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Abstract: Land cover can reflect global environmental changes if their associated transitions are
quantitatively and correctly analysed, thus helping to assess the drivers and impacts of climate
change and other applied research studies. It is highly important to acquire accurate spatial land
cover information to perform multidisciplinary analyses. This work aims at estimating the accuracy
of three widely used land cover products, the Moderate Resolution Imaging Spectroradiometer
(MODIS) land cover product (MCD12Q1), the European Space Agency Climate Change Initiative
land cover (ESA-CCI-LC), and the EU CORINE land cover (CLC), all for the reference year of 2018,
by comparing them against a fine resolution land cover dataset created for this study with combined
ground surveys and high-resolution Large Scale Orthophotography (LSO 25/2015). Initially, the
four datasets had their land cover classes harmonized and all were resampled to the same spatial
resolution. The accuracy metrics used to conduct the comparisons were Overall Accuracy, Producer’s
Accuracy, User’s Accuracy, and the Kappa Coefficient. Comparisons with the reference dataset
revealed an underestimation of the forested areas class in all three compared products. Further
analysis showed that the accuracy metrics were reasonably high for the broad classes (forest vs.
non-forest), with an overall accuracy exceeding 70% in all examined products. On the contrary, in the
detailed classification (total land cover mapping), the comparison of the reference dataset with the
three land cover products highlighted specific weaknesses in the classification results of the three
products, showing that CLC depicted more precisely the landscape characteristics than the two other
products, since it demonstrated the highest overall accuracy (37.47%), while MODIS and ESA-CCI-LC
revealed a percentage that did not exceed 22%.

Keywords: land cover mapping; Chalkidiki; Greece; land cover differences; classification accuracy

1. Introduction

Several environmental assessments and applications, such as land degradation, habitat
and ecosystem studies, hazard mitigation, hydrological, and land surface models are based
on land cover datasets. The quality of their outputs is controlled by the accuracy of the land
cover classification and its ability to describe the landscape variability [1–4]. Climate change
is also affected by land use/land cover (LULC) changes, as indicated in the Special Report
on land use, land use change, and forestry, of the Intergovernmental Panel on Climate
Change (IPCC) [5], where annual emissions from LULC changes from 1980 to 1995 equal to
approximately 25% of those emitted from fossil fuel combustion and cement production.
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Nowadays, with the wide acceptance of remote sensing and the open research data
policies adopted by the U.S. and EU space agencies, several global land cover datasets
are available in various spatial and temporal scales from different classification schemes.
Thus, coarser resolution land cover products are available at the global scale, while finer
resolution products are generated at local or regional scales. Global land cover datasets
comprise the MODIS land cover, more precisely MCD12Q1 v006 [6], which includes five
legacy classification schemes with an annual time step from 2001 to present, at 500 m spatial
resolution. The GlobaLand30 [7] is a fine-resolution (30 m) global land cover product
that does not have an annual update rate, produced only for the reference years of 2000,
2010, and 2017 as its latest updates. The GlobCover project [8,9] is an ESA initiative
that provided a global 300-m land cover dataset covering two periods, December 2004 to
June 2006 and January to December 2009. The classification is compatible with the FAO
Land Cover Classification System (FAO LCCS) and its accuracy has been reported to be
between 73% to 79% [9]. Another global land cover dataset is the Global Land Cover 2000
(GLC2000 global) [10], equivalent to the International Geosphere–Biosphere Programme
(IGBP) classification system. The GLC2000 uses 22 land cover types at 1 km2 spatial
resolution. Although this dataset is not regularly updated, it can be used as a reference
land cover assessment. The ESA’s Climate Change Initiative released a global land cover
(ESA-CCI-LC) product with a spatial resolution of 300 m, updated annually from 1992 to
2020, and evaluated in various scales for different areas around the world [11]. It was found
to be a consistent dataset suitable for the identification of land cover transitions at national,
continental, and global scales [12–14]. Other land cover products that have been produced
at finer spatial scales with continental or national coverage include the EU CORINE land
cover (CLC) [15] for Europe and the US National Land Cover Database [16].

Previous studies have dealt with the accuracy assessment and inter-comparison of
various land cover datasets. Aune-Lundberg and Strand [17] estimated the accuracy of
CLC2018 in Norway by comparing it against several national land cover datasets. They
concluded that there are certain discrepancies between CLC2018 and more detailed datasets,
however, considering its generalized character, the accuracy for the broad Norwegian
classes was satisfactory, and only classes that cover a small part of the country were detected
with lower accuracy. Büttner [15] reported a thematic accuracy of >85% for CLC2000, while
CLC2006 and CLC2012 have also been reported with similar accuracy. The CLC2000 was
also verified against the European Land Use/Cover Area Frame Statistical Survey (LUCAS)
across 15 European Union countries, and its overall percentage of total agreement was
found to be 74.8%, whereas for the forest land cover category the performance was even
better (83.3%) [18]. An inter-comparison study of three land use/land cover datasets (i.e.,
a national land use inventory, CLC2000 and a Landsat 5 TM classification) in two case
studies in Germany reported an overall accuracy ranging from 69% to 87%, while the
agreement of individual land cover classes demonstrated higher variability, with forest,
urban, and traffic areas performing better compared to open land (arable land, pastures
and meadows, fallow) [19]. A comparison of GLC2000 and CLC2000 indicated many
dissimilarities between the two datasets, and highlighted issues that arise when comparing
land cover datasets of different resolution and land cover definitions [20]. A comparison
study for the tundra–taiga transition zone in northern Finland of three land cover datasets,
namely, the MODIS IGBP [21], the tree cover layer of the MODIS vegetation continuous
fields product (MODIS-VCF), and the Global Land Cover 2000 Northern Eurasia map
(GLC2000-NE), with the Finnish CORINE Land Cover 2000 map indicated the uncertainty
of the tree cover estimates in all three examined products, while the forest vs. non-forest
boundaries were accurately mapped.

