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Abstract: Investment in biology-based technological innovations is a key requirement for the devel-
opment of modern agriculture/forestry. The expansion of innovative biological technologies includes
changes in crops/cultivations, such as the transition from intensive monocultures to multiple crops
of lower agrochemical inputs with the integration of woody trees/shrubs or animals, represented
by Agroforestry. This innovative biological technology is further promoted at the European Union
(EU) level by powerful institutions such as the Green Deal and the new CAP, mainly by tools such as
ecoschemes and agri-environmental and climate measures (AECMs). The use of integrated regional
spatiotemporal models, such as CLUE-S, to predict land use changes in the framework of Agroforestry
is rather restricted. This paper examines Agroforestry as a vehicle that can contribute to achieving the
rural development of the region of Thessaly, Greece. It sets a time horizon for reviewing the changes
that are expected in the most important units of land uses of the rural landscape of the municipality
of Mouzaki, western Thessaly plain, in the year 2040, which serves as model land for the region of
Thessaly. It examines these changes with the effect of three (3) socio-economic scenarios: (a) a linear
operating scenario (business as usual, BAU), (b) an ecological land protection (ELP) scenario, and
(c) a rapid economic development (RED) scenario. These scenarios were introduced in the non-spatial
module of the CLUE-S spatiotemporal model, while in the spatial module sixteen (16) characteristic
landscape parameters were introduced as independent variables. The most important land use units,
including traditional silvoarable and silvopastoral woodland systems, were the dependent variables.
The simulations of the changes of the land use units showed that under the RED scenario, in the year
2040 the extent of the silvoarable systems is expected to increase significantly (57%) compared to
the reference year of 2020, while the rest of the land use units under the other scenarios are mainly
regulated by depopulation/abandonment of the rural areas and the processes of natural succession.
The fact that the extent of silvoarable systems is increasing, in combination with the favorable institu-
tional environment created by European rural policies, gives impetus to regional rural development
through investments in the agricultural sector and mainly in Agroforestry systems.

Keywords: Agroforestry; CLUE-S; socioeconomic scenarios; land use change; investment in agriculture

1. Introduction

The modern concept of multidimensional rural development requires innovative tools
that will fulfill its multiple purposes. In contrast to the one-dimensional economic view of
rural innovation described by Schultz’s [1] high-pay-off model, Hayami and Ruttan’s [2]
model of technical change seems to fit in better with modern requirements. Such an
economic view of agriculture, and especially the form of post-production operation of the
model of technical change, has been widely accepted by modern theorists (e.g., Jin and
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Jorgenson [3]). The term technical change does not only mean technological innovations
(such as new agricultural machinery), but also biological ones. Thus, investment in biology-
based technological innovations is a key requirement for rural development. The expansion
of innovative biological technologies includes the change of crops, such as the transition
from intensive monocultures to multiple crops of lower inputs with the integration of
woody trees/shrubs or animals, represented by Agroforestry.

The primary productive activity of the combination of agricultural crops of trees
and/or grazing farm animals in the same unit of land area is called Agroforestry, and the
part of the land that is very susceptible to such activity is called an Agroforestry system.
Agroforestry has a high potential to be a viable alternative to crop change (Nasiakou [4]).
Benefits of the transition from monoculture to an Agroforestry system have been ob-
served in many developed countries with robust economies. Agroforestry is a sustainable
practice, compatible with the main goal of overall sustainable development for Australia
(George et al. [5]) or Canada (De Baets et al. [6]). However, Agroforestry is a much more
important lever for economic upgrading for those countries that have experienced some
kind of economic recession/slowdown and are in economic recovery. Such reports come
from Rwanda (Stainback et al. [7]), the Philippines (Neyra-Cabatac et al. [8]), Bangladesh
(Islam et al. [9]), or China under reform (Ren et al. [10]). Likewise, for Greece, Agroforestry
is projected as a prospect of economic recovery after the economic crisis of recent years
(Nasiakou and Vrahnakis [11]).

Streed [12] distinguishes the economic benefits for the owner of an agroforestry farm,
in the form of additional land income. These revenues may include marketable timber, non-
timber forest products (such as food, medicine, or resin), crop and pasture crop yields, and
inflows or grants from government programs such as the US Conservation Reserve, US
Programs, or state Rural Development Programs, specializing in the European Union’s (EU)
Common Agricultural Policy (CAP). In line with such considerations as Streed’s [12], the global
recognition of the profitability of agroforestry systems is clearly reflected in the World Bank’s
Agriculture Investment Sourcebook (World Bank [13]). Specifically, Agroforestry is included in
Section 5 entitled Investments in Sustainable Natural Resource Management for Agriculture
(Module 5—Investments in Sustainable Natural Resource Management for Agriculture).

From the above, it is evident that land use change towards Agroforestry is a promising
lever for investment in the primary sector. This is especially important for intensively
used rural landscapes with extensive domination of monocultures. By using, as a physical
model, the area of municipality of Mouzaki, which is representative of the intensively
cultivated plain of Thessaly in central Greece, the purpose of this paper is to indicate the
most suitable socioeconomic scenario for investing in Agroforestry. These scenarios have
already built and presented by Mamanis et al. [14]. Land use changes that are anticipated
to emerge within a time frame of 20 years (2020–2040) are produced by the projections
of the CLUE-S spatiotemporal model (Veldkamp and Fresco [15,16]). The institutional
environment needed to invest in Agroforestry in the region of Thessaly, and elsewhere in
the EU, is further discussed.

