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Abstract: The intensive pollution of vast areas after the Chernobyl accident, especially in the territories
of Ukraine, Russia, and Belarus, has not only become a serious environmental issue, but also presents
wide methodological opportunities for studying the functioning of natural systems. The proposed
work is a generalization of the results of studies on the migration of 137Cs in the runoff of river
sediments, which were carried out in the basin of the Upa River for over 30 years after the accident.
This basin is one of the most radioactively contaminated and studied in Central Russia. Over the past
three decades, under the conditions of the decreasing snowmelt runoff in the spring and reduced
share of cultivated land over the post-Soviet period, the intensity of the 137Cs transfer has decreased.
The 137Cs deposit losses associated with erosion activities do not exceed a few percent. Most of the
mobilized sediments and sediment-associated radionuclides accumulate in dry valleys or artificial
reservoirs. With a general reduction in the durations of floods, rivers have become the predominant
channels for the transfer of sediment yield and particulate pollutants. The exploration of the vertical
distribution of the 137Cs in the accumulative strata makes it possible to identify the changes in the
sediment budgets of the rivers and their radioecological consequences.

Keywords: fluvial geomorphology; erosion; Chernobyl accident; radiocesium technique; radioac-
tive contamination

1. Introduction

The sediment budget approach is a basic one in the framework of fluvial geomor-
phology, and it has turned out to be an effective but rather labour-intensive tool [1–5].
A sediment budget study should not be considered an alternative to regular stationary
observations [6]. If monitoring data are not available or are scarce, a sediment budget is the
best approach to estimate the volumes and determine the sources of the sediment flows
within and beyond river basins. The spatial–temporal windows for the evaluation of the
sediment budget depend on the study goals, and this approach can be used for sites within
different areas [7–13].

However, individual studies may not sufficiently cover the object under study. In
this regard, summarizing a set of works is required to obtain a holistic result. Such
generalizations allow working with relatively large objects from the regional [14–20] to the
global scale [21–25]. The result makes it possible to find solutions to specific environmental
issues [26–30] and optimal land use management strategies [31–34].

We can successfully apply the sediment budget approach to mass-balance studies on
the transfer of sediment-associated pollutants. Some of the pollutants that enter the natural
environment are reliably bound by soil particles and become an additional characteristic
of the transported sediments. Therefore, we can estimate the redistribution of these pol-
lutants based on the sediment budget. The intensive pollution of river basins, including
radionuclide contamination, largely actualizes the application of this approach [35–44].

On the one hand, the radioactive contamination of river basins after major technogenic
accidents, such as the incidents at the Chernobyl and Fukushima nuclear power stations, is
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a serious environmental challenge [45]. The long-term ecological health of an environment
requires a detailed study of the sediment redistribution [41,46–50].

The consequences of the accident at the Fukushima nuclear power plant have been
studied in great detail, with particular emphasis on the study of the 137Cs redistribution in
particulate and in dissolved form [49,51–53]. Due to the detailed monitoring of the features
of 137Cs fallout and its lateral migration in various parts of the fluvial network, the volumes
of sediment and sediment-associated 137Cs redeposited inside the basins of small and
medium-sized rivers and their entry into the world ocean were revealed [54,55]. Separately,
the influence of the decontamination of agricultural lands on the 137Cs migration from
the continental part to the world ocean was studied [26]. The latest generalizations of
studies in the contaminated area after the Fukushima accident include, among other things,
comparisons of the 137Cs lateral migration in the contaminated areas of Fukushima and
Chernobyl [29]. However, such comparison was made with only for areas located at a small
distance from the Chernobyl nuclear power plant [49,56,57]. Within the territory of Central
Russia, researchers have conducted the most detailed sediment budget studies on the
redistribution and transfer of sediment-associated 137Cs in the Upa River basin. The given
basin is located at a large distance from Chernobyl within the Central Russian Upland,
with a high proportion of agricultural land and an extended dry valley network. This area
is fundamentally different from the mostly forested lowland surrounding the Chernobyl
NPP, as well as the heavily forested mountainous areas of the island of Honshu, which
were contaminated after the Fukushima accident. In this regard, it is especially important
to understand the features of the redistribution of sediments and sediment-associated 137Cs
along the pathway of their transportation from arable slopes to permanent watercourses.

Generalization of a large number of publications prepared on the basis of detailed
studies in the Upa river basin, undertaken over a thirty-year period, made it possible to
systematize the results of the studies performed and to assess the redistribution of the
sediments and sediment-associated 137Cs in different chains of the fluvial network over
this long time interval corresponding to the half-life of 137Cs.

Moreover, technogenic fallout radionuclides present broad methodological prospects
for integrated studies on fluvial processes. 137Cs of different origins, including from bomb-
derived fallout (with the maximum in 1963) and the Chernobyl-derived fallout, acts as
an object of study and a convenient technogenic tracer for the quantification of the processes
of sediment mobilization, transport, and redeposition.

In the centre of the European part of Russia, 137Cs has established itself as a reliable
chronological marker of the territories affected by the accident at the Chernobyl NPP.
The almost instant fallout of 137Cs on the land surface has made it possible to accurately
determine the accumulation rates for the period from April to May 1986. The high level of
137Cs activity concentration in the contaminated sediments reduces the time required for
gamma spectrometric measurements. However, if the Chernobyl-derived 137Cs deposits are
many times greater than bomb fallouts, then it becomes practically impossible to distinguish
the bomb-derived peak of the 137Cs concentration decades after the accident [50]. The
duration of the post-Chernobyl period overlaps with the time frame for assessing the
current climate norm (1991–2020). However, substantial changes in the arable land and
land use systems on the East European Plain (EEP), which are associated with the economic
crisis of the early 1990s, are critical and should be considered [58,59]. A major portion of the
river basins of the EEP are characterized by intense anthropogenic impacts. Their sediment
yields are primarily formed by the contribution of the sheet and rill erosion on the arable
slopes [60]. At the same time, the rate of gully erosion is mostly decreasing [61]. Most of
the mobilized material accumulates within small catchments, which leads to accumulation
on the valley bottoms and a substantial decrease in the stream net density [62–69]. Within
the territory of the East European Plain, soil erosion primarily occurs on the cultivated
slopes during the spring snowmelt and after high-intensity rains. The complexity and
spatiotemporal nonuniformity of the sediment redistribution process is the reason that
researchers can only undertake detailed field studies for relatively small catchments. Hence,
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the extrapolation of the obtained results over larger areas is required. However, even in this
case, the field observations, collection, and processing of the material are time-consuming.
Studies may take place in different months, years, or even decades. As a result, the
final assessment of the sediment redistribution within a river basin is not analogous to
an “instant photograph” but rather to a “collage” of multitemporal images. Therefore, we
can only assess long-term trends in the transformation of the erosion and deposition rates
due to the global and regional climate and land use changes.