The need for reliable land cover information has been underscored in many previous
research works, not only within the framework of climate change but also regarding the
protection of biodiversity and wetlands, for the assessment and mitigation of desertification,
and for the planning of targeted policy measures that will help with managing the observed
changes in a timely manner [22,23]. Reliable land cover products are also of paramount
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importance for acquiring information related to the future of the Earth’s surface, through
projections of the observed land cover changes to future periods [24]. Although it is recog-
nized that a breakthrough in Earth Observing missions has been achieved, providing an
unprecedented abundance of monitoring data and an associated production of high quality
freely available global and continental land cover products, it is also widely accepted that
they still lack the required applicability to meet the wide variety of user needs in terms of
spatial and temporal resolution, types, and number of land cover classes [23]. Currently,
the various land cover products use information from different sensors and implement dif-
ferent classification techniques, with their respective advantages and limitations, resulting
in variations in spatial and temporal resolution and classification nomenclature. Thus, such
products are difficult to harmonize, and they contain inconsistencies at global and regional
scales, limiting their applicability [22].

Considering the importance of accurate land cover information for many research ar-
eas and applications (e.g., climate change, hydrology, ecology, biodiversity, and fire science
studies), the estimation of the uncertainty of land cover datasets in specific hydro-climatic
zones, depicted as “hot spots” regarding climate change impacts [25] in Mediterranean
landscapes, is critical. The aim of the present work was to provide a detailed accuracy as-
sessment of three widely used land cover products—MODIS, CLC, and ESA-CCI-LC—and
compare them to a detailed and highly accurate dataset produced with aerial interpreta-
tion over orthophotos and acquisition of ground truth information, collected during field
surveys in a typical Mediterranean landscape of Greece for the reference year of 2018,
specifically the western peninsula of Kassandra in the Chalkidiki Prefecture, Macedonia.
To the best of our knowledge, the evaluation of these three datasets has not been performed
before for this type of mixed and fragmented wildfire-prone ecosystem.

The MODIS Land Cover Type Product (MCD12Q1) Collection 6 (C6) provides a collec-
tion of five legacy classification schemes (International Geosphere-Biosphere Programme-
IGBP; University of Maryland-UMD; Leaf Area Index-LAI; BIOME-Biogeochemical Cycles-
BGC; and Plant Functional Types-PFT) and a three-layer legend based on the Land Cover
Classification System (LCCS) from the Food and Agriculture Organization at 500-m spatial
resolution and an annual time step. The MCD12Q1 product is created using supervised
classification of MODIS nadir BRDF-adjusted surface reflectance (NBAR) data. More specif-
ically, the LCCS legend is a nested set of classifications based on new class information
in the site database. It is also a Random Forest classifier for each layer of the hierarchy
followed by post-processing steps that integrate prior probability knowledge and adjust
specific classes based on ancillary information [26].

The CLC2018 product is derived from ortho-corrected Sentinel-2 and Landsat 8 for gap
filling imagery. A computer-assisted image interpretation (CAPI) method was applied for
deriving the land cover types from 2017 images by also using other ancillary information,
such as: topographic maps; orthophotos; thematic maps; Land Parcel Identification System
data; LUCAS field survey data, including landscape photographs from visited points; and
other Very High-Resolution image data, such as Google Earth [27].

The CCI-LC maps are intended to be globally consistent, and their typology is defined
by the United Nations (UN) Food and Agriculture Organization’s Land Cover Classification
System (LCCS) (FAO). The UN-LCCS defines LC classes using a set of classifiers. The
system was designed as a hierarchical classification, allowing thematic detail in the legend
to be adapted to the amount of information available to describe each LC class, while
adhering to a standardized classification approach. The product is based on the GlobCover
unsupervised classification chain, but it also uses a machine learning approach and a multi-
year strategy. In this manner, it aggregated both the spectral and temporal characteristics
of the MERIS full resolution time series [28,29]. The characteristics of the four land cover
products are presented in Table 1.
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Table 1. Overview of the datasets examined in this study.

Dataset Satellite Sensor Spatial Resolution (m) Minimum Mapping
Unit (ha) Reference Date Nomenclature

KASSANDRA
DATASET LSO25/2015 30 0.1 2018 12 classes.

CLC Sentinel 2 and Landsat 8 100 25 2018 CLC2018, hierarchical, 44 classes
at the lowest level.

MCD12Q1 Terra MODIS 500 100 2018 IGBP, non-hierarchical, 17 classes.

ESA-CCI-LC
PROBA-Vegetation

(PROBA-V) and Sentinel-3
OLCI (S3 OLCI)

300 9 (nominal),
81 (verified) 2018 Level 1, global scale, 22 classes.

2. Materials and Methods
2.1. Study Area

Kassandra (350 km2) is located at the north-central part of Greece (Figure 1), about
60 km south of the large urban centre of Thessaloniki. Its climate is characterized as
Mediterranean-type temperate, with relatively mild winters and dry hot summers. The
mean annual rainfall is approximately 580 mm, and the mean temperature is about 16.7 ◦C,
with the dry period lasting from May to September. The topography is rather gradual,
apart from some isolated northwest-facing slopes that are steeper. The maximum altitude
is approximately 320 m above sea level.
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Figure 1. Location map of the study red area.