2. The CLUE-S Spatiotemporal Model

There have been several reviews of efforts to integrate modeling of economy-environment-
society interactions, as well as the consequences of these factors on land use. Most have
concluded that the number of models in which land use change is adequately modeled is
very small (Turner et al. [17], Fischer et al. [18], Lonergan and Prudham [19]). One possible
explanation is that the original purpose of most was not to model land use change, per se (Bri-
assulis [20]). The IIASA’s LUC (Fischer et al. [18]), IMPEL (Rounsevell [21]), cellular automata
(Tobler [22]), and CLUE (Veldkamp and Fresco [15,16]) models are considered to be representa-
tive of a more modern type for economy-environment-society interactions. In addition, their
immediate purpose is to model land use change. This last feature reflects the recent interest in
the critical role of land use change in provoking larger-scale environmental change.
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The CLUE (Conversion of Land Use and its Effects) modeling framework was devel-
oped, and is still being developed, at the Agricultural University in Wageningen (Nether-
lands) with the aim of modeling land use changes according to the factors that contribute
to them. The original idea for the first version of CLUE was conceived by Tom Veldkamp
and Louise Fresco (Veldkamp and Fresco [15,16]), while a first application was presented
by the same researchers a year ago (Veldkamp and Fresco [23]). Further impetus to the
development of CLUE was given by later editions created by Peter Verburg in collaboration
with colleagues at Wageningen University (Verburg et al. [24], de Koning et al. [25]) and
as CLUE-S by Verburg et al. [26] and Verburg and Overmars [27]. It has been applied
to the analysis of land use/cover changes in many countries, such as the Netherlands
(Verburg and Overmars [27]), Malaysia (Verburg et al. [26], Verburg and Overmars [27]),
and Ecuador (de Koning et al. [28]), and as DYNA-CLUE by Salazar et al. [29], the Philip-
pines (Verburg et al. [26,30]), Costa Rica (Veldkamp and Fresco [16], Schoorl et al. [31]),
Indonesia (Verburg et al. [32]), China (Verburg et al. [33]), and Greece (Chouvardas [34]).
The CLUE modeling framework is spatially clear and is used to analyze land use/cover
dynamics at various spatial scales. Its latest versions also incorporate dynamic analysis
of feedback on land use changes in the local environment, population, etc.; for example,
with intensive agricultural land use or inappropriate use in sensitive areas. Thus, the
CLUE modeling framework can be described as an integrated, spatially clear, multi-scale,
dynamic, economy-environment-society-land use model. It is an interdisciplinary model
as it integrates environmental modeling and Geographic Information Systems (Veldkamp
and Fresco [16]).

The version of CLUE that has been used most in modeling land use changes, mainly
for forecasting purposes, is CLUE-S (Verburg et al. [26], Verburg and Overmars [27]). The
CLUE-S model is based on the dynamic simulation of spatial land use change patterns in
response to predetermined changes in land demand from different sectors of economic
activity (e.g., agriculture and forestry). During each time step, the model determines
for each location (grid cell) the appropriate land use, i.e., the specific land use which is
determined based on the combination of the suitability of the location itself (for the specific
land use) and the competitive advantage that the indicated land use has over others, based
on their requirements, i.e., on the basis of demand. If the appropriate land use type for the
location requires an unrealistic land use conversion (not allowed due to spatial policies and
restrictions) then the next most-appropriate land use type is selected. Spatial policies (such
as regional policy), constraints and the matrix of possible conversions must be defined in
advance by the user (Verburg and Veldkamp [35]). After allocating the indicated land uses
to all locations in the area of interest, the total (cumulative) land use demand is compared
to the allocated areas. If demand is not properly distributed, the competitive advantage of
the different types of land uses is modified in such a way that the land uses for which the
demand was not met have a greater preference. Over-represented land uses have a lower
preference. This process is repeated until the demand is met by the assigned area. Demand
for different land use types must be determined in advance by the user. The calculation of
changes in demand is exogenous in the context of CLUE-S and can be based on different
techniques ranging from simple trend extensions to advanced modeling of requirements
based on specific socio-economic scenarios.

3. Materials and Methods
3.1. Study Area and Forecasting Period

The research area was the administrative territory of Mouzaki, central Greece (31,326.97
Ha, Figure 1). The municipality includes 27 village communities populated by more than
13,000 inhabitants. Agricultural crops occupied 11,144.03 Ha (35.57%), silvoarable 556.38
Ha (1.78%), grasslands 2405 Ha (7.68%), silvopastoral systems (10–40% tree cover) 3815.39
Ha (12.18%), forests (40–100% tree cover) 10573.64 Ha (33.75%), sparse shrublands (10–40%
shrub cover) 503.74 Ha (1.61%), dense shrublands (>40% shrub cover) 784.99 Ha (2.51%),
urban 1457.79 Ha (4.65%), and barren land 86.01 Ha (0.27%) (Figure 1, Nasiakou et al. [36]).
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A period of twenty years (2020–2040) was chosen as the most appropriate forecast
period. This choice is a compromise between the time it takes to see the results of the forecast
(the shorter the forecast time, the smaller the change in land use) and the uncertainty that
arises if a large time horizon is chosen.

3.2. Variables Input for CLUE-S Model

The CLUE-S model was chosen to be applied in the modeling of land use changes in
the landscape of Mouzaki. For the supply of CLUE-S and considering the possibilities of
collecting and processing the important landscape driving factors of Mouzaki, sixteen (16)
variables were selected (Table 1).

Table 1. Independent variables, type, unit of measurement, and data source for the supply of CLUE-S
during the modeling of land use changes of the landscape of Municipality of Mouzaki, Thessaly, Greece.

a/a Independent Variables * Type/Unite Data Source

1 Elevation zones Continuous/m DEM Aster 2

2 Slopes Continuous/% DEM Aster 2

3 Alluvial deposits/Very deep soils Binary/0–1 Soil map (Nakos 1991)

4 Limestone/Medium -Shallow to
rocky soils >> >>

5 Flysch/Deep soils >> >>

6 Tertiary deposits/Deep to
medium depth soils >> >>

7 Peridotite-Gabbro/Medium
depth soils >> >>

8 Schist/Deep soils >> >>

9 River bedrock/Rocky soils >> >>

10 Erosion potential Continuous/(t × Ha−1 × year−1)
Soil Erosion by Water (RUSLE 2015)/

ESDAC **
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Table 1. Cont.

a/a Independent Variables * Type/Unite Data Source

11 Distance from road network Continuous/m Digital files from State Cadastre,
Google Earth

12 Distance from hydrological
network >> Hydrological model from DEM,

topographic maps, Google Earth

13 Distance from urban centres >> Land use map 2020

14 Inhabitant density Continuous/Number × Ha−1 of
the total area

Official State Data (statistics.gr)

15 Sheep density >> Municipality services of Mouzaki

16 Goat density >> >>

* Landscape driving factors. ** European Soil Data Centre.

3.3. Selection and Digital Preparation of the Land Uses at Year 2020

The above landscape driving factors were introduced as independent variables in the
spatial module of CLUE-S. In addition, land uses were selected as dependent variables. The
results of the photo interpretation and digital processing of recent satellite images from the
Google Earth Pro program were used to structure the land uses. As with the independent
variables, the land use types were converted to (geographically oriented) digital raster files
with a pixel size of 100 m. The raster file of each land use was rendered binarily. Thus, each
pixel with the presence of the specific land use received the value of 1, and each with its absence
the value of 0. The digital raster files were then converted to alphanumeric ascii files to ensure
their entry in the statistical program SPSS (ver. 23) as dependent variables of CLUE-S.