Our purpose was to assess the sediment budget for 137Cs transported in two relatively
large (>1000 km2) sub-basins of the Upa River basin over the post-Chernobyl period.
We based the assessment on a generalization of the experience of studying the sediment
redistribution within small key catchments, river floodplains, and sediment deposition
in artificial reservoirs. We discuss and propose new prospects for further studies of 137Cs
redistribution in areas affected by the Chernobyl fallout, located at a large distance from
Chernobyl NPP.

2. Possible Transfer Paths of Particulate Chernobyl-Derived 137Cs

The Chernobyl fallout urged the rapid development of an appropriate model for
forecasting the transfer of radionuclides in rivers that considers the particularities of the
radionuclide behaviour in soil–water systems [70–72]. Researchers first observed the
Chernobyl-derived cesium in the water and suspended sediments in the spring of 1987 in
the Middle Dnieper basin. They made observations of the basin, and they recorded the
maximum 134Cs and 137Cs concentrations in the watercourses with the highest shares of
arable lands in their catchments [73]. The erosion on the cultivated slopes of interfluves
is arguably the major source of the particulate radiocesium in the sediment yields of
the rivers.

The basins of the lowland rivers of the temperate zone, with high anthropogenic
impacts, are characterized by strong functional geomorphic disconnectivity and the pre-
dominance of intrabasin accumulation over the removal of material beyond the outflow
gate [74–77]. There are a large number of accumulation sinks that trap the eroded material.
Sediment sinks can either be natural (the flattening of slopes, areas with sharp changes in
their surface roughness coefficients due to changes in the characteristics of the vegetation
cover, etc.) or artificial (forest belts, ploughing shafts, the embankments of road networks,
reservoir dams, etc.) origin. The trap efficiency of sediment sinks depends not only on their
characteristics, but also on the mechanism of the sediment transfer (Figure 1).
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Figure 1. Possible paths of contaminated sediments in river basins. Figure 1. Possible paths of contaminated sediments in river basins.

The main agents of the sediment mobilization on arable slopes are sheet, rill, and
ephemeral gully erosion. A considerable portion of sediment, transported by sheet and
rill erosion, is usually redeposited on the slope or at its foot. The morphometries of the
slopes and the features of their longitudinal and transverse profiles largely determine the
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presence and intensity of the intraslope accumulation. The shape of the transverse profile
determines the ability of a slope to disperse or concentrate runoff [78,79]. Otherwise, if
sediments enter a network of slope hollows, then due to the concentration of the slope
runoff, their probability of crossing the lower boundary of an arable slope that is limited
by arable land (plough rampart) substantially increases [48,80]. Ephemeral gully erosion
on arable land usually occurs in two forms: (1) deep furrows that form due to a single
storm and/or melt runoff; (2) erosion and accumulation in the thalwegs of the larger and
relatively stable slope hollows.

Gully erosion makes a substantial contribution to the mobilization and transport of
sediments, especially in cases when the tops of active gullies are located on ploughed
slopes. The sediments that move along the gullies almost always reach the bottoms of
dry valleys, bypassing the intraslope accumulation zones, as well as the ploughed and
grassy sides of the valley. The slope gullies have not increased since the post-Chernobyl
period in the Upa River basin. However, the possible input of gully erosion should not be
completely ignored, considering climate change and the expansion of the application of
irrigated agriculture in the basin.

The sediments that overcome the lower boundaries of cultivated fields are partially
redeposited on the sides of the valley that are covered with natural vegetation. The rest
of the eroded materials enter the dry valley bottoms. From a quantitative point of view,
overcoming the lower boundary of the arable slope and the transport along the sides of the
valley is a poorly studied stage in the process of sediment transfer. Changes in the slope
and the roughness coefficient of the slope surface have led to a sharp transformation in the
slope runoff within a relatively compact zone. We lack quantitative data on the rates and
volumes of the accumulation on the sides of the valleys due to the need to collect a large
number of samples for the correct evaluation of the sediment volume redeposited during
fixed time intervals.

The pathways of the subsequent sediment transfer that enters the bottoms of dry
valleys are determined by their position in the structure of the fluvial network of the EEP
river basins. Part of the sediment may be transported by temporary streams formed during
melt runoff, and in some cases during extreme rains, from along the bottoms of the dry
valleys to the bottoms of the river valleys. Another portion accumulates at the foots of the
sides of the valley in the form of trails or pluvial fans, as well as further along the bottoms
of dry valleys, depending on the direction and turbidity of the water runoff, which results
in an uneven increase in the bottom elevations; this contributes to the gradual increase
in the inclination of the dry valley bottom surfaces, which is one of the key factors in the
formation of bottom gullies, and which represents a special mechanism for the sediment
transport along the valley [48].

Upon reaching the river valleys, the material can either be deposited in the form
of plumes or proluvial fans on the surface of the floodplain or reach the river channel.
Furthermore, the eroded material continues to become part of the river sediment. Partial
sediments are redeposited onto the surface of the floodplain during periods of rising water
levels (floodplain accumulation). The reverse process (the transfer of matter from the
floodplain to the channel) is also not excluded. However, under the conditions of the
decreasing volume and duration of the flooding [81], this is only a marginal component of
the sediment budget.

The Upa River basin is characterized by the construction of artificial reservoirs in both
the dry and river valleys. Such reservoirs are traps for the greater portion of the sediments
that are transported by the water flows that form upstream of the dam [82–88]. According
to the results of studies on small reservoirs in the forest-steppe zone of Central Russia, the
trap efficiency of these reservoirs is 96.4–99.7% [89].