Kassandra is mostly covered (44%) with a fire-prone conifer species typical across
the coastal Mediterranean areas, commonly named Aleppo pine (Pinus halepensis Mill.)
(Figure 2a). Agricultural areas occupy approximately 44.5% of the study area, comprising
mostly of olive trees (Olea europaea L.) and non-irrigated croplands. During the last decades,
the trend of land use conversion in favour of residential developments for tourism and
recreational use has transformed the dominant vegetation patterns of the peninsula into
a widespread wildland–urban interface (WUI), with hundreds of dispersed recreational
houses or hotels intermingled with the natural vegetation in approximately 10% of the
study area. A large-scale lightning wildfire burned 20% of the study area in 2006, destroying
an old mature Pinus halepensis forest (Figure 2b). Nowadays, most of the affected areas have
been converted to maquis broadleaved evergreen Mediterranean shrubs (Quercus conferta
Kit., Quercus ilex L. and Pistacia lentiscus L.).
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2.2. Datasets and Analysis Inputs
2.2.1. The MODIS Land Cover Product

A global land cover product provided at an annual time step is the MODIS land
cover, specifically the MCD12Q1v006 product, described in Sulla-Menashe et al. [26]. It
has been used in many global and regional scale studies for quantification of land cover
transitions, model land cover changes, or as a reference layer for the classification of
Landsat images [30–33]. The spatial resolution of MODIS land cover is 500 m, which is
quite restrictive for local scale applications; however, its extensive validation in many areas
all over the world and the reported overall accuracy of 73.6% [6], combined with the annual
update rate, make this specific land cover product a state-of-the-art dataset suitable to
depict major land cover characteristics in various regions [24,34]. Five major land cover
schemes developed by different research groups are incorporated in the MODIS land cover
dataset as individual layers of information, namely, the Annual International Geosphere-
Biosphere Program (IGBP) classification [35], the Annual University of Maryland (UMD)
classification [36], the Annual Leaf Area Index (LAI) classification, the Annual BIOME-
Biogeochemical Cycles (BGC) classification, and the Annual Plant Functional Types (PFT)
classification. Additionally, three more land cover layers associated with the FAO LCCS
are released as additional scientific datasets of this specific product. Among the five land
cover schemes, the one provided by the International Geosphere Biosphere Programme
(IGBP) is the most detailed one, identifying 17 land cover classes, and has been found to
demonstrate the highest overall accuracy at the regional scale compared to the other four
MODIS classification schemes [34].
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2.2.2. The ESA-CCI-LC

The European Space Agency Climate Change Initiative (ESA CCI) [11] releases high
quality land cover data at the global scale with a spatial resolution of 300 m, updated
annually since 1992 (latest release: 2020). This is the longest period of global land cover
data suitable to describe vegetation distribution for climate modelling. The ESA CCI land
cover (ESA-CCI-LC) dataset is produced by merging information from a variety of Earth
observation missions, e.g., the MERIS, SPOT-Vegetation, and AVHRR, and it categorizes
land features into classes according to the land cover classification scheme defined by FAO.
The ESA-CCI-LC quality has been assessed by various researchers with a reported overall
accuracy of 73.2% [8], while for China this accuracy is 71.98% [37], with most validation
efforts focused on the ESA-CCI-LC for 2010. Regarding the cropland classification of the
2013 ESA-CCI-LC release, overall accuracy has been reported to be 76.7% in Niger [38],
whereas for Central and Eastern Europe an agreement of approximately 76% with CLC
has been reported [39]. Two legend levels of information are incorporated in the ESA-CCI-
LC maps. Level 1 corresponds to the global scale discretization scheme with 22 classes,
whereas Level 2, known as regional level, assimilates regional information to define a
higher level of detail in specific areas. Finally, ESA-CCI-LC is used worldwide to describe
global vegetation changes and energy balance [40,41].

2.2.3. The CORINE Land Cover

The CLC [42] product is a result from an EU initiative aimed at the standardization of
environmental information at the EU level. The first pan-European land cover dataset was
the CLC1990, and was followed by the CLC2000. Since then, CLC has been updated every
six years, i.e., in 2006, 2012, and 2018 (latest available update). The European Environmental
Agency (EEA) supervises and provides guidance to the national teams in charge of the
production of the national CLC datasets which form the parts of the pan-European CLC.
The number of countries participating in the CORINE program was constantly increasing
over time and currently, 32 EEA member countries along with the UK and six cooperating
countries covering an area of approximately six million km2 are participating in the project.
CLC categorizes land using a hierarchical classification system comprising 3 levels of detail,
with level 3 being the most detailed with 44 classes allocated to five main land cover
categories of the less detailed level 1, namely Artificial surfaces, Agriculture, Forests and
Semi-Natural Areas, Wetlands, and Water, with a minimum mapping unit of 25 hectares
and 100-m minimum mapping width [43]. Quality assessment had been implemented
throughout the CLC period and the overall accuracy of the CLC2000 and its successors has
been reported above the specific minimum of 85% [15].

The detailed description of the land cover classes of each examined product with the
reference classification is available in Tables S1–S3 in Supplementary Material S1.

2.2.4. The KASSANDRA DATASET

The KASSANDRA DATASET is a research product with accurate land cover descrip-
tions at a regional scale. It was developed to categorize vegetation types into forest fire fuel
models suitable for fire behaviour modelling.