3.4. Statistical Analysis

For the logistic regression, the CLUE-S variables were processed using the SPSS. The
generated ascii files of the dependent and independent variables were transformed (after
the file converter command of CLUE-S) into a table format to be imported into SPSS. The
data then were analyzed by the method of binary logistic regression of absence/presence,
using Forward: Conditional analysis as a step-by-step regression method. According
to Verburg and Veldkamp [35], it is considered the most appropriate logistic regression
method for CLUE-S, as it selects those landscape change variables that exhibit the highest
degree of correlation, while rejecting those with the lowest degree (Verburg et al. [26]). In
the process, the correlation values of the input and output probabilities of the indepen-
dent variables in the equation should not exceed the significance levels αinput = 0.01 and
αoutput = 0.02, respectively (Verburg and Veldkamp [35]). The regression coefficients (bi) of
the independent variables that remained in the logistic equation were presented in tabular
form. In addition, the following were calculated:

• The exponential coefficients (EXP (b)), as a result of the increase of the negative
logarithm (e) in the value of the coefficients (bi).

• The Relative Influence Index (RII) of the independent variables, defined as
exp(b x variable’s value range).

• The area under the ROC (Relative Operating Characteristic) curve (AUC) as a measure
of controlling the goodness of fit of the data to the logistic regression model.

• The coefficients of elasticity of the land uses of Mouzaki against the drivers of change
to which they are exposed. The value of 1 was given to those land uses that are
considered stable and unchanged, so the values close to 1, as given to the categories
of Unused land, Settlements, and Forests (0.9, Table 2), reflect land uses that show
a high degree of stability and are considered difficult to change. The value 0 (or
close to 0) was given to land uses that are vulnerable to change, such as Grasslands,
Open Shrublands, and Silvopastoral, which are very easily to change. All other land
uses received intermediate values (Table 2). Although most transformations were
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permissible, some, such as those of Dense shrubland and Forests, were considered
permissible only in certain land use units. The category of Urban land was considered
practically unchanged and a stable unit of the landscape, and for this reason all its
transformations to another use took the value of 0. With regard to the constraints that
could additionally be defined within the transformation matrix, value 16 stipulated
that the conversion of grassland into forest was not permissible in the eastern areas
of the landscape (Figure 2). Finally, value 110 stipulated that the direct conversion of
grassland into forest would be possible only after a period of at least 10 years.

• The matrix of permissible transformations of the landscape of Mouzaki, shown in
Table 3, where the rows express the current land uses while the columns represent the
possible future ones to which the current ones can switch. A value of 1 indicates that
transformation is permissible, while a value of 0 indicates that it is not. The results
of the diagram of diachronic transformations of the landscape were utilized for the
construction of the matrix.

Table 2. Land use categories and the values of their coefficient elasticity.

Land Use Categories Coefficient of Elasticity

Agricultural land 0.5
Silvoarable land 0.8

Grassland 0.0
Silvopastoral woodland (10–40% tree cover) 0.1

Forest (40–100% tree cover) 0.5
Sparse shrubland (10–40% shrub cover) 0.1
Dense shrubland (40–100% shrub cover) 0.9

Urban land 0.9
Barren land 0.9
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Table 3. Matrix of permissible transformations of the landscape of M. of Mouzaki (SA = Silvoarable,
G = Grassland, AL = Agricultural land, SS = Sparse Shrubland, DS = Dense Shrubland,
SW = Silvopastoral Woodland, F = Forest, ST = Settlements and BL = Barren Land).

SA (0) AL (1) G (2) SS (3) DS (4) SW (5) F (6) ST (7) BL (8)

SA (0) 1 1 1 1 1 1 1 1 0

AL (1) 1 1 1 1 1 1 110 1 0

G (2) 1 1 1 1 1 1 16 1 0

SS (3) 1 1 1 1 1 1 1 1 0

DS (4) 0 0 0 1 1 1 1 1 0

SW (5) 1 1 0 0 0 1 1 1 0

F (6) 0 0 0 0 0 0 1 1 0

ST (7) 0 0 0 0 0 0 0 1 0

BL (8) 1 1 1 1 1 1 1 1 1

3.5. Socioeconomic Scenarios

In order to predict the land use requirements in the area of Mouzaki, which will
be used by CLUE-S, the proposed approach of building scenarios in the context of busi-
ness research was used (Rosenhaead [37], Weintraub and Bare [38], Wang et al. [39], and
Mishra [40]). Scenario analysis is often used to explore future under uncertainties (Liu
et al. [41]) Business research manages to effectively enhance environmental decision-making
related to multifactorial, social, legal, institutional, technical, and environmental relation-
ships (Mishra [40]). Specifically, the approach of Wang et al. [39] was used, which proposes
a model for projecting land use demand based on business research optimization models
on ecosystem services for the greater Wuhan city area of China’s Hubei province. The
researchers explored how land use change under different scenarios would affect ecosys-
tem service delivery, combining a land use optimization model with an ecosystem service
valuation model. The objectives of the research included the forecast of the spatio-temporal
dynamics of land use in 2040, using the combined model of Multi-Objective Programming
(MOP) and Dyna-CLUE under three different scenarios, i.e., the linear operating scenario or
business as usual (BAU), rapid economic development (RED), and ecological land protec-
tion (ELP). In the RED scenario the demands were calculated by maximizing the economic
benefit of land uses, and in the ELP scenario the demands were calculated by maximizing
the environmental benefit of land uses. These three proposed socio-economic scenarios
(BAU, RED, and ELP) were adopted by the present study. The twenty year 2020–2040
period was chosen as the most appropriate predicted period for the study. The choice of
this period was a compromise between the time it takes to realize the results of the forecast
(the shorter the forecast time, the smaller the change in land use) and the uncertainty that
would result if a longer time horizon were chosen. Specifically, a scenario model was
chosen that uses optimization theory to (a) maximize financial profit and (b) maximize
the benefit of ecosystem services. More details about the structure and constraints of the
chosen socioeconomic scenarios are found in Mamanis et al. [14].