3. Study Area

The Upa River basin occupies a territory of about 9500 km2, and it is located in the
northern part of the Central Russian Upland in the Tula region. According to the Köppen–
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Geiger classification [90], this area belongs to the Dfb zone, which is characterized by a cold
climate with warm summers and no dry season. The annual precipitation decreases from
northwest to southeast from 630 to 592 mm, and in the warm season, there is an average of
460 mm of rainfall.

The soil cover within the interfluve spaces is represented by phaeozems (leached
chernozems; gleyed, podzolized chernozem-like soils; and dark-grey forest soils). The
soil-forming rock is carbonate loess-like loams [91]. The northern part of the basin is
located within a predominantly forested area (Tulskiye Zaseky), and it is characterized by
an unsubstantial share of arable land, some of which was abandoned in the early 1990s.
The level of Chernobyl contamination is relatively low in this area.

The southern part of the basin, with a high share of arable lands, was heavily contam-
inated after the Chernobyl accident (Figure 2A). We observed the maximum radioactive
contamination in the central part of the Plava River basin (the left-bank tributary of the
Upa River). This relatively narrow strip, which stretches in a sublatitudinal manner for
more than 100 km, is called the “Plavsk radioactive hot spot” (Figure 2B). The Schekino
Reservoir is the sediment sink, collecting sediment from the upper reaches of the Upa River
basin. It was created in the late 1940s to meet the requirement of the Schekino state district
power station located in the town of Sovetsk.
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We conducted the sediment budget studies for a period of over three decades in the
five small catchments in the central and southern parts of the Plava River basin (Figure 3,
Table 1). Our initial purpose was to evaluate the sediment and sediment-associated 137Cs
redistribution during the first decade after the Chernobyl disaster.
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Table 1. Morphometric characteristics of studied key catchments in Plava River basin.

Key Catchment Area (km2)
Share of

Arable Lands (%)
Total Length of Dry
Valley Bottom (km) Artificial Reservoirs

Lapki 2.2 87.3 2.2 −
Chesovenkov Verkh 39.9 74.7 25 +

Upper Lokna 35.8 53.2 23 +
Svytoi Istochnik 1.9 69.4 1.9 −

Lyapunovka 6.2 79 6.1 −

We later studied the floodplain sections of the rivers of the Upa basin, including the
Lokna, Plava, and Upa Rivers. The series of soil sampling sites established to determine
the vertical distribution of the 137Cs isotopes at different levels of the floodplains made it
possible to obtain information on the mean annual sedimentation rates and radionuclide
depositions during flooding. In terms of the sediment yield from the upper reaches of the
Upa River trapped in the Schekino Reservoir, we collected a few cores of bottom sediments
from the ice to evaluate the rates and volumes of the deposition over the post-Chernobyl
period (Figure 4).
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4. Methods

We determined the set of methods used for the different parts of the Upa River basin
by its position in the hierarchical structure of the fluvial network (Figure 5).

Land 2023, 12, x FOR PEER REVIEW 8 of 28 
 

 

Figure 5. Methods applied in framework of studies within Upa River basin. 

We conducted the morphometric analyses with two goals. We used the results of the 

analyses to justify the selection of the key catchments and observation sites and to extrap-

olate the obtained results over areas not covered by the instrumental field studies within 

the Plava River basin [95,96]. In addition, the application of DEM models enabled us to 

assess the hydrological connectivity of the upper reaches of the Upa River [97], as well as 

the proportion of the material mobilized on the slopes of the catchment that reaches the 

river channels [98]. 

4.2. Soil Truncation Method 

We used the truncation method to assess the soil losses on the cultivated slopes over 

the entire period of cultivation [99]. We determined the degree of the agricultural trans-

formation of the soil profile based on its comparison with undisturbed analogues, in 

which the original thicknesses of the studied soil horizons have been preserved [100,101]. 

Considering the relatively low accuracy of identifying the boundaries between soil hori-

zons, we can apply this method when the rate of erosion/accumulation exceeds the inten-

sity and spatial unevenness of the soil formation process. The complexity of the pattern of 

the soil horizon distributions with relief parameters established for the chernozems [102] 

requires special studies to substantiate the application of this method [103]. 

4.3. Modelling of Soil Erosion 

Mathematical modelling is one of the most common and labour-saving methods for 

the estimation of erosion and sedimentation (if the corresponding function is included in 

the model). In a series of studies carried out on different key catchments, the researchers 

Figure 5. Methods applied in framework of studies within Upa River basin.



Land 2023, 12, 175 8 of 26

4.1. Large-Scale Geomorphological Mapping

A large-scale survey of the studied areas allows for solving several specific issues
necessary for carrying out a sediment budget study. First, we used the geomorphological
map as a basis for the creation of a sampling strategy. The mapping of the geomorphic and
land use boundaries allowed us to distinguish the area of each morphological unit. Fur-
thermore, we ranked them according to the intensities of the observed erosion/deposition
processes [93]. The maps allowed us to highlight the structural connectivity of the catch-
ments, and to preliminarily identify the potential pathways for the sediment transport
during erosion events. Finally, we applied the information on the areas of the individual
morphological units in combination with the assessment of the erosion/deposition rates
in each unit to the estimation of the total erosion and accumulation volumes [94]. We
conducted the detection and registration of the boundaries between the geomorphic units
and the exact values of the elevation by using GPS receivers and high-precision geodetic
surveys during the field works.

We conducted the morphometric analyses with two goals. We used the results of
the analyses to justify the selection of the key catchments and observation sites and to
extrapolate the obtained results over areas not covered by the instrumental field studies
within the Plava River basin [95,96]. In addition, the application of DEM models enabled
us to assess the hydrological connectivity of the upper reaches of the Upa River [97], as
well as the proportion of the material mobilized on the slopes of the catchment that reaches
the river channels [98].

