of the
manuscript.



Land 2022, 11, 2227 15 of 19

Funding: This research was funded by National Research Foundation of Korea’s Key Research
Institute of Korea University, Republic of Korea.

Acknowledgments: The authors would like to thank the national research foundation of Korea for
supporting the study.

Conflicts of Interest: The authors have declared that no competing interests exist.

References
1. Quintero-Gallego, M.E.; Quintero-Angel, M.; Vila-Ortega, J.J. Exploring land use/land cover change and drivers in Andean

mountains in Colombia: A case in rural Quindío. Sci. Total Environ. 2018, 634, 1288–1299. [CrossRef] [PubMed]
2. Romijn, E.; Herold, M.; Mora, B.; Briggs, S.; Seifert, F.M.; Paganini, M. Monitoring Progress towards: Sustainable Development

Goals the Role of Land Monitoring. Wageningen, The Netherlands. 2016. Available online: http://www.gofcgold.wur.nl/
documents/newsletter/Sustainable_Development_Goals-infobrief.pdf (accessed on 1 October 2022).

3. UN-GGIM Global and Complementary (Non-Authoritative) Geospatial Data for SDGs: Role and Utilisation. 2019. Available
online: https://ggim.un.org/documents/Report_Global_and_Complementary_Geospatial_Data_for_SDGs.pdf (accessed on
1 October 2022).

4. Kavvada, A.; Ishida, C.; Juárez, J.; Ramage, S.; Merodio, P.; Friedl, L. EO4SDG. In Earth Observation Applications and Global Policy
Frameworks; Kavvada, A., Cripe, D., Friedl, L., Eds.; Wiley: Hoboken, NJ, USA, 2022. [CrossRef]

5. Mmbaga, N.E.; Munishi, L.K.; Treydte, A.C. How dynamics and drivers of land use/land cover change impact elephant
conservation and agricultural livelihood development in Rombo, Tanzania. J. Land Use Sci. 2017, 12, 168–181. [CrossRef]

6. Behera, M.D.; Borate, S.N.; Panda, S.N.; Behera, P.R.; Roy, P.S. Modelling and analyzing the watershed dynamics using Cellular
Automata (CA)–Markov model—A geo-information based approach. J. Earth Syst. Sci. 2012, 121, 1011–1024. [CrossRef]

7. Zhang, W.; Yi, Y.; Kimball, J.S.; Kim, Y.; Song, K. Climatic Controls on Spring Onset of the Tibetan Plateau Grasslands from 1982
to 2008. Remote Sens. 2015, 7, 16607–16622. [CrossRef]

8. Wang, C.; Gao, Q.; Yu, M. Quantifying Trends of Land Change in Qinghai-Tibet Plateau during 2001–2015. Remote Sens. 2019,
11, 2435. [CrossRef]

9. Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [CrossRef]
10. Yao, T.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.R.; Wang, W.; et al. Third Pole

Environment (TPE). Environ. Dev. 2012, 3, 52–64. [CrossRef]
11. Molden, D.J.; Shrestha, A.B.; Immerzeel, W.W.; Maharjan, A.; Rasul, G.; Wester, P.; Wagle, N.; Pradhananga, S.; Nepal, S. The

Great Glacier and Snow-Dependent Rivers of Asia and Climate Change: Heading for Troubled Waters. In Water Security under
Climate Change; Springer: Berlin/Heidelberg, Germany, 2021; pp. 223–250. [CrossRef]

12. EDW, M. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430.
13. Liu, X.; Cheng, Z.; Yan, L.; Yin, Z.-Y. Elevation dependency of recent and future minimum surface air temperature trends in the

Tibetan Plateau and its surroundings. Glob. Planet. Chang. 2009, 68, 164–174. [CrossRef]
14. Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y. High Mountain Areas. IPCC Special Report on the Ocean

and Cryosphere in a Changing Climate. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva,
Switzerland, 2019.

15. Bolch, T.; Shea, J.M.; Liu, S.; Azam, F.M.; Gao, Y.; Gruber, S.; Immerzeel, W.W.; Kulkarni, A.; Li, H.; Tahir, A.A.; et al. Status and
Change of the Cryosphere in the Extended Hindu Kush Himalaya Region. In The Hindu Kush Himalaya Assessment; Wester, P.,
Mishra, A., Mukherji, A., Shrestha, A., Eds.; Springer Science and Business Media LLC.: Cham, Switzerland, 2019; pp. 209–255.