3.6. Data Processing in CLUE-S

Data processing in CLUE-S included a five-phase process (Verburg [42], Verburg
and Veldkamp [35]), with which the future land uses of the landscape of Mouzaki are
distributed. In the first phase, the identities of the pixels of the raster file of the landscape
of Mouzaki were determined; those that were allowed to change their land use and those
which were not allowed, due to restrictions (fixed pixels). In the second phase, the total
probability performance of pixels that could be changed in a given land use was calculated,
considering the suitability of the pixel position, the coefficient of elasticity of each land
use, and the iteration variable of CLUE-S, which gave the relative competitiveness of each
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land use. In the third phase, an initial distribution of land uses took place, favouring in
particular those that presented the largest greater overall probability of response to the
demands, while maintaining the same value of the iteration variable for each land use. At
this stage there were restrictions on the response of land uses based on the transformation
matrix. In the next phase, the model-calculated land use responses per pixel were compared
to those of future demand received from the CLUE-S non-spatial module (Figure 3). In
cases where, for a land use, the initial response was higher than that of future demand,
the recurrence rate decreased, while it correspondingly increased for smaller ones. In this
way, the land use recovery was reactivated. Lastly, phases two to four were repeated until
the total response of each land use was equal to the values of the future demand of the
non-spatial module.
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3.7. Production of Probability Maps and Landscape Change

The above five phases were repeated for all forecast time periods. Upon their comple-
tion, CLUE-S produced a first group of digital maps of the future change of the landscape
of Mouzaki. In addition, CLUE-S enabled the production of a second set of land use
probability maps. Probability maps are the expression of the distribution in the landscape
of the results of logistic regression equations (Verburg [42]). As the structure of the two
map groups was the same as the raster files of the model variables, it was easy to further
process them with ArcGIS.

3.8. Model Validation and Calibration

The negative validation (or test of corroboration, Soepboer [43]) of the CLUE-S model
was applied. More specifically, this method considers the model to be reliable when it is
able to successfully pass a series of critical tests, such as checking the values and range of
variables and parameters of the model. First it is ascertained whether the small changes in
the variables and the basic parameters of the model bring about corresponding changes
in the results of the model and secondly it is ascertained whether the forecast results of
the model agree with the logical change of the land use distribution. The model correction
process (calibration) was then followed after the application of the above validation test
(Englesman et al. [44]) and is the last stage of model validation (Mazzotti and Vinci [45]).
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The same type of validation and calibration was used during the application of CLUE-S
in the landscape of Langadas, northern Greece (Chouvardas [34]). During the process of
checking and calibrating the model, it was found that small changes in the variables and
parameters of the model brought about the corresponding changes in its results. However,
it was then found that the model provided for the conversion of part of the grasslands into
forests around the eastern lowland villages, which according to the existing socio-economic
conditions is not considered possible and was an unreasonable change in the distribution
of land use. In order to correct this, a restriction of conversion of grassland to forests in
the eastern lowlands of the landscape was included in the model in the form of a grid file
(Figure 1, value 16 of the transformation matrix of Table 3).

4. Results
4.1. Landscape Driving Factors

The digital elevation model of Mouzaki revealed that that over 70% of the landscape be-
longed to the low zone (0–600 m). About 10% belonged to the middle or semi-mountainous
zone (600–800 m), 11% to the mountainous zone (800–1200 m), and the rest (7%) to the
pseudo-alpine zone (>1200 m) (Figure 4A). The lowest altitude was 61 m and the highest
was 1940 m. The distribution in altitude classes showed that the predominantly low places
were located in the central and eastern part of the landscape, while the areas with higher
altitude were located west and southwest. The flat and gentle slopes (<15%) prevailed
at a rate of approximately 47%, followed by the moderate (15–30%) at a rate of 21%, and
the steep and very steep land (>30%) at a rate of 42%. The flat areas (slope < 5%) were
located in the eastern part of the landscape, and in streams in the central and eastern part,
while the areas with strong and very steep slopes (>30% slope) were located mainly in the
mountainous areas west and southwest (Figure 4B). The parent rock consisted of the largest
percentage of very deep alluvial deposits in the eastern center-north, with a percentage
of 41% approximately, and the deep on-schist soils occupied about 26% of the total area
and were located in the western, southern, and central-southern part of Mouzaki. The
limestone was located in moderately deep, shallow to rocky soils that occupied about 23%
of the total area and dominated the central Mouzaki, while elongated lime formations
appeared in the western part between schist (Figure 4C). The soils appeared slightly eroded
(0–12 t/Ha/year), mainly in the eastern part where gentle slopes and alluvial deep soils
prevailed (Figure 4D). The erosion potential became more intense in the central and western
part as the slopes increased, mainly on schist and limestone, while in the mountainous
areas it became very high and could reach 190 t/Ha/year. Given the intense agricultural
activity, the road network was particularly dense in the western plain part (Figure 4E).
Respectively, the existence of many settlements in the rest of Mouzaki was associated with
dense road networks in these areas. Places with a distance of more than 1500 m from a road
network were located sporadically in the mountainous part. The hydrological network was
diverse, as most of was formed by a multitude of streams and rivers, but not of permanent
flow (Figure 4F). Locations with relatively long distances were found in the western part of
the mountains and in a spot in the northeast. The landscape was characterized by 32 urban
centers (Figure 4G). Consequently, the distances in relation to the urban centers were short
and not more than 5100 m. In general, the longest distances were located in the periphery
of the municipality, mainly in the south-western part. The distribution of the population
size of the permanent residents per unit area of Mouzaki indicated that the class with
the highest relative population density (0.8–2.0 inhabitants/Ha) was located in the urban
centers of Mouzaki and Mavromati (Figure 4H). However, seven (7) urban centers had a
very low population density (<0.2 inhabitants/Ha) and eight (8) centers had low density
(0.21–0.35 inhabitants/Ha). Regarding the distribution of agricultural livestock, and in
particular sheep and goats, a relative complementarity arose in the area (Figure 4I,J). Large
concentrations of sheep (>1.2 sheep/Ha) were located east in the lowland zone, while those
of goats (>0.4 goats/Ha) were in the western mountainous zone.
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Figure 4. Landscape of Mouzaki. Spatial distribution of elevation classes (m, A), slopes (%, B),
parent rock and soil depth (C), erosion potential (t/Ha/year, D), distances from road network (m, E),
distances from hydrological network (m, F), distances from urban centers (m, G), inhabitant density
(inh./Ha, H), sheep density (head/Ha, I), and goat density (head/Ha, J).