4.2. Soil Truncation Method

We used the truncation method to assess the soil losses on the cultivated slopes
over the entire period of cultivation [99]. We determined the degree of the agricultural
transformation of the soil profile based on its comparison with undisturbed analogues, in
which the original thicknesses of the studied soil horizons have been preserved [100,101].
Considering the relatively low accuracy of identifying the boundaries between soil horizons,
we can apply this method when the rate of erosion/accumulation exceeds the intensity and
spatial unevenness of the soil formation process. The complexity of the pattern of the soil
horizon distributions with relief parameters established for the chernozems [102] requires
special studies to substantiate the application of this method [103].

4.3. Modelling of Soil Erosion

Mathematical modelling is one of the most common and labour-saving methods for
the estimation of erosion and sedimentation (if the corresponding function is included in the
model). In a series of studies carried out on different key catchments, the researchers used
several models either individually [76] or in combination with each other [104]. In particular,
they used an empirical mathematical model (EMM), which combines two modules for
estimating sediment flows of different origins. To estimate the losses during rainfall, the
researchers used a version of the universal soil loss equation (USLE) modified for the
conditions of Russia [105], and in the case of calculations for the Upper Upa, they used
the revised soil loss equation (RUSLE) [106]. The authors of [107] used a modified version
of the model developed at the State Hydrological Institute to determine the soil losses
during snowmelt. The authors of [108,109] used the LandSoil model, which considers the
intrabasin sediment accumulation, and which is an improved modification of the STREAM
(sealing and transfer by runoff and erosion related to agricultural management) model,
as the model also includes a block for calculating the rates of the mechanical soil erosion
(tillage erosion) [110,111].

4.4. Radiocesium Studies

The use of 137Cs as a tracer has substantially expanded the methodological possibilities
of erosion and sedimentation studies. We can assess the sedimentation rate in the case of
an undisturbed deposition area based on the depth of the layer with the maximum content
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of 137Cs (“peak”). We can conduct depth incremental sampling from the side of the
soil section with the minimum amount of soil mechanical disturbance. We can conduct
sampling from a fixed area (usually 15 × 15 cm) to a 2–3 cm depth. This sampling method
minimizes the errors that occur when taking samples with a special sampler and then
separating them into layers in the laboratory. We took the bulk samples on the arable lands
with a metal sampler with an inner diameter of 6 cm to a depth of 30 cm. We used special
samplers for the bottom sediments in the subaquatic conditions [112,113].

We can assess the erosion and accumulation rates on cultivated slopes using mathemat-
ical conversion models, which we can use to convert the relative changes in 137Cs deposits
into soil loss or aggradation rates [114]. One of the most widely used is the proportional
model [115]:

Y = (10 × B × d × X)/(100 × T), (1)

where Y is the erosion/accumulation rate (t ha−1 year−1); B is the soil bulk density
(kg m−3); d is the ploughing depth (m); X is the relative decrease/increase in the 137Cs
deposits (%); and T is the time after the fallout (years).

Under the conditions of Chernobyl pollution, these models have several substantial
limitations that are associated with the high variability of the atmospheric precipitation,
which should be considered during the sampling and interpretation of the results [69].

4.5. Magnetic Tracer Method

The active use of coal as a fuel during the growth of industrial production and the
development of railway transportation led to the intense emissions of their combustion
products into the environment [116], which we can now use as chronological markers
for dating sediments [117]. The method is based on the assumption that the mass of the
magnetic tracer redistributed as a result of erosion is directly proportional to the mass of the
redistributed soil material. Researchers found a clear reduction in the contents of magnetic
particles in the eroded soils of cultivated slopes in comparison with the soils of undisturbed
slopes, where they did not observe any runoff [118]. The temporal coverage of the magnetic
tracer method in the basin of the Upa River is about 150 years old; however, it is strongly
limited by the proximity to the locations of the railways that were operating at the time.
The joint use of the magnetic tracer method together with the radiocesium technique is
a good approach to assessing the erosion and accumulation rates for the different time
windows [119–121].

4.6. Mass Balance Estimation of Particulate 137Cs Transfer for Post-Chernobyl Period

We used two approaches based on two different assumptions in the assessment of
the total amount of sediment-associated 137Cs transported from the cultivated slopes to
the watercourses.

We based the first variant of the calculation on the assumption that the redistribution
of the particulate 137Cs mobilized by erosion processes occurs in a similar manner to the
distribution of the various components of the sediment budget, which we independently
assessed. We can use the following equation to express this approach:

Q/W = PQ/PW, (2)

where Q is the total mass of the river sediments (kg); W is the intrabasin sedimentation
(kg); PQ is the transferred particulate 137Cs deposits (Bq); and PW is the particulate 137Cs
deposits re-deposited within the basin (Bq).

The second option is to multiply the mass of the material transported in the form
of the sediment yield by the mean value of the concentration activity of the 137Cs in
the sediments:

P = Q × c, (3)
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where P is the transferred 137Cs deposits (Bq); Q is the mass of the sediments in the river
sediment yield (kg); and c is the mean activity concentration of the 137Cs in the transported
sediments (Bq kg−1).

Considering the lack of monitoring data, the determination of the mean value of
the 137Cs concentration activity over the post-Chernobyl period is difficult. This value is
supposed to be of high spatial and temporal variability. First, the 137Cs-specific activity
depends on the level of Chernobyl contamination, which, immediately after the fallout,
was fixed on the soil particles of the surface soil layer. Then, the 137Cs was mixed and
relatively evenly distributed within the upper 30 cm layer due to the deep ploughing
of the arable lands [122]. The removal of the soil particles by water and tillage erosion
led to the involvement of relatively clean soil particles from the deeper layers of the soil.
Consequently, the 137Cs concentration in the mobilized sediments decreased. According
to observations made on the rivers of the East European Plain in the first years after the
accident [123], there was a sharp drop in the 137Cs concentration in the water runoff in
the first 3 years after the accident, which was associated with both deep ploughing and
the full removal of the 137Cs from the different surfaces within the settlements (roofs of
houses, asphalt, grader roads, etc.). According to 137Cs vertical distribution studies on
the reservoir bottom sediments [124,125], the decreasing 137Cs concentration trend in the
direction of the upper layers of the bottom sediment is subjected to substantial annual
fluctuations. However, because of the lack of monitoring observations, the sediments most
closely associated with the formation of the river sediment yield are the only source of
this kind of information. In the given study, we used the deposits of the low floodplain of
the Plava River and the bottom sediments of the Schekino Reservoir to evaluate the mean
value of the concentration activity of the 137Cs in the sediments transported by the river.