Field data were collected from 154 circular sampling plots (0.1 ha area each), allocated
inside forest areas throughout the Kassandra peninsula. The centre of the sampling plot
was recorded by GPS measurements (coordinates and elevation). Applying the principles
and methods of forestry science [44], in each sample plot the representative tree of each
diameter class was found by recording the diameter at breast height (DBH) of every tree
with DBH > 8 cm. For each representative tree (about four trees by sampling plot), we
measured the stand height (SH), the crown base height (CBH), i.e., the height at which a
tree crown has sufficient fine diameter fuel to allow fire to propagate vertically into the
crown [45], and the minimum and maximum diameter below the crown. The Canopy
Cover (CC) of each plot was also estimated as the average of four measurements in the
four peripheral trees of the circle using a spherical densitometer [46]. Additionally, for each
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sampling plot we recorded an accurate description of the forest composition (i.e., dominant
species, coverage percentages) and physical conditions (i.e., weather damages, diseases).
Overall, the forest inventory metrics and statistics based on terrestrial field samples are the
only reliable sources of information for forested landscapes [47,48].

The above datasets were also combined with (a) the official digital vector layer from
the Chalkidiki Forestry Cadastre [49], (b) the subsidized olive-producing areas vector
layer [50], (c) the discontinuous urban developed areas vector layer [51], (d) the dominant
wildfires for the period 1980–2021 vector layer [52], (e) the Kassandra’s road network
line vector in three categories: main, rural, and forest roads [53], (f) forest stands vector
layer, and (g) literature data, such as forestry management plans and fire protection plans.
The discontinuous urban developed area of the peninsula shapefile (25,632 records) that
includes villages, dispersed country houses, and hotel units, was created with the official
shapefiles provided by the Hellenic Cadastre and ground surveys.

The final product eventuated as the combination of the above datasets; it is comprised
of 6718 records and was verified by photointerpretation of high-resolution (0.25 × 0.25 m)
Large Scale Orthophotography (LSO 25/2015) in natural colour [54]. Photointerpretation is
acceptable in regional scale studies [55], and is a process that minimizes the generalizations
and maximizes the accuracy of the final product. Coverage for the 12 land cover classes, in
pixel sum, percentages, and km2 is shown in Table 2, which also includes summaries for
five groups of KASSANDRA DATASET’s classes (Artificial surfaces, Agricultural areas,
Forest, Wetlands and Barren) with their corresponding percentage.

Table 2. KASSANDRAS’S DATASET land cover codes and classes grouped in five general groups.

Land Cover Code Land Cover Classes Pixel Sum Percentage % Km2 Group Percentage %

kd91 Urban/Suburban
developed 11,325 2.91 10.19 Artificial

surfaces
9.61

kd102 WUI 26,123 6.71 23.51

kd101 Croplands 107,686 27.65 96.92 Agricultural
areas

44.43
kd100 Olive groves 65,369 16.78 58.83

kd142 Shrublands/moderate
load 2486 0.64 2.24

Forest 43.96

kd147 Sclerophyllous
vegetation/maquis 31,649 8.13 28.48

kd161 Coniferous
forest/Treated 7185 1.84 6.47

kd164 Coniferous
forest/Dwarf conifer 35,444 9.10 31.90

kd165 Coniferous forest 93,324 23.96 83.99

kd182 Broad-leaved forest 1116 0.29 1.00

kd98 Open water 2582 0.66 2.32 Wetlands 0.66

kd99 Bare ground 5209 1.34 4.69 Barren 1.34

Total 389,498 100.00 350.55 100.00

2.3. Preparation of Datasets and Computed Metrics

To compare the KASSANDRA DATASET with different land cover databases (CLC,
MODIS, ESA-CCI-LC) the products must be comparable in terms of nomenclature and
actual vegetation or land cover type [56], and must be resampled to the same spatial
resolution. Therefore, the KASSANDRA DATASET was reclassified to the respective class
codes of the other three datasets. The harmonization procedure is illustrated in Table 3. The
comparison study refers to the 2018 period for all land cover products, as it corresponds to
the period where detailed ground information for the study area is collected and coincides
with the latest version of CLC.
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Table 3. Kassandra land cover classes harmonization with the respective class codes of the other
three used datasets.

Land Cover Classes Harmonization

ID Land Cover Classes
Land Cover Codes Harmonization

KASSANDRA DATASET2018 CLC2018 MODIS2018 ESA-CCI-LC2018

1 Urban/Suburban
Development kd91 112 13 190

2 Open water kd98 411 17 210

3 Barren (Roads, Mine,
Beaches, Rocks) kd99 122, 131, 331, 332 16 200

4 Croplands kd101 211 12 10, 11, 12

5 WUI kd102 142 13 190

6 Shrublands /moderate
load kd142 322 7 150

7 Sclerophyllous
vegetation/maquis kd147 323 6 120

8 Olive groves kd100 223 8 50

9 Coniferous forest kd161, kd164, kd165 312 1, 8 70

10 Broad-leaved forest kd182 311 4 60

Coniferous forests in the KASSANDRA DATASET are represented by the land cover
classes Coniferous forest/Treated (Code: kd161), Coniferous forest/Dwarf conifer (Code: kd164)
and Coniferous forest (Code: kd165). For the comparison process, those types of forests
were integrated into the class Coniferous forest (Code: 312) of CLC’s nomenclature, in the
class Tree cover, needleleaved, evergreen, closed to open (>15%) (Code: 70) of ESA-CCI-LC’s
nomenclature and in classes Evergreen Needleleaf Forests (Code: 1) and Woody Savannas
(Code: 8) of MODIS’s nomenclature. Specifically, the KASSANDRA DATASET’s land cover
classes Coniferous forest/Dwarf conifer (Code: kd164) and Coniferous forest (Code: kd165)
were integrated into the class Evergreen Needleleaf Forests (Code: 1) and the class Coniferous
forest/Treated (Code: kd161) into the class Woody Savannas (Code: 8).