4.2. Logistic Regression—Probability Maps

In order to identify the relationship between the likelihood of changes in land cover
units (dependent variables) and landscape driving factors (independent variables), logistic
regression equations were used. The goodness of fit of the logistic regression model was
performed by calculating the AUC (Area Under the Curve) value, which was used interpre-
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tatively, as with the multiple determination coefficient (R2) of a standard regression equation,
but was calculated differently (Table 4). According to Pontius and Schneider ([46]), the AUC
is one of the best indicators of the validation of land use change prediction models at specific
locations, without being affected by the intensity of the overall changes. The positive or
negative effect of each independent variable on the probability of occurrence of a particular
dependent variable (land cover unit) was estimated by the exp(b) of the independent vari-
ables (Table 4). Given that the independent variables had different units, some of them were
categorical (discrete numbers), and some were continuous, the effect of the independent
variables on the dependents was evaluated using the Relative Influence Index (RII) (Table 4).
In Table 4, the non-value cells express the independent variables that, based on the criteria
of the logistic regression analysis, did not show a statistically significant correlation with the
land cover units. Out of the total of 20 landscape driving factors (independent variables)
only two (tertiary deposits and rocky soils) did not show statistically significant correlations
with any of the dependent variables. The coefficients of regression were entered in the
software environment of the CLUE-S model in order to generate the probability maps and
complete the process of predicting landscape changes (Figure 5). The maps were in the form
of a digital grid file and presented the spatial distribution of the positions in which it was
statistically probable for one land cover unit to occur.
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Figure 5. Probability maps for major land use units of the landscape of Mouzaki. Light-colored areas
indicate places with a higher probability of occurrence: (A) Silvoarable (0 to 99%), (B) Agricultural land
(0 to 99%), (C) Grassland (0 to 99%), (D) Sparse shrubland (0 to 62%), (E) Dense shrubland (0 to 71%),
(F) Silvopastoral woodland (0 to 99%), (G) Forest (0 to 100%), and (H) Settlements (0 to 92%).
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Table 4. Logistic regression coefficients (b-values), exp (b) (in parentheses), Relative Influence Index [in brackets] and AUC (Area Under the Curve). Only statistically
significant coefficients appear, for significance level α = 0.02. (SA = Silvoarable, G = Grassland, AL = Agricultural land, SS = Sparse Shrubland, DS = Dense Shrubland,
SW = Silvopastoral Woodland, F = Forest, ST = Settlements and BL = Barren Land).

Independent Variables * SA AL G SS DS SW F ST BL

Elevation zones
−0.005 0.005 −0.002 −0.004 −0.001 −0.001
(0.995) (1.005) (0.998) (0.996) (0.999) (0.999)

[−6086.3] [7181.3] [−33.45] [−1114.5] [−2.871] [−14.17]

Slopes
−0.043 −0.084 −0.009 −0.013 0.012 0.007 0.018 0.076
(0.958) (0.920) (0.991) (0.987) (1.012) (1.007) (1.019) (1.079)

[−132.0] [−12,296.5] [−2.674] [−4.427] [3.699] [2.138] [7.942] [5288.5]

Alluvial deposits/Very deep soils
1.428 2.425 1.828 −2.513 −3.745 3.352

(4.169) (11.30) (6.223) (0.081) (0.024) (28.57)
[4.169] [11.30] [6.223] [−12.34] [−42.31] [28.57]

Limestone/ Medium—Shallow to rocky soils
5.448 7.792 −0.531

(232.2) (2420.5) (0.588)
[232.2] [2420.5] [−1.700]

Flysch/Deep soils
2.227 0.891 1.801 6.811 0.926 −1.474

(9.276) (2.438) (6.057) (907.6) (2.524) (0.229)
[9.276] [2.438] [6.057] [907.6] [2.524] [−4.368]

Tertiary deposits/Deep to medium depth soils
1.737 3.169 4.180 6.964 −1.081 −0.807

(5.678) (23.79) (65.35) (1058.1) (0.339) (0.446)
[5.678] [23.79] [65.35] [1058.1] [−2.947] [−2.241]

Peridotite-Gabbro/Medium depth soils
7.032 8.260

(1132.5) (3867.9)
[1132.5] [3867.9]

Schist/Deep soils
1.869 −0.999 4.609

(6.483) (0.368) (100.4)
[6.483] [−2.715] [100.4]

River bedrock/Rocky soils
1.006 −1.643 4.714

(2.734) (0.193) (111.5)
[2.734] [−5.171] [111.5]

Erosion potential
0.027 0.023 0.020 0.027 −0.015 0.021

(1.021)(1.027) (1.023) (1.020) (1.028) (0.985)
[158.0] [78.39] [42.79] [173.2] [−17.51] [55.19]
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Table 4. Cont.

Independent Variables * SA AL G SS DS SW F ST BL

Distance from road network
−0.001 0.002 0.006
(0.999) (1.002) (1.006)

[−3.520] [9.924] [8932.9]

Distance from hydrological network
−0.001 0.001 0.001 0.001 −0.001 −0.002
(0.999) (1.001) (1.001) (1.001) (0.999) (0.998)

[−8.288] [2.423] [4.146] [3.996] [−3.234] [−15.21]

Distance from urban centres
−0.001 0.001 0.000 0.000 0.003 −0.006
(0.999) (1.001) (1.000) (1.000) (1.003) (0.994)

[−365.2] [471.9] [6.235] [−8.351] [10,681,724.0] [−5.0 × 1012]

Inhabitant density
−4.955 0.281 0.692 −2.358

(1.000)
−0.546 −0.904 1.009

(0.007) (1.325) (1.999) (0.095) (0.579) (0.405) (2.744)
[−12,114.4] [1.706] [3.721] [−87.81] [−2.820] [−5.558] [6.788]

Sheep density (1.000)
1.108 0.468 0.271 0.375 0.431 −28.026 −18.535 −32.210

(3.029) (1.596) (1.311) (1.455) (1.539) (0.000) (0.000) (0.000)
[1101.4] [19.22] [5.546] [10.69] [15.25] [−8.4 × 1076] [−7.5 × 1050] [2.6 × 1088]

Goat density
1.711 −2.220 0.997 0.652 0.859 −35.78 −27.80

(5.532) (0.109) (2.709) (1.920) (2.361) (0.000) (0.000)
[81.14] [−300.2] [12.95] [5.345] [9.097] [−8.5 × 1039] [−1.1 × 1031]