5. Changes in Some Erosion Factors in Upa River Basin over the Last Decades

The period of the intensive agricultural use of the Upa River basin was about
250–300 years. During the period from the second half of the 19th century to the middle
of the 20th century, there was a reduction in the stream network density (SND) and the
extinction of some of the permanent watercourses. Two hypotheses have been proposed
to explain this process: (1) the increase in the sediment supply from the increased area of
cultivated lands affected by erosion [126]; (2) climate change. The first explanation is more
likely. The SND had a stronger reduction in the Plava River basin, which has a much higher
share of cultivated areas than the entire Upa River basin. The smaller reduction in the SND
of the Upa River basin in comparison with the Plava River was due to the large amount of
forested area, where no substantial siltation or subsequent aggradation occurs (Table 2).

Table 2. Changes in SNDs of Plava and Upa River basins (Adapted with permission from Ref. [68].
2006, CATENA).

Catchment
SND

1830s 1940s
km/km−2 % km/km−2 %

Plava River 0.21 100 0.14 67
Upa River 0.27 100 0.23 86.6

In the Plava River basin, the SNDs during the second half of the 20th century and
the beginning of the 21st century were generally stable (Table 3). In the 2000s, the SND
slightly increased.

The major contribution to the sediment yield of the Plava and Upa Rivers is made by
erosion during the snowmelt in the springtime. One of the most important factors is the
condition of the soil cover at the time of the snowmelt. The comparatively warm transition
from autumn to winter, with a stable snow cover, leads to the absence or insignificant depth
of freezing, which causes the upper soil horizons to retain a high infiltration capacity. As
a result, when the snow melts, most of the water is directly filtered into the ground, without
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erosion. This trend has been typical for the forest-steppe zone of the East European Plain
over the last decades. As a result, we expect the contribution of the erosion on the arable
slopes to the sediment yield to decrease [127].

Table 3. SNDs in Plava River basin over different periods.

Period
SND

km/km−2 %

1830s 0.21 100
1940s 0.14 67
1980s 0.14 66
2000s 0.15 72

The reduction in the surface runoff during the spring snowmelt also leads to a decrease
in the duration (Figure 6) of the floods, which, in turn, contributes to a decrease in the
intensity of the channel erosion [81].
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Runoff-forming rainfall, which potentially leads to washouts and occurs during the
warm season, is subject to much greater fluctuations, according to the weather station in
Plavsk for the period of 1986–2018. The total precipitation from year to year could differ
by more than two times (Figure 7A). At the same time, more than half of the rainfall falls
on the 12 wettest days (Figure 7B), when washouts are most likely to form because of the
heavy rains.

In the Upa River basin, the erosion caused by rainfall most likely occurs in the months
with the sparsest or no vegetation cover on the arable land, which are the periods after the
ploughing in late spring (May) and the harvesting of the main crop in late summer and
early autumn (August–September). From 1986 to 2018, the maximum number of days when
the amount of rainfall was sufficient to form runoff substantially varied. May of 1998, 2010,
2011, 2014, and 2016 was the most probable time for storm washouts. Extremely heavy
rainfall (>50 mm) was recorded only once, in 2010 (Figure 8A). In the summer–autumn
period, the years with the most probable erosion on the arable lands were 2002–2004,
2006–2008, and 2011. Showers were observed only three times: in 2006, 2008, and 2011
(Figure 8B).

The rarity and spatial localization of extreme storms indicate that their contribution
to the sediment yield of rivers is small, especially because most of the products of storm
washouts are redeposited along the transportation routes from arable slopes to permanent
watercourses [128,129]. The economic crisis of the early 1990s led to a substantial reduction
in the area of arable lands, and despite the recovery of economic growth, their share
continued to gradually decline until the middle of the second decade of the 21st century
(Table 4). Since 2018, there have been serious changes in the structure of the land use and
composition of the crop rotations due to the transfer of a portion of the lands to large
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agricultural enterprises. The boundaries of the fields are changing, the shares of vegetables
and soybeans in the crop rotations are increasing, and the production of grain crops and
potatoes is decreasing.
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Table 4. Proportions of arable land from total basin area of Plava River and upper reaches of Upa
River (catchment area of Schekino Reservoir) in 1985, 2000, and 2015.

Catchment
Proportion of Arable Lands from Total Basin Area (%)
1985 2000 2015

Plava River 84.8 61.8 58.2
Upper Reaches

of Upa River
(Schekino Reservoir)

71.3 65.5 61.2

6. Intrabasin Redistribution of Sediments and Particulate 137Cs in Upa River Basin
6.1. Transformation of Radioactive Contamination on Arable Slopes

The redistribution of the sediments and Chernobyl 137Cs on the slopes was the main
direction of the research carried out in the first decades after the accident because it enabled
us to identify the primary transformation of the contamination to assess the sediment bud-
gets on the slopes and slope sub-catchments over the post-Chernobyl period. According
to studies conducted in the mid-1990s, 11 years after the Chernobyl fallout is too short
a time window for substantial 137Cs losses from the cultivated slopes due to soil ero-
sion. An increase in the 137Cs deposits only occurred in the local sediment sinks (up to
1.5–2 times on the bottoms of the uncultivated parts of hollows) [47]. The hollow systems
on the cultivated slopes are the most important pathway for the transport of sediments
beyond the cultivated fields. The boundaries “cultivated slope/valleys’ side” and “valleys’
sides/dry valleys’ bottoms” are the zones in which a substantial portion of the mobilized
sediments are redeposited [48].

According to the combined use of the radiocesium and magnetic tracer methods, there
was a clear trend towards decreasing erosion rates for the post-Chernobyl period on the
cultivated slopes of the forest-steppe zone compared with the 150 years of active ploughing.
The main reasons for the decline were the decreases in the intensity of the snowmelt runoff
on the slopes in the spring and the proportion of row crops in the crop rotation [130].
Moreover, according to the magnetic tracer, the intraslope sediment deposition depends on
a complex of local factors and can take place on any part of the slope [131]. The delivery
of sediments and particulate 137Cs beyond arable slopes is determined not only by the
configuration of the slope, but also, to a large extent, by the anthropogenic relief, including
the plough ramparts along the field boundaries. Plough ramparts (so-called “napash’”) are
an important barrier for both sediment and sediment-associated 137Cs [80].