16. Unger-Shayesteh, K.; Vorogushyn, S.; Farinotti, D.; Gafurov, A.; Duethmann, D.; Mandychev, A.; Merz, B. What do we know
about past changes in the water cycle of Central Asian headwaters? A review. Glob. Planet. Chang. 2013, 110, 4–25. [CrossRef]

17. Zhou, H.; Aizen, E.; Aizen, V. Seasonal snow cover regime and historical change in Central Asia from 1986 to 2008. Glob. Planet.
Chang. 2017, 148, 192–216. [CrossRef]

18. Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability
and People; Springer Nature: London, UK, 2019; p. 627.

19. Vaidya, A.S.; Helander, J.D.M.; Peterson, F.C.; Elzinga, D.; Dejonghe, W.; Kaundal, A.; Park, S.-Y.; Xing, Z.; Mega, R.;
Takeuchi, J.; et al. Dynamic control of plant water use using designed ABA receptor agonists. Science 2019, 366, eaaw8848.
[CrossRef] [PubMed]

20. IPCC. Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report. Available online: http://www.ipcc.
ch/ (accessed on 9 May 2016).

21. Xiong, Q.; Xiao, Y.; Liang, P.; Li, L.; Zhang, L.; Li, T.; Pan, K.; Liu, C. Trends in climate change and human interventions indicate
grassland productivity on the Qinghai–Tibetan Plateau from 1980 to 2015. Ecol. Indic. 2021, 129, 108010. [CrossRef]

22. Feng, Y.; He, S.; Li, G. Interaction between urbanization and the eco-environment in the Pan-Third Pole region. Sci. Total. Environ.
2021, 789, 148011. [CrossRef]

23. Gioli, G.; Thapa, G.; Khan, F.; Dasgupta, P.; Nathan, D.; Chhetri, N.; Adhikari, L.; Mohanty, S.K.; Aurino, E.; Scott, L.M.
Understanding and Tackling Poverty and Vulnerability in Mountain Livelihoods in the Hindu Kush Himalaya. Hindu Kush
Himalaya Assess. 2019, 421–455. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2018.03.359
http://www.ncbi.nlm.nih.gov/pubmed/29660880
http://www.gofcgold.wur.nl/documents/newsletter/Sustainable_Development_Goals-infobrief.pdf
http://www.gofcgold.wur.nl/documents/newsletter/Sustainable_Development_Goals-infobrief.pdf
https://ggim.un.org/documents/Report_Global_and_Complementary_Geospatial_Data_for_SDGs.pdf
http://doi.org/10.1002/9781119536789.ch9
http://doi.org/10.1080/1747423X.2017.1313324
http://doi.org/10.1007/s12040-012-0207-5
http://doi.org/10.3390/rs71215847
http://doi.org/10.3390/rs11202435
http://doi.org/10.1038/454393a
http://doi.org/10.1016/j.envdev.2012.04.002
http://doi.org/10.1007/978-981-16-5493-0_12
http://doi.org/10.1016/j.gloplacha.2009.03.017
http://doi.org/10.1016/j.gloplacha.2013.02.004
http://doi.org/10.1016/j.gloplacha.2016.11.011
http://doi.org/10.1126/science.aaw8848
http://www.ncbi.nlm.nih.gov/pubmed/31649167
http://www.ipcc.ch/
http://www.ipcc.ch/
http://doi.org/10.1016/j.ecolind.2021.108010
http://doi.org/10.1016/j.scitotenv.2021.148011
http://doi.org/10.1007/978-3-319-92288-1_12


Land 2022, 11, 2227 16 of 19

24. Yang, M.; Dong, S.; Dong, Q.; Xu, Y.; Zhi, Y.; Liu, W.; Zhao, X. Trade-offs in ecological, productivity and livelihood dimensions
inform sustainable grassland management: Case study from the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2021,
313, 107377. [CrossRef]

25. CCI Land Cover Release of a 1992–2015 Time Series of Annual Global Land Cover Maps at 300 m. 2017. Available online:
https://www.esa-landcover-cci.org/index.php?q=webfm_send/88 (accessed on 1 October 2022).