The ESA-CCI-LC product land cover class of Cropland was based on the regional value
instead of global value nomenclature [57], since areas have been classified as Cropland,
rainfed, herbaceous cover (Code: 11) and as Cropland, rainfed, tree or shrub cover (Code: 12).
To match Cropland (Code: kd101) of the KASSANDRA DATASET classification with the
corresponding ESA-CCI-LC’s categories, and due to the lack of sufficient information to
distinguish them into the subcategories Cropland, rainfed, herbaceous cover (Code:11) and
Cropland, rainfed, tree or shrub cover (Code:12) only the global value nomenclature Cropland,
rainfed (Code: 10) was used in the harmonization procedure. The classes in the CLC’s
nomenclature: Road and rail networks and associated land (Code: 122), Mineral extraction sites
(Code: 131), Beaches, dunes, and sand plains (Code: 331) and Bare rock (Code 332), correspond
to the features depicted by the Bare ground (Code: kd99) category in the KASSANDRA
DATASET.

The three datasets were downscaled to match the KASSANDRA DATASET’s land
cover spatial resolution (30 × 30 m). Then, they were compared with the Kassandra land
cover dataset by using the open plugin of QGIS named Semi-Automatic Classification
Plugin (SCP) [58]. The thematic accuracy of the classification was calculated through
specific accuracy measurements such as User’s Accuracy (UA), also known as reliability,
which represents the percentage of map features that are actually present (true) on the
ground, Producer’s Accuracy (PA), which quantifies the probability of the real ground
features to be captured by a land cover classification. Another accuracy metric used is
Overall Accuracy (OA), which is the proportion of overall sites that were mapped correctly,
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and the Kappa Coefficient (K), ranging from −1 to 1, that compares the classification
performance to a random value assignment. Thus, a classification outcome with a Kappa
Coefficient close to −1 performs considerably worse compared to a random classifier,
whereas a value close to 1 corresponds to a classification that performs considerably better
than a random value assignment [59]. In the comparison raster file, each value represents
agreement or disagreement with the reference class.

3. Results

The spatial distribution of the dominant differences between the KASSANDRA
DATASET2018 (reference dataset) and the three widely used land cover products is il-
lustrated in Figure 3a–c. Comparisons revealed that the dominant differences are identified
in the class of forest areas for all the three products (Table 4). Thus, a profound disagree-
ment for CLC2018 was found in class Coniferous forests (Code: 312), which amounts to
18.55% of the total area. In particular, 8.28% of Coniferous forests are included in the class
Land occupied mainly by agriculture with significant areas of natural vegetation (Code: 243)
due to the complexity and variation of the case study’s land pattern. Forests alternate
with crops in many parts of the study area and false classifications might have occurred
in cells within the transition zone between those two land cover types. The class (Code:
243), which is non-existent in the KASSANDRA DATASET2018, appears overestimated
in the CLC2018 product as a result of the unclear definition and the broad meaning of
this land type; consequently, in the reference dataset those areas are divided into five
different classes: Coniferous forest, Agricultural areas, Olive groves, Shrublands, and Discon-
tinuous urban areas. Moreover, 18.56 km2 of the class Transitional woodland–scrub (Code:
324) in the CLC2018 product should be replaced by category Coniferous forest (Code: 312),
since the recent field data indicated that herbaceous vegetation was initially substituted
by shrubs 12 years after the 2006 wildfire, and then a successional young forest of Aleppo
pine regeneration emerged in the study area. Furthermore, 17.26 km2 classified in the class
Mixed Forests (Code: 313) of the CLC2018 classification to define some areas with Conifer
forests, although the reference dataset indicates that this particular class does not occur
in the study area. The observed difference between Mixed forests and Coniferous forests in
CLC product is a valid and important finding. A possible explanation for that may be
due to Kassandra’s coniferous forest stand structure (~60% canopy cover), having a dense
understory of broadleaf evergreen shrubs. For the cases where the understory vegetation
height of broadleaf evergreen shrubs surpasses the 2 m, these two forest types can be easily
falsely classified by remotely sensed observations. However, they cannot be considered as
Mixed forests. For such cases, ground observations like those provided in the present work
constitute a precious source of information. Such misclassifications can potentially affect
fire risk management practices, since they are different in Mixed forests compared to those
in coniferous forests, which are far more fire-prone forest types.

The biggest difference for MODIS2018 was also found for the forest class, since a
substantial part of the coniferous forests in this product’s central and southern part of
Kassandra is represented by the classes Woody Savannas (Code: 8) and Savannas (Code: 9)
instead of the ground truth class Evergreen Needleleaf Forests (Code: 1). This inconsistency
is evident in 21.16% of the study area, and it might occur because the ground truth class
Evergreen Needleleaf Forests that has been treated for either fire protection or disease reasons
is falsely classified due to the low canopy cover and absence of understory. The underesti-
mation of forest areas is also observed in the ESA-CCI-LC2018 product. Thus, 98.83 km2 of
the classes Tree cover needle-leaved (Code: 70) and Tree cover broadleaved (Code: 50) (forest
areas) were categorized in the class Shrublands (Code: 120), while an additional area of
10.65 km2 of the class (Code: 50) was depicted as the non-forest class Cropland rainfed (Code:
10) in the ESA-CCI-LC2018. One of the main reasons for this underestimation might be due
to the different interpretations of how forest land cover is defined among various countries.
A lower or higher tree (crown) cover threshold for example might differentiate different
forest classes, as shown in previous work [48,60,61]. The cross comparison of the examined
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datasets with the reference classification is available in Tables S1–S3 in Supplementary
Material S2.
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3.1. Accuracy Metrics
3.1.1. Analysis of Total Land Cover Mapping

Based on a comparison of the reference dataset with the three land cover products,
CLC2018 demonstrated the highest overall accuracy of 37.47%, while MODIS2018 and
ESA-CCI-LC2018 revealed similar percentages that did not exceed 22% (Table 5), indicating
that CLC2018 depicted more precisely the characteristics of the landscape than the two
other products. The reason for that might be the higher resolution and the more detailed
cartographic representation that CLC2018 offers in comparison to MODIS2018 and ESA-
CCI-LC2018. The spatial distribution of the agreement and differences of the total land
cover mapping in the case of CLC2018 indicated inconsistencies in the southern part of
the peninsula that is mainly occupied by forest areas. On the contrary, the inconsistencies
observed for the other two products were evenly distributed throughout the study area
(Figure 3a–c).