The loss of material on the slopes led to a consistent reduction in the 137Cs deposits.
To estimate the reduction in the deposits, we used the proportional conversion model [115]
in the reverse order. We independently estimated the erosion rates, and we converted them
into the relative reduction in the 137Cs deposits [132]:

X = (10 × Y × T)/(B × d), (4)

where X is the relative reduction in the 137Cs deposits (%); Y is the erosion/accumulation
rate (t ha−1 year−1); T is the number of years; B is the soil density (bulk density) (kg m−3);
and d is the ploughing depth (m).

Given the mean rate of erosion of 6.4 t ha−1 year−1 on the arable slopes of the Plava
River basin [104] and excluding the segments of the basin that are limited by artificial
sinks [133], the maximum mass of the mobilized sediments was no more than 16 × 106 t
over 1986–2012. This value might be overestimated because it contains the results
of the universal erosion equation (USLE) calculations, which do not consider the
intraslope accumulation.

The proportion of sediments that entered the valley bottom network was about 61.6%.
We based this estimation on the values of the sediment delivery ratio (SDR) for slopes
of different morphologies, which we obtained after the generalization of several observa-
tions [134] and the morphometric analysis of the relief of the Plava River basin [133]. A total
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of 38.4% of all the mobilized sediments were redeposited on the slopes, which amounted
to 6.1 × 106 t.

Using the available large-scale maps of the radioactive contamination and the results of
our survey [135], we calculated the net loss of the 137Cs deposits from the cultivated slopes.
In just 26 years after the accident, the total 137Cs deposit losses caused by erosion were
about 12.2 × 1012 Bq (recalculated for 1986). Considering the overestimation of the erosion
rates, the average annual 137Cs deposit losses from the cultivated slopes amounted to no
more than 0.2% of the total 137Cs fallout. According to the results of the first experimental
work on the study of the reduction in the 137Cs deposits on the cultivated slopes of the
Chernobyl-affected zone, with the use of artificial sprinkling, the reduction in the deposits
due to erosion does not exceed a few percent. The slope runoff for the year (1995–1996) led
to a 137Cs deposit reduction of only 0.07% [136].

6.2. Sediment and Particulate 137Cs Redistribution along Pathways from Catchment Area
to Watercourses

Dry valleys (“balka”) occupy the main extent of the fluvial network of the Upa River
basin. A major portion of sediment that is transferred by the temporary streams from
the arable slopes is redeposited on the dry valley bottoms. The intensity of the sediment
redeposition primarily depends on the slope of the valley bottom [137]. According to the
assessment made for the Plava River for the period 1986–2009, about 60% of the sediments
that had washed away from the cultivated slopes did not leave the catchments of the first–
third Hortonian orders [104]. The proportion of sediment carried outside the catchments of
the valleys of the fourth Hortonian order, as a rule, does not exceed 10% [74,138,139]. The
average “slope-river valley” SDR for the entire basin of the Plava River is 0.27, excluding
segments of the basin cut off by artificial reservoirs. The main source of the material inflow
into the valleys of the Plava River and its tributaries is the catchments of small valleys of
1–2 orders that flow directly into them. The bottoms of the dry valleys of the 3–4-order
catchments are the main sediment sinks [104].

The sediments that accumulate on the bottoms of dry valleys, in the artificial reservoirs
that are constructed on them, and on river floodplains, which are discussed below, are
an important source of information for studying the dynamics of the erosion and accumula-
tion processes over the period dated with 137Cs from the global and Chernobyl fallouts [140].
The increase in the 137Cs deposits in these sediment sinks is so intense that it can compen-
sate for the losses from radioactive decay. However, layers with a high concentration of
137Cs are overlapped by sediments with much lower concentrations eroded from arable
land [141]. The total accumulation in the dry valley bottoms of the Plava River basin over
the post-Chernobyl period amounted to 4.3 × 106–6.1 × 106 t.

6.3. Floodplain Accumulation of Sediment and 137Cs

According to studies on the floodplain complexes of the Lokna, Plava, and Upa Rivers,
there is a high spatial unevenness in the accumulation of sediments and radionuclides.
Moreover, there is a substantial difference between the sedimentation rates at the different
levels of the Lokna River floodplain. On the lower floodplain, the sedimentation rate
is 0.3–1.1 cm year−1. This growth is high enough to overcome the 137Cs losses due to
radioactive decay. On the middle floodplain, the accumulation for the post-Chernobyl
period is low due to the decreasing spring flood levels associated with the reduction to
almost zero in the surface runoff from the slopes during snowmelt [142].

The Plava River floodplain, where the accumulation rates on the low floodplain change
in the range of 0.7–1.4 cm year−1, produced similar results [143]. We primarily explored the
floodplain sedimentation on the Upa River valley bottom in the middle and lower reaches
starting from the mouth of the Plava River. We evaluated two additional sections upstream
and downstream of the Schekino Reservoir (see Figure 4). The low level of the floodplains
is discontinuous and represented by rather narrow sections. For the period 1986–2014, the
sedimentation rates on the low level of the floodplain reached 1.5–2.7 cm year−1. Thus,
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there was a consistent increase in the sediment accumulation rate as the water discharge
increased along the Upa River, which was most likely associated with the increase in the
duration of the flooding of the low floodplain. A major portion of the particulate 137Cs,
which entered the Upa River channel, was delivered to the Oka River.

The downtrend surface runoff during snowmelt, especially after 2007 (see Figure 3),
resulted in a decrease in the level and duration of the flooding in spring, and a reduction
in the contribution of the hillslope erosion to the sediment yield in the Upa River basin.
Consequently, the impact of the contaminated sediment transported by the Plava River on
the level of the contamination of the Upa River declined [50].