Constant
−2.265 −2.970 −6.766 −7.273 −9.948 −1.624 0.581 2.461 −8.512
(0.104) (0.051) (0.001) (0.001) (0.000) (0.197) (1.787) (11.71) (0.000)

AUC 0.939 0.968 0.835 0.937 0.923 0.867 0.997 0.982 0.946

* Landscape driving factors.
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4.3. Implementation of Socioeconomic Scenarios

The spatiotemporal model CLUE-S completed the process of modeling the land use
changes in the landscape of Mouzaki after the completion of the data supply in its spa-
tial and non-spatial (socio-economic) modules. This took place for each of the three
socio-economic scenarios (BAU, RED, and ELP) and in this way the corresponding final
forecasting grid maps were produced (Figure 6), and areal data for each land use unit are
presented in Table 5. The simulation of the land use changes showed that under the RED
scenario, in the year 2040 the extent of the silvoarable systems was expected to increase
significantly (+57%) compared to the reference year 2020, something that was also expected
to happen under the BAU scenario, but to a much lesser extent (+14% approximately). The
BAU and ELP scenarios predicted a reduction of the area of dense shrubs and grasslands
by approximately 22% and 18%.
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Table 5. Area distribution (Ha) and rate of change (%) of land use units of Mouzaki for the period
2020–2040 for all socio-economic scenarios (BAU, RED, ELP).

Land Use 2020 BAU 2040 RED 2040 ELP 2040

Silvoarable 565 645 (+14.16%) 887 (+56.99%) 557 (−1.42%)
Agricultural land 11,148 10,358 (−7.09%) 11,149 (+0.01%) 10,344 (−7.21%)

Grassland 2421 1990 (−17.80%) 2044 (−15.57%) 1990 (−17.80%)
Sparse shrubland 503 514 (+2.19%) 503 (-) 505 (+0.40%)
Dense shrubland 782 608 (−22.25%) 611 (−21.87) 609 (−22.12%)

Silvopastoral woodland 3819 4003 (+4.82%) 3819 (-) 3818 (−0.03%)
Forest 10,561 11,682 (+10.61%) 10,617 (+0.53%) 12,036 (+13.97%)

Settlements 1458 1458 (-) 1687 (+15.71%) 1458 (-)
Barren land 90 89 (−1.11%) 30 (−66.67% 30 (−66.67%)

Total (Ha) 31,347 31,347 31,347 31,347

5. Discussion

The present study focused on the research of Agroforestry in Thessaly, in order to
be a potential are of regional development by reforming the typical, intensified, and one-
dimensional models of monocultures found in the region (Mylopoulos et al. [47]). For
example, the extensive use of water-consuming crops, such as the cultivation of cotton
in the area, has led to significant environmental degradation, both with the lowering
of the underground aquifer and also due to the high agrochemical burden required by
intensive cultivation and consequent production. In fact, as has been shown recently,
this intensification has led to the depletion of a significant portion of the soil nutrients,
resulting in severe soil degradation and abandonment, which in combination with climate
change, now leads irreversible desertification of the agricultural lands in the Thessaly plain
(Danalatos et al. [48]).

CLUE-S modeling was used as a means of spatiotemporal projection in 2040 of the land
use units of the rural landscape of Mouzaki, including traditional Agroforestry (silvoarable
and silvopastoral woodland systems), which were developed with the support of three
socio-economic scenarios. Mouzaki is a typical, representative administrative unit for the
region of Thessaly (Nasiakou [49]), and the results of the present research are expected to
have wider validity at the regional level.

5.1. Scenario Analysis

The chosen socio-economic scenarios do not deal exclusively with the promotion
and introduction of Agroforestry in the Thessaly plain, but rather represent real prospects
of all land uses. The business as usual (BAU) scenario configures the linear projection
of the current state as displayed from 1960 onwards. It is a feasible scenario given the
area’s land use history (historical trend scenario) and is a commonplace in spatial-temporal
landscape change research (e.g., Samie et al. [50] for rural Pakistan, Larbi et al. [51] for
Ghana, Zhu et al. [52] for China). It is predicted that by 2040 there will be a significant
increase in land use units that incorporate woody components (forests, woodland, and
forest grassland systems). This evolution of the woody land units can be justified by the
existing socioeconomic forces whose action prevents the intense use of agricultural/forest
land by the inhabitants, both in the lowland areas of the central part of Mouzaki (mainly
silvioarable areas), and of semi-mountainous and mountainous areas (mainly silvopastoral
woodlands). It should be noted that the silvopastoral systems in 2040 will have the current
traditional character of abandonment and in no case will they be organized systems,
regularly maintained, or with the ultimate goal of harvesting the woody elements at the
end of rotation time. In addition, the increase of silvoarable systems will occur as a result of
the abandonment of mainly agricultural crops, as common practice has shown that farmers
usually firstly abandon the treatment of the woody component in silvoarable systems
if necessary. This is because trees have much longer margins of resistance to external
pressures on crops. For example, the largest percentage (63%) of farmers (n = 111) surveyed
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on forestry farms in Mindanao, Philippines said they would abandon the timber component
first if it had to abandon the silvoarable system where timber component belongs (Cenas
and Pandey [53]). This is evident in the landscape of the mountain villages of Mouzaki,
as the plantations with important woody species present in their majority a picture of
abandonment, while areas of solely agricultural cultivation have usually been turned into
an abandoned field (Nasiakou [49]).

The characteristics of agricultural land abandonment projected by the BAU scenario
are very prevalent in south Mediterranean Europe. From the middle of the 20th century
onwards, large areas of agricultural land have been abandoned. Although there is relatively
little literature on the spatiotemporal characteristics of abandonment, the available data
show that it is one of the most important land changes (Van der Sluis et al. [54,55]). In
particular, in Spain it is expected that by 2030 an agricultural area equal to 1096.5 MHa will
be abandoned, in France 625.1 MHa, in Italy 456.3 MHa, and in Greece 179.2 M Ha (Perpiña
et al. [56]). For Greece, this abandoned area projected for 2030 is in line with the general
trend of decreasing arable land according to data of the World Bank, where 3057 MHa of
land in 1963 decreased to 2137 MHa in 2018, a decrease in the order of 30%.