Table 5. Overall Accuracy (OA), Kappa Coefficient (K), User’s Accuracy (UA), and Producer’s
Accuracy (PA) for the prevailing (exceeding 1% of the study area) land cover categories in Kassandra,
for the three land cover datasets compared to the reference land cover dataset.

Product Land Cover Classes Area (km2) PA (%) UA (%) OA (%) K

CLC2018

(112) Discontinuous urban fabric 10.34 62.27 63.20

37.47 0.27

(142) Sport and leisure facilities 23.80 23.55 56.12

(211) Non-irrigated arable land 97.07 59.72 69.19

(223) Olive groves 58.98 39.66 52.70

(312) Coniferous forest 122.85 30.78 79.12

(323) Sclerophylous vegetation 28.44 0.60 4.53

MODIS2018

(1) Evergreen Needleleaf Forests 115.99 20.46 61.27

21.82 0.11

(6) Closed Shrublands 28.52 0.00 nan

(8) Woody Savannas 65.37 33.04 20.80

(12) Croplands 96.99 30.76 73.27

(13) Urban and Built-up Lands 33.82 1.63 34.17

(16) Barren 4.24 0.00 nan

ESA-CCI-LC2018

(10) Cropland, rainfed 96.93 28.68 51.67

21.78 0.12

(50) Tree cover, broadleaved,
evergreen, closed to open (>15%) 58.85 0.00 nan

(70) Tree cover, needleleaved,
evergreen, closed to open (>15%) 122.35 17.89 73.06

(120) Shrubland 28.46 71.45 13.13

(190) Urban areas 33.77 15.23 89.24

(200) Bare areas 4.51 14.01 5.41

Table 5 also provides the accuracy metrics for the prevailing (exceeding 1% of the study
area) land cover categories in the Kassandra peninsula for the three land cover datasets in
comparison with the reference land cover dataset. The three land cover products provided
high percentages of User’s Accuracy in forest land cover classes, which occupied the largest
part of the study area in all land cover products (more than 100 km2). Thus, the correctly
classified land for CLC2018 in the class of Coniferous forest (Code: 312) reached 79.12%,
for MODIS2018 in the class of Evergreen Needleleaf Forests (Code: 1) the correctly classified
area reached 61.27%, while for CCI2018 the forest class of Tree cover, needleleaf, evergreen,
closed to open (>15%) (Code: 70) correct classification reached 73.06%. Regarding Producer’s
Accuracy, the three land cover products provided generally lower percentages than those
of UA. Thus, the PA exceeded 70% only for the CCI2018 product, for the class of Shrubland
(Code: 120), while for CLC2018 the higher value of PA (62.27%) corresponds to the class
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of Discontinuous urban fabric (Code: 112). In the case of MODIS2018, the probability of the
ground characteristics being displayed correctly on the map is low, since the highest PA is
33.04% and corresponds to the class of Woody Savannas (Code: 8). CCI2018 demonstrated
the highest percentages for both UA and PA among the examined datasets, while its class
Urban areas (Code: 190) provided 89.24% of the UA value and its class Shrubland (Code:
120), 71.45% of the PA value. The Kappa Coefficient was higher than 0 for all the land
cover products, indicating better classification compared to random between the compared
datasets, with the highest value being that of the CLC2018 product (0.27), while MODIS2018
and CCI2018 recorded lower values (0.12 and 0.11, respectively). The results for User’s and
Producer’s Accuracy for each land cover class are reported in Table S4 in Supplementary
Material S2.

A complete example of computing the accuracy metrics (UA, PA, OA, K) for one of
the analysed datasets (MODIS2018), as well as an error matrix for the same case is shown
in Table 6. According to the reference land cover dataset, for example, the classification
of Evergreen Broadleaf Forests (Code: 2), and Permanent Wetlands (Code: 11) of MODIS2018
should not be present in the peninsula. The former class probably refers to limited areas
of dense evergreen broadleaves that exceed 2 m height, while the second one seems to be
an overestimation of the coastal areas, since the spatial analysis at coarser resolution may
result in merging of the marine areas with the coastal forest ecosystems occupied mostly by
evergreen vegetation. Sandy beaches, the main features of the peninsula, are not classified
by any of the examined products.

Table 6. Per-pixel error matrix showing the differences between MODIS2018 (columns) and KAS-
SANDRA DATASET2018 (rows). The numbers 1–17 are MODIS nomenclature.