The floodplain complex is primarily formed due to the action of fluvial processes.
The lateral supply of the material from the sides of the valleys only plays a substantial
role during ploughing. Due to the large area of the high floodplain and small amount of
information on the accumulation rates, a direct reliable assessment of the accumulation is
complicated. The main accumulative component of the sediment balance on the surface of
the high floodplain under the rare high flood conditions and dense vegetation cover, which
traps the sediments, is the erosion on the hillslopes directly adjacent to the sides of the river
valleys [144].

The total transfer to the river valleys of the Plava River basin for the period
1986–2012 was 3.8 × 106–5.6 × 106 t, of which 1.6 × 106–1.7 × 106 t accumulated on
the river floodplains. We estimated the sediment yield by the residual principle in the
range of 2.1 × 106–4 × 106 t.

6.4. Sediment Budget of Sub-Basins of Upa River Basin: Plava River and Upper Reaches of
Upa River

By summarizing the results of the estimations represented above, we could assess
the sediment budget of the entire Plava River. We present the results in graphical form in
Figure 9. The accuracy and reliability of the obtained results are affected by the totality of
the errors and limitations of all the particular applied methods. However, we can consider
these results to be the most detailed and factually substantiated for the river basins of
Central Russia, which have been subjected to intense radioactive contamination.
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In comparison with the Plava River, the corresponding values for the upper reaches of
the Upa River are much lower. According to the mathematical modelling of the erosion
and SDR distribution over the catchment, during 1986–2018, 4.6 × 106–4.8 × 106 t of
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sediment was eroded from the cultivated slopes, and 0.44 × 106–0.47 × 106 was delivered
to the permanent streams [66]. It is likely that we underestimated the systematic sediment
delivery to the rivers. Currently, the Schekino Reservoir is a large sink for the sediments
and particulate 137Cs delivered from the upper reaches of the Upa River. The observed
decrease in the concentration activity towards the surface of the bottom sediments clearly
demonstrates the general trend towards a decrease in the 137Cs content in the river sediment
yield for the post-Chernobyl period [124,125,145]. The overlapping of the most active strata
of sediments, with less polluted sediments under modern conditions, serves as a factor in
increasing environmental safety [145]. According to the analysis of the vertical distribution
of the 137Cs in the bottom sediments sampled in 2018–2019 [125], sediment accumulation
during the post-Chernobyl period only occurred in the flooded channel of the Upa River,
which occupies a relatively small part of the reservoir bottom area (Figure 10A). When
assessing the total accumulation within the boundaries of the water area, we divided the
riverbed into sections depending on the location of the selected cores, which we took as
characteristic of the sections (Figure 10B).
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Figure 10. (A) Geomorphic structure of Schekino Reservoir bottom with locations of sampling points;
(B) locations of sections (marked with numbers 1–5) arranged for calculations for river channel to
assess accumulation for post-Chernobyl period.

We calculated the accumulation using the following formula:

WRes = W1 + . . . + Wn, (5)

where WRes is the total accumulation in the reservoir (t), and Wn is the accumulation within
the boundaries of the individual sections (t). We calculated the accumulation within n
selected sections with the following formula:

Wn = Hn × Sn, (6)

where Hn is the mass depth of the “Chernobyl peak” in the sediment column (kg m−2),
and Sn is the area of the corresponding section (m2).

We present the results in Table 5. The total mass of the accumulated sediments was
more than 0.37 × 106 t (Table 5). Considering that we only determined the volume of the
sediments accumulated since 1986 for the upper larger part of the reservoir, and a part of
suspended sediments can still cross the dam, the resulting estimate should be considered
an a priori underestimation.
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Table 5. Mass depth of “Chernobyl Peak” and areas and masses of sediments in selected sections of
the flooded channel of Schekino Reservoir for the post-Chernobyl period.

Section Core Mass Depth of “Chernobyl
Peak” (kg m−2 1) Area (m2)

Accumulated
Sediments (t)

1 1 406 114,200 46,365
2 3 520 175,000 91,620
3 6 845 157,700 133,266
4 7 629 162,800 102,401

Total 0.37 × 106

1 According to Ivanov et al., 2021 [125].

According to the estimates made using the RUSLE model, the total washout from the
catchment area for the period under review amounted to 4.64 × 106–4.78 × 106 t, of which
river valleys reached 0.44 × 106–0.47 × 106 tons, or less than 10% [97].

According to the analysis of the particle size distribution of the longest of the sampled
sediment cores (№6) (see Figure 10A and Table 5), there was a trend towards a smooth
increase in the proportion of coarser mechanical fractions (Figure 11A) and, accordingly,
an increase in the median size (d50) of the bottom sediment particles to the surface of the
sediment layer (Figure 11B). We expected this distribution considering the decrease in the
supply of material enriched with clay fractions from the arable slopes and the increase
in the proportion of coarser material formed due to the bank erosion and incision of the
river channels.
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Based on the obtained balance estimates, we calculated the indicators of the sediment
yield modulus for the Plava and upper reaches of the Upa River basins. The obtained
values are quite close to the established values based on the monitoring studies at the
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gauging stations of the Hydrometeorological Service, located on the rivers of the Oka River
basin, with a catchment area of the same order (Table 6).

Table 6. Calculated sediment yield for Plava and upper reaches of Upa River basins in comparison
with corresponding values of other rivers of forest steppe and south of forest zones in Oka River basin,
which we obtained based on long-term observations of water and suspended sediment discharge
(based on Golosov, 1989 [146]).

River Basin Area (km2)
Share of

Arable Lands (%)
Sediment Yield
(t km−2 Year−1)

Plava 1880 58.2–84.8 43.4–82.7
Upper Reaches

of Upa 1350 61.2–71.3 8.6

Zusha 6000 67 53
Atmiss 2310 70 63

Lomovka 1110 40 40
Vad 1930 45 8.9

Vysha 2190 50 43
Pronya 3520 64 21

Considering the overestimation of the erosion rates within the Plava River basin, we
should assume that the SDR value of the entire basin is also systematically overestimated.
However, the results obtained for both studied catchments fit well into the range of esti-
mates made for the rivers of the East European Plain with the close areas of their catchments
(Table 7).

Table 7. Comparison of SDR values of Plava River and upper reaches of Upa with river basins of
Oka River system [147].