26. Moran, E.; Brondizio, E.; Mausel, P.; Lu, D. Change Detection Techniques. Int. J. Remote Sens. 2004, 25, 2365–2407.
27. Marceau, D.J.; Wang, F.; Wijesekara, N. Investigating Land-Use Dynamics at the Periphery of a Fast-Growing City with Cellular

Automata at Two Spatial Scales. In Modeling of Land-Use and Ecological Dynamics 2013; Springer: Berlin/Heidelberg, Germany,
2013; pp. 51–79. [CrossRef]

28. Etemadi, H.; Smoak, J.M.; Karami, J. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery
and CA–Markov algorithms to monitor and predict future change. Environ. Earth Sci. 2018, 77, 208. [CrossRef]

29. Feng, K.; Siu, Y.L.; Guan, D.; Hubacek, K. Assessing regional virtual water flows and water footprints in the Yellow River Basin,
China: A consumption based approach. Appl. Geogr. 2012, 32, 691–701. [CrossRef]

30. Ozturk, D. Urban Growth Simulation of Atakum (Samsun, Turkey) Using Cellular Automata-Markov Chain and Multi-Layer
Perceptron-Markov Chain Models. Remote Sens. 2015, 7, 5918–5950. [CrossRef]

31. Kalkhajeh, R.G.; Jamali, A.A. Analysis and Predicting the Trend of Land Use/Cover Changes Using Neural Network and
Systematic Points Statistical Analysis (SPSA). J. Indian Soc. Remote Sens. 2019, 47, 1471–1485. [CrossRef]

32. Islam, K.; Rahman, F.; Jashimuddin, M. Modeling land use change using Cellular Automata and Artificial Neural Network: The
case of Chunati Wildlife Sanctuary, Bangladesh. Ecol. Indic. 2018, 88, 439–453. [CrossRef]

33. Peraza-Castro, M.; Ruiz-Romera, E.; Meaurio, M.; Sauvage, S.; Sánchez-Pérez, J. Modelling the impact of climate and land cover
change on hydrology and water quality in a forest watershed in the Basque Country (Northern Spain). Ecol. Eng. 2018, 122,
315–326. [CrossRef]

34. Gu, Q.; Hu, H.; Ma, L.; Sheng, L.; Yang, S.; Zhang, X.; Zhang, M.; Zheng, K.; Chen, L. Characterizing the spatial variations of the
relationship between land use and surface water quality using self-organizing map approach. Ecol. Indic. 2019, 102, 633–643.
[CrossRef]

35. Sangermano, F.; Toledano, J.; Eastman, J.R. Land cover change in the Bolivian Amazon and its implications for REDD+ and
endemic biodiversity. Landsc. Ecol. 2012, 27, 571–584. [CrossRef]

36. Gupta, R.; Sharma, L.K. Efficacy of Spatial Land Change Modeler as a forecasting indicator for anthropogenic change dynamics
over five decades: A case study of Shoolpaneshwar Wildlife Sanctuary, Gujarat, India. Ecol. Indic. 2020, 112, 106171. [CrossRef]

37. García-Álvarez, D.; Olmedo, M.T.C.; Van Delden, H.; Mas, J.-F.; Paegelow, M. Comparing the structural uncertainty and
uncertainty management in four common Land Use Cover Change (LUCC) model software packages. Environ. Model. Softw.
2022, 153, 105411. [CrossRef]

38. Barry, R.G.; Hall-McKim, E.A. Polar Environments and Global Change; Cambridge University Press: Cambridge, UK, 2018. [CrossRef]
39. Yao, T.; Wang, Y.; Liu, S.; Pu, J.; Shen, Y.; Lu, A. Recent glacial retreat in High Asia in China and its impact on water resource in

Northwest China. Sci. China Ser. D Earth Sci. 2004, 47, 1065–1075. [CrossRef]
40. Deliang, C.; Baiqing, X.; Tandong, Y.; ZhengTang, G.U.; Peng, C.U.; FaHu, C.H.; Zhang, R.; Zhang, X.; Zhang, Y.; Jie, F.A.

Assessment of Past, Present and Future Environmental Changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035.
41. ESA (European Space Agency). Land Cover, CCI. Product User Guide Version 2.0. 2017. Available online: http://maps.elie.ucl.ac.

be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 10 November 2017).
42. Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual: LCCS; Food and Agriculture Organization:

Rome, Italy, 2005; Volume 2.
43. ESCAP; United Nation. Producing Land Cover Change Maps and Statistics: Guide on Advanced Use of QGIS and RStudio; ESCAP:

Bangkok, Thailand, 2021.
44. Lamchin, M.; Bilintoh, T.M.; Lee, W.-K.; Ochir, A.; Lim, C.-H. Exploring spatio-temporal change in global land cover using

categorical intensity analysis. Front. For. Glob. Chang. 2022, 5, 994713. [CrossRef]
45. Eastman, J.R. TerrSet Manual: Geospatial Monitoring and Modeling System; Clark Labs Clark University: Worcester, MA, USA, 2016;

p. 470.
46. Olmedo, M.T.C.; Paegelow, M.; Mas, J.F. Interest in intermediate soft-classified maps in land change model validation: Suitability

versus transition potential. Int. J. Geogr. Inf. Sci. 2013, 27, 2343–2361. [CrossRef]
47. Mas, J.F.; Kolb, M.; Houet, T.; Paegelow, M.; Camacho Olmedo, M.T. Eclairer le choix des outils de simulation des changements

des modes d’occupation et d’usages des sols. Uneapproche comparative. Rev. Int. Geomat. 2011, 3, 405–430. [CrossRef]
48. Mas, J.-F.; Kolb, M.; Paegelow, M.; Olmedo, M.T.C.; Houet, T. Inductive pattern-based land use/cover change models: A

comparison of four software packages. Environ. Model. Softw. 2014, 51, 94–111. [CrossRef]
49. Mas, J.F.; Puig, H.; Palacio, J.L.; Sosa-Lopez, A. Modelling deforestation using GIS and artificial neural networks. Environ. Model.

Softw. 2004, 19, 461–471. [CrossRef]
50. Olmedo MT, C.; Pontius Jr, R.G.; Paegelow, M.; Mas, J.F. Comparison of simulation models in terms of quantity and allocation of

land change. Environ. Model. Softw. 2015, 69, 214–221. [CrossRef]

http://doi.org/10.1016/j.agee.2021.107377
https://www.esa-landcover-cci.org/index.php?q=webfm_send/88
http://doi.org/10.1007/978-3-642-40199-2_4
http://doi.org/10.1007/s12665-018-7392-8
http://doi.org/10.1016/j.apgeog.2011.08.004
http://doi.org/10.3390/rs70505918
http://doi.org/10.1007/s12524-019-00995-7
http://doi.org/10.1016/j.ecolind.2018.01.047
http://doi.org/10.1016/j.ecoleng.2018.07.016
http://doi.org/10.1016/j.ecolind.2019.03.017
http://doi.org/10.1007/s10980-012-9710-y
http://doi.org/10.1016/j.ecolind.2020.106171
http://doi.org/10.1016/j.envsoft.2022.105411
http://doi.org/10.1017/9781108399708
http://doi.org/10.1360/03yd0256
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf
http://doi.org/10.3389/ffgc.2022.994713
http://doi.org/10.1080/13658816.2013.831867
http://doi.org/10.3166/rig.15.405-430
http://doi.org/10.1016/j.envsoft.2013.09.010
http://doi.org/10.1016/S1364-8152(03)00161-0
http://doi.org/10.1016/j.envsoft.2015.03.003


Land 2022, 11, 2227 17 of 19

51. Kafy, A.-A.; Naim, N.H.; Subramanyam, G.; Faisal, A.-A.; Ahmed, N.U.; Al Rakib, A.; Kona, M.A.; Sattar, G.S. Cellular Automata
approach in dynamic modelling of land cover changes using RapidEye images in Dhaka, Bangladesh. Environ. Chall. 2021,
4, 100084. [CrossRef]

52. Wang, S.W.; Munkhnasan, L.; Lee, W.K. Land use and land cover change detection and prediction in Bhutan’s high-altitude city
of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2021, 2, 100017. [CrossRef]

53. Kumar, S.; Radhakrishnan, N.; Mathew, S. Land use change modelling using a Markov model and remote sensing. Geomat. Nat.
Hazards Risk 2013, 5, 145–156. [CrossRef]

54. Kang, S.; Xu, Y.; You, Q.; Flügel, W.-A.; Pepin, N.; Yao, T. Review of climate and cryospheric change in the Tibetan Plateau.
Environ. Res. Lett. 2010, 5, 015101. [CrossRef]

55. Leta, M.K.; Demissie, T.A.; Tränckner, J. Hydrological Responses of Watershed to Historical and Future Land Use Land Cover
Change Dynamics of Nashe Watershed, Ethiopia. Water 2021, 13, 2372. [CrossRef]

56. Eastman, J.R. TerrSet Geospatial Monitoring and Modeling System; Clark University: Worcester, MA, USA, 2016; pp. 345–389.
57. Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316.

[CrossRef] [PubMed]
58. Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving land-use change modeling by integrating ANN with Cellular

Automata-Markov Chain model. Heliyon 2020, 6, e05092. [CrossRef] [PubMed]
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