MODIS
2018 1 2 4 6 7 8 9 10 11 12 13 16 17 Total

1 26,365 0 0 4566 157 5253 0 0 0 5487 962 232 11 43,033
2 2438 0 0 3274 7 487 0 0 0 366 0 0 0 6572
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 48,127 0 216 14,536 506 23,990 0 0 0 21,976 5274 607 99 11,5331
9 34,154 0 358 4571 965 25,610 0 0 0 21,965 13,567 1031 215 102,436

10 5488 0 160 106 589 7369 0 0 0 20,032 4805 606 868 40,023
11 6808 0 32 3917 115 2407 0 0 0 2591 4875 699 387 21,831
12 1651 0 309 121 12 5547 0 0 0 33,150 3836 429 186 45,241
13 147 0 0 0 20 182 0 0 0 754 612 76 0 1791
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 3509 0 41 546 111 1701 0 0 0 1363 3490 993 816 12,570

Total 128,687 0 1116 31,637 2482 72,546 0 0 0 107,684 37,421 4673 2582 388,828
Omission

Error (OE) [%] 9.51 0 0 0 0 66.93 0 0 0 69.21 98.36 0 68.40

Commission
Error (CE) [%] 38.73 0 0 0 0 79.20 0 0 0 26.72 65.83 0 93.50

Producer’s
Accuracy (PA) [%] 0 0 0 0 0 33.07 0 0 0 30.78 1.63 0 31.60

User’s Accuracy
(UA) [%] 0 0 0 0 0 20.80 0 0 0 73.27 34.17 0 6.49

Overall accuracy [%] = 21.81; Total Error [%] = 78.15; Kappa hat classification = 0.1069.

The Discontinuous Urban Developed areas (villages, dispersed country houses, and hotel
units) were underestimated by all three examined land cover products, due to their narrow
shape, small size, and scattered polygons of that land type, with the CLC2018 providing
better results, although far from the ground truth. Moreover, since every product has a
minimum mapping unit e.g., in the case of the CLC product, it is 25 ha, smaller land parcels
cannot be detected. Nevertheless, there are cases, e.g., the village of Kassandrino (50 ha) that
has not been captured at all in the CLC product, which is a certain miss in CLC (Figure 4).
Thus, even the CLC product cannot capture correctly the land development pattern that
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prevails across the coastal part of Greece, i.e., sparse blocks of buildings surrounded by
various types of vegetation.
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Figure 4. Black circle indicates the village of Kassandrino that has been captured in (a) the Kassandra
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The peninsula’s wetlands, many of them being areas protected by national and inter-
national treaties, are not correctly categorized. Thus, in MODIS2018, they are categorized
as Grasslands (Code: 10) and Croplands (Code: 12), in CLC2018 they are given as Salines
(Code: 422) instead of Inland marshes (Code: 411), while they do not appear at all in
ESA-CCI-LC2018.

3.1.2. Analysis of Forest vs. Non-Forest Areas

To investigate whether the three examined land cover products can effectively catego-
rize land into the two broad categories, ‘forest’ and ‘non-forest’, the analysis was conducted
reclassifying all products to those two broad land cover classes, using the following cor-
respondence. The forest areas are represented in the KASSANDRA DATASET2018 by
the classes Shrublands/moderate load (Code: kd142), Sclerophyllous vegetation/maquis (Code:
kd147), Coniferous forest/Treated (Code: kd161), Coniferous forest/Dwarf conifer (Code: kd164),
Coniferous forest (Code: kd165), and Broad-leaved forest (Code: kd182), covering 43.96% of the
study area in the reference dataset (Table 1). The forest areas in the CLC2018 classification
are comprised of the categories Broad-leaved forest (Code: 311), Coniferous forest (Code: 312),
Moors and heathland (Code: 322), and Sclerophyllous vegetation (Code: 323), occupying 32.68%
of the study area. In the MODIS2018 classification, the classes Evergreen Needleleaf Forests
(Code: 1), Evergreen Broadleaf Forests (Code: 2), and part of class Woody Savannas (Code:
8) are those that represented the forest areas, occupying only 26.68% of the total study
area. To overcome the issue of the class Woody Savannas (Code: 8), comprising both forest
and olive groves areas, the MODIS2018 forest map was masked using the KASSANDRA
DATASET2018 of forest areas. Thus, the olive groves areas were removed from the finally
produced map that exclusively contained forest areas.

In the ESA-CCI-LC2018 classification, the forest areas are defined by the categories Tree
cover, broadleaved, deciduous, closed to open (>15%) (Code: 60), Tree cover, needleleaf, evergreen,
closed to open (>15%) (Code: 70), and Shrubland (Code: 120), covering the 43.31% of the study
area. The results for the forest land cover class are reported Tables S1–S3 in Supplementary
Material S3. Analysis of the three forest cover maps revealed that they were quite successful
in assessing the forest areas with an OA exceeding 70% in all examined products (Table 7).
Overall Accuracy of forest areas in CLC2018 reached 79.60%, meaning that most forest
areas are correctly classified. User’s Accuracy was 86.01% implying that 13.99% of the land
classified as forests is the result of commission errors. Producer’s Accuracy was 63.99%



Land 2022, 11, 1453 14 of 19

indicating omission errors as well [17]. The spatial distribution of the accuracy of forest
and non-forest mapping is illustrated in Figure 5d–f.

Table 7. Comparison of forest vs. non-forest areas of the three land cover datasets CLC2018,
MODIS2018, and ESA-CCI-LC2018 with the KASSANDRA DATASET2018.

Land Use Type User’s Accuracy (%) Producer’s Accuracy (%) Overall Accuracy (%) Kappa Coefficient

CLC2018
non-forest 76.49 91.84

79.60 0.57
forest 86.01 63.99

MODIS2018
non-forest 76.44 100.00

82.72 0.63
forest 100.00 60.70

ESA-CCI-LC2018
non-forest 78.22 65.68

70.51 0.41
forest 63.67 76.68
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and of the forest vs. non-forest mapping (d–f) between the KASSANDRA DATASET2018 and the
three land cover products.