Under BAU scenario the process of abandonment occurs largely as a result of the
reduction of the viability of agricultural practices, which occurs mainly in remote and moun-
tainous areas that are widespread, but also in semi-arid areas and even in fertile soils. It is
influenced by a complex range of environmental, structural, and mainly socio-economic fac-
tors, often local and regional (Van der Sluis et al. [54]). Especially in arid areas, the projected
effects of climate change will increase the risk of land abandonment. Land abandonment
as a key regional environmental factor has significant implications for the environment
and biodiversity. On the one hand, land abandonment can be considered beneficial, as it
allows large-scale and low-cost restoration of forest habitats. It seems that rewilding is a
natural trend in the European Mediterranean (Pointereau et al. [57], Herrando et al. [58]).
However, land abandonment results in the degradation of agricultural land and the disap-
pearance of semi-natural habitats, some of which are very important for biodiversity, such
as semi-natural grasslands, pseudo-steppe, or silvopastoral systems (Herrando et al. [58],
Russo [59], Tarolli and Straffelini [60]). Many of these habitats depend on High Natural
Value agricultural systems, most of which are characterized by very marginal economic
viability due to their low productivity and/or remote location (Keenleyside et al. [61]).
Land abandonment can also affect biodiversity by accumulating biomass, which fuels fires,
accelerating soil erosion, and landslides. In addition, abandonment can lead to the loss of
cultural heritage and traditional forms of land management, such as Agroforestry.

The ecological land protection (ELP) scenario focuses on ensuring the highest natural-
ness of land types and is relevant to the BAU scenario. Achieving the goal of maximum
naturalness is expected to lead to the preservation of traditional forestry systems and
reduce the area of agricultural crops. Agroforestry systems bring significant environmental
benefits associated with beneficial effects on the soil, tackling disease spread and microcli-
mate modification (Le Houérou [62], Tuomisto et al. [63], and Ollinaho and Kröger [64]).
Under this scenario there is a significant reduction of barren land, mainly due to the gradual
emergence of natural succession (Gaxiola et al. [65]).

The goal of the rapid economic development (RED) scenario is to maximize the
economic benefits that different units of land uses will produce for 2040. The development
of the RED scenario is usually accompanied by an increase in the size of settlements/urban
centers. For example, the implementation of a rapid economic growth scenario in the Punjab
province of Pakistan, with the development of the DLS model, predicted a significant
increase in the area of settlements (44.3%) for the year 2030 compared to 2010 (Samie
et al. [50]). Accordingly, Wang et al. [39], during the implementation of the Dyna-CLUE
model under the RED scenario, predicted for the year 2030 a significant increase (57.88%) of
the area of Wuhan city, China compared to 2015. The implementation of the rapid economic
growth (RED) scenario in the area of Mouzaki under the CLUE-S model predicted for the
year 2040 an increase in the area of settlements by 15.71% compared to 2020, an increase
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less than those predicted by Samie et al. [50] and Wang et al. [39] for some regions of
Pakistan and China, respectively. This differentiation can be attributed to the very high
rates of population growth, the prevailing political conditions, the astyphilia, and the
very intense pressures to find housing in urban centers that is observed in these countries
(Jabeen et al. [66], Xiao et al. [67]).

The most characteristic change from the implementation of the rapid economic growth
(RED) scenario comes from the projected increase in the area of silvoarable systems by 57%
in the year 2040 compared to the reference year (2020). This increase is combined with
changes observed in land use areas with woody components, and are expressed either by a
reduction in their area, such as in dense shrubland, or by conservation of the area, such as
in forest. In addition, there is a decrease in the areas of grasslands, while that of agricultural
crops remains stable.

5.2. Investment on Agroforestry

It is a fact that rapid economic growth is accompanied by an increase in investment in
all sectors of the economy and especially in the wider agricultural sector, given the general
nature of the economy (Zepeda [68], FAO [69]). Particularly for Europe, Agroforestry is
emerging as a well-promised practice of rural landscape redesign, and therefore financially
promoted and supported by the CAP (Augère-Granier [70]). European farmers applying
Agroforestry practices can receive direct payment per ha, as well as support for the es-
tablishment or maintenance of agroforestry systems under the CAP’s Rural Development
tool. In addition, innovation and research conducted in this area are supported. The
European Parliament has from time to time recognized the benefits of Agroforestry in
various resolutions (indicatively, Resolution 2014/2223(INI), Resolution 2015/2226(INI)
and Resolution 2018/2037(INI)), and has called for more effective support for a number
of sustainable production methods, including Agroforestry. The promotional base of the
Agroforestry-related entrepreneurship has already been demonstrated by the particular
high synergy effect that characterizes it - the combination of many components and their
dynamic interaction - that increases the overall productivity of the system. Researchers at
INRA in France measure the productivity of an Agroforestry system using the Equivalent
Land Ratio (LER), which compares yields from the cultivation of two or more components
(crops, trees, animals) to yields from the cultivation of the same components individually,
proved that the production from 1 Ha of the walnut/wheat combination is equal to that
obtained from 1.4 Ha with separate tree crops (walnut plantations) and underlying crops
(cereals) (Dupraz and Talbot [71]).

Investments in modern Agroforestry have already been proposed as a practice of
ensuring long-term profit in many cases. Felker and Guevava [72] proposed investments in
agroforestry systems of legumes and hardwood plantations (Prosopis alba) in Argentina, as
they have an Internal Rate of Returns (IRR) ranging from 11.8% to 34.8% (depending on
management practices) compared to just 5.3% obtained from an unmanaged monoculture
of the hardwood species. The World Bank in Nairobi, Kenya, highlighted the benefits of
investing in agroforestry in May 2011. A special forum was set up with the participation
of the World Bank, IUCN and the WAC, with the aim of activating private investment in
technology, based on tree plantations (Agroforestry) and the restoration of the environment
in sub-Saharan Africa (PROFOR [73]). The growing potential for profit from investments
in modern Agroforestry techniques has been demonstrated in the case of Brazil (Batista
et al. [74]). In fact, Batista et al. [75] have developed a special application that calculates
the economic figures resulting from investments in reforestation and in the installations of
modern agroforestry systems. Faruqi et al. [76], in a case study, analyzed the financial pro-
files of 14 agroforestry holdings from eight countries and concluded that the opportunities
created for profitable investments in Agroforestry are very large and promising.

However, investment in Agroforestry according to the World Bank [13] is associated
with various obstacles, such as “high interest rates, unclear institutional framework, limited
policy framework, poorly developed markets, and insufficient research and applications.”
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In addition, as Ollinaho and Kröger [64] have rightly pointed out, great care must be
taken when investing in Agroforestry promotions so that the new emerging land use
is not promoted as a business solely for economic gain (agrobizforestry, as they call it)
which can often be combined with extensive alterations in the forest character of the land
(agrodeforstry), but include social and environmental benefits (agroecoforestry). All these
obstacles and concerns should be addressed effectively when designing flexible investment
plans. According to Nasiakou [4] and Vrahnakis et al. [77], tackling many of these limiting
factors and concerns can be organized with the input of business consulting companies
investing in Agroforestry.

5.3. EU CAP and Investment in Agroforestry

The two most important financial instruments that significantly facilitate investment
in Agroforestry in the EU are the Agri-Environmental and Climate Measures (AECMs) and
the ecoschemes currently available through Pillar I and II of CAP, both of which are quite
common characteristics. However, ecoschemes are part of Pillar I and are therefore fully
funded from the EU budget. Ecoschemes’ payments are granted per Ha, as compensation
for additional costs or lost income caused by the adoption of more environmentally friendly
practices or as fixed additional payments to basic income support payments. This second
option brings to the light the implementation of Payments for Ecosystem Services (PES) for
the support that farmers have to receive due to climate change mitigation and environmen-
tal services offered by their systems. However, the PES will be determined essentially on
the basis of farming practices (i.e., with a commitment to resources) and not on the basis of
climatic and environmental benefits (i.e., a commitment of results) (Nasiakou [49]).

AECMs also aim to upgrade the rural environment from a more environmental-
friendly perspective. They generally focus on (a) reversing biodiversity loss, (b) tackling
(in the broadest sense) climate change, (c) protecting genetic resources, (d) conserving the
landscape, (e) protecting water, and (f) protecting soil (Sulima [78]). Two approaches can be
distinguished in AECMs: (a) the compliance-oriented one, where management practice is
the central issue of a Measure and (b) the results-based one. There are challenges associated
with both. Compliance-oriented is the dominant approach in which the planning of
commitments, farmers’ activities, and eligibility rules are based on reasonable assumptions
that the desired results may be achieved. These hypotheses must be supported by scientific
or practical evidence (Scheele [79]). According to the results-based approach, it is difficult
to calculate and justify the level of payments to farmers, as production methods are not
defined in advance. Regardless of the approach used in an AECM, payment rates should
be based on calculations of lost income and additional costs.

The adoption of ecoschemes and AECMs related to Agroforestry should be part
of the Strategy for Rural and, therefore, for Regional Development, developed by each
member state of the EU. Such a Strategy has been designed and implemented in many
central European countries. However, Greece has not yet adopted in their fullness, despite
the fact that the benefits of Agroforestry have full recognition scientifically, socially and
economically. This has given impetus to many institutions either at the state level or an
association of states to adopt and strengthen the application of Agroforestry in the wider
rural area. The EU’s CAP has been moving towards this goal of promoting Agroforestry
since the 2007–2013 programming period, when its forecasts were incorporated into the
Rural Development Programs of Portugal, Spain and France, while Italy followed in the
period 2014–2020.

The new CAP for the programming period 2021–2027 aims to promote a sustainable
and competitive agricultural sector that can support farmers’ livelihoods and provide
sustainable food for society, as well as for the revitalization of rural areas. The new CAP is
expected to be a key tool in achieving the From Farm to Fork Strategy and the European
Biodiversity Strategy 2030, two emblematic institutional efforts within EU’s Green Deal,
and will play a key role in managing the transition to sustainable agriculture, towards a
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sustainable food system and to strengthening the efforts of European farmers to contribute
to the EU’s goals related to climate change and environmental protection.

5.4. Limitations of the Research

CLUE-s is a valuable tool to model land use change as it is adequate enough for the
demands for spatial and non-spatial integration. According to Briassoulis [20], it serves
primarily as a predictive tool in analyzing land use impacts under socioeconomic scenarios
at several geographic scales, and it is also simple to comprehend and easy to use. However,
the statistical procedures do not rely on causal relationships, the analysis applied cannot
capture the qualitative aspects of land uses change in relation to their cultural, political,
and institutional nature, and the statistical importance of independent variables often does
not asset their theoretical importance. According to the same author, the most prominent
limitations stem from the lack of a theoretical basis able to sustain the modeling effort.
Despite these inherent limitations, the prediction power of CLUE-s is great enough and is
strongly suggested as supporting tool to land policy planning. For example, in the case of
Lagadas district (Greece) the CLUE-S model estimated that the simulated area of grasslands
will be reduced from years 1945 to 2013 almost to extinction (−95.69%) (Chouvardas and
Vrahnakis [80]). In this case, the predictions of the CLUE-S model have recently been
verified, since the real change of grassland area from 1945 to 2020 was reduced by 87.78%
(Chouvardas et al. [81]). Finally, for Greece, the current institutional environment does
not favour the application of or investments in Agroforestry, since the state’s Regional
Development Strategy within the reformed CAP 2021–2027 excluded Agroforestry from
payments. However, given the associated environmental and socioeconomic benefits, it is
believed that soon this Strategy will change in favour of Agroforestry.

6. Conclusions

Particularly for the heavily environmentally burdened plain of Thessaly, Agroforestry
stands out as an alternative option which is linked beyond the environmental benefit with
significant socio-economic benefits. Its integration into farming practices is now a direct
demand. In relation to the foreseen changes in the rural landscape of the modeled area of
Mouzaki, it appears, according to the spatiotemporal model CLUE-S, that the silvoarable
systems are expected to expand under the three scenarios. The scenario that favors this the
most is that of rapid economic development (RED). In contrast, silvopastoral woodland
in the mountains appears to remain stable, with only a small increase under the business
as usual scenario (BAU). The RED scenario is associated with an increase in investments
in innovative biological technologies, such as silvoarable systems. The use of EU CAP
tools that are directly related to the promotion of Agroforestry, and especially ecoschemes
and agri-environmental and climate measures, create a safe institutional environment for
investments in Agroforestry in EU countries. Speaking in a broader context, economic
development together with investments in Agroforestry within a favorable agro-policy
framework offer the opportunity to establish agroforestry systems and exploit all the
associated socio-economic and environmental benefits. These opportunities may be used as
barriers to withhold the accelerating depopulation processes that occur in several countries
of European south, and elsewhere. In this sense, EU countries must adopt Agroforestry in
their Rural Development Strategy within CAP 2021–2027 as an innovative biological tool
to create value for rural societies the and natural environment.
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