The best results were obtained for the forest classes of MODIS2018 with a perfect
User’s Accuracy (100%), while the lowest agreement was obtained in ESA-CCI-LC2018
(63.67%). Producer’s Accuracy rendered lower percentages than User’s Accuracy for the
forest class in the cases of CLC2018 and MODIS2018, and a higher percentage in ESA-
CCI-LC2018. Thus, in the case of the former two datasets, the identified forest features
that are also present on the ground (i.e., User’s Accuracy) are fewer compared to those
ground forest features correctly classified (i.e., Producer’s Accuracy). The opposite is the
case for ESA-CCI-LC2018. The Kappa Coefficient was always positive, indicating better
classification than random between the compared datasets. Thus, the Kappa Coefficient
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for the MODIS2018 product is 0.63, with a slightly lower value for CLC2018 (0.57) and the
worst value of 0.41 for ESA-CCI-LC2018 (Table 7).

4. Discussion

The above information on the comparison of a detailed land cover dataset was based
on ground information with the three widely used land cover products, and indicated
the similarities and inconsistencies of the examined products. Our results of forest vs.
non-forest mapping agree with those of previous studies that compared various land
cover products with different resolutions and nomenclatures. Thus, regarding CLC2018 in
Norway [17], a study found low accuracy when compared to detailed high-resolution data
that is also the case in our work, although it focuses on a totally different hydro-climatic
zone and ecosystem. The broad land cover classes can be represented with sufficient
accuracy, which is also the case in previous work [21], highlighting the generalized character
of the examined products either at the European or at a global level. The same finding is
also observed in the comparison work of Neumann et al. [20], which besides the spatial
resolution inconsistencies, also highlighted the need for harmonized land cover definitions.
Compared to the results of Bach et al. [19] focusing on CLC2000 accuracy assessment
for two sites in Germany, considerably lower performance was detected in our work for
CLC2018, although the comparison sites in Germany cover a total area of only 17 km2 and
comprised six land cover classes.

According to the above comparison and analyses, the spatial distribution consistency
between the four datasets was not high. For instance, in the detailed classification (total
land cover types), the differences between the three land cover products and the reference
dataset were obvious, with the CLC depicting more precisely the landscape characteristics
than the two other products, while the overall accuracy did not exceed 40% for any of the
products. However, in the broad classes (forest vs. non-forest), the accuracy assessment
revealed that mapping accuracy was reasonably high, exceeding 70% in all examined
products. Thus, as far as applications of the above examined land cover datasets are
concerned, the acquired results indicate that they are all suitable for categorizing land
into broad land cover classes, forest and non-forest, and they can support applications
that require this level of detail. For example, the estimation of vegetation carbon stocks is
greatly dependent on the forest and non-forest classification and not on detailed land cover
classes, as indicated by the vegetation carbon density factors [62]. When a more detailed
classification is required, for example for the allocation of specific land cover, especially
for hydrological and flood or fire risk assessment studies, the extent of specific land cover
classes, e.g., built-up areas or conifer forest areas, is important for accurate predictions.
Furthermore, in cases when allocation of land to specific land uses is crucial for sectors
such as energy production or agriculture, then none of the three examined products can
support this level of detail, at least at the local scale.

Probable solutions to obtain widely applicable global land cover information that
would cover a much wider range of possible applications would require either a world-
wide coordinated network, or an approach similar to the Data Cube that would integrate
all individual land cover monitoring efforts, even from small entities [23]. Although the
first approach seems quite promising, there is still no such initiative. The second approach
seems more realistic for the near future, enabling connected workflows through stakeholder
engagement aiming at the co-development of regional land cover monitoring systems [22].

Our work incorporates ground information on land cover types, focusing mainly
on their fire risk. The harmonization process of the land cover types with each of the
examined land cover products certainly introduces a source of uncertainty. Additionally,
the detailed Kassandra dataset was acquired through a labour-intensive and costly process.
The sampling procedures depend on the structure and size of the land being studied, the
purpose of the inventory, and the level of desired accuracy. Thus, it should not be assumed
that such detailed land cover information can be easily available over large areas for the
accuracy assessment of the various land cover products.
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Finally, the existence of constantly updated land cover datasets based on ground
observations is very important for acquiring information on the uncertainties entailed
within the remotely sensed global or continental land cover products. Although it is
difficult to maintain such high-resolution datasets for broad regions, it is important to
have such information even for smaller areas dispersed throughout many different hydro-
climatic zones, and provide useful test sites for detailed uncertainty assessment of widely
used land cover products.

5. Conclusions

Within the present work a comparison study of three widely used land cover prod-
ucts, the CLC2018, MODIS2018, and ESA-CCI-LC2018, was performed by examining their
differences and similarities to a reference land cover dataset produced for the Kassan-
dra peninsula, a typical Mediterranean fire-prone area in Macedonia, North Greece. All
the examined datasets had different spatial resolution and nomenclature; therefore, the
reference dataset was reclassified to be harmonized with the nomenclature of each one
of the examined products, and they were resampled to 30 × 30 m. Comparisons with
the reference dataset revealed an underestimation of the forested areas class in all three
compared products. Results indicated that the level of accuracy in the case of detailed land
cover classification was low in all three examined products, with CLC outperforming the
MODIS and ESA-CCI-LC products. The low overall accuracy of all datasets restricts their
suitability for certain applications, especially for specific risk assessment studies, where a
high level of detail for specific land cover types is required. When broad land cover classes
of forest and non-forest are examined, a high level of overall accuracy was achieved by all
examined datasets (>70%), with MODIS demonstrating the highest overall accuracy for
this broad categorization. Thus, when broad forest and non-forest classes are of particular
importance, e.g., in vegetation carbon stocks estimation, all three examined products have
sufficient accuracy, at least for the typical Mediterranean landscape studied in this work.
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