River Basin Area (km2)
Share of

Arable Lands (%) SDR

Plava 1880 58.2–84.8 13.1–24.7
Upper Reaches

of Upa 1354 61.2–71.3 7.7

Lomovka 1110 40 15
Vysha 2190 50 25.3
Pronya 2300 62 2.9
Atmiss 2310 70 19.7
Osetr 3020 64 5.0

6.5. Particulate 137Cs Budget of Plava River and Upper Reaches of Upa River

We obtained the results based on the assumed equality of the ratios of the sediment
budget components (Figure 10) and mobilized deposits of particulate 137Cs (Equation (2))
in the Upa River basin for the post-Chernobyl period (Table 8).

Table 8. Distribution of 137Cs deposits between different sediment budget components of Plava River
basin in 1986–2012.

Sediment Budget Component 137Cs Deposits (Bq 1)

Hillslope erosion 12.2 × 1012

Intraslope accumulation 4.7 × 1012

Transfer to fluvial network 7.5 × 1012

Accumulation in dry valleys 3.3 × 1012–4.6 × 1012

Transfer to river valleys 2.9 × 1012–4.2 × 1012

Floodplain accumulation 1.2 × 1012–1.3 × 1012

Sediment yield 1.6 × 1012–2.9 × 1012

1 Recalculated to 1986.



Land 2023, 12, 175 19 of 26

According to the estimates presented in Table 8, for the period 1986–2012, from 0.41 to
1% of the initial Chernobyl fallout of 137Cs was carried out outside the basin of the Plava
River in particulate form. Considering the likely overestimation of the hillslope erosion,
the total delivery of the particulate radionuclides to the receiving watercourse (the Upa
River) did not exceed 0.83% of the initial fallout.

An alternative approach is to use Equation (3), from which we obtained the results
presented in Table 9. We considered two values of the estimated sediment yield of the
Plava River. The first option has already been described above and presented in Figure 10.
Considering the landscape and geomorphological similarity of the catchments, in the
second option, we assumed the proximity of the value of the sediment yield of the Plava
River to the corresponding value of the upper reaches of the Upa River. We estimated the
mean 137Cs concentration activity in the sediment runoff of the Plava River from samples
taken at the low floodplains [143,144]. We estimated the sediment yield and concentration
activity in the sediments for the upper reaches of the Upa River based on the results of
a study on the bottom sediments of the Schekino Reservoir [125].

Table 9. Evaluation of particulate 137Cs deposits transferred with sediment yield beyond Plava River
and Upper Reaches of Upa River.

Basin Plava River Upper Reaches
of Upa River

Mean 137Cs concentration
activity in sediments over

post-Chernobyl period (Bq kg−1)
868 1 1081 2

Sediment yield (106 t) 2.1–4 3 >0.37 4 >0.37
137Cs deposits in sediment
yield over post-Chernobyl

period (1012 Bq)
1.88–3.47 >0.32 >0.4

Share of total 137Cs fallout (%) 0.65–1.2 >0.11 >0.21
1 According to Belyaev et al., 2013 [143]; Ivanova et al., 2014 [144]; 2 according to Ivanov et al., 2021 [125];
3 according to sediment budget studies (see Figure 10); 4 under assumption that sediment of Plava River is equal
to sedimentation in Schekino Reservoir.

In conclusion, all the estimations show that less than 1.5% of the Chernobyl fallout
137Cs left the observed catchment over almost three decades. Given the underestimation of
the accumulation in the Schekino Reservoir, the total deposits of the particulate 137Cs in
the sediment yield of the Plava River and upper reaches of the Upa River (in the absence
of the Schekino Reservoir) were more than 0.1% of the initial fallout. We expected such
a low value due to the current rates of the erosion processes on the arable land and the
peculiarities of the redistribution of the sediments along their transfer routes from the
arable slopes to the permanent watercourses, and due to the reduction in arable land
after 1991.

7. Research Prospects

The perspectives of the mass-balance studies on the sediment and particulate 137Cs
redistribution in the river catchment present several directions. The first one includes
improving the existing set of methods. As was mentioned earlier, the disadvantages of the
methods used are associated either with the inaccuracy of the quantitative results or with
the incompleteness of the data obtained within the study area. Systematic distortions of
the assessment are the most characteristic of the mathematical modelling of the erosion
and accumulation processes. We discuss the overestimation of the erosion rates on the
cultivated slopes when using the USLE/RUSLE models above. At the moment, the models
are constantly being improved; however, they require verification through their combined
use with the radiocesium method, remote sensing, and analyses of available meteorological
data, especially for single extreme erosion events.
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The regular depth incremental sampling with the subsequent transportation and
laboratory processing of the samples requires considerable time, which makes the process
for obtaining the final estimations rather long. According to the work experience in the
Upa basin, several years pass between field studies and the publication of the results. This
time lag makes it difficult to study the intensive transformation of fluvial systems. A high
level of radioactive contamination provides the opportunity to make a rapid determination
of the relative distribution of the 137Cs deposits along the soil profile and the allocation of
the “Chernobyl Peak”, and it makes it possible to assess the thickness of the accumulated
strata and adjust the sampling point network if needed.

According to the study carried out on the floodplain of the Lokna River [148], field
spectrometry may substantially accelerate the obtainment of the data. However, a complete
rejection of the depth increment is not possible for two reasons: (1) it is still necessary to
determine the absolute values of the 137Cs concentration activity and deposits, which is
achievable only via the examination of samples with fixed geometries; (2) the accuracy
of determining the vertical distribution of 137Cs is also substantially higher in the case
of the laboratory analyses of incremental samples. Thus, in situ measurements can only
complement the existing methods and justify the extrapolation of laboratory-obtained data.

Conducting studies on the catchments of artificial reservoirs, where we can almost
completely assess the sediment budget, is promising because almost all the sediment yield
is trapped in the mouths of these catchments. The sediment budgets for time intervals
that extend beyond the post-Chernobyl period using methods for assessing the intensity
of the erosion-accumulative processes of various time windows are of particular interest.
These evolutions make it possible to determine the effectiveness of the applied soil pro-
tection measures [149,150]. At the same time, budget studies are of substantial ecological
importance because the transfer of 137Cs within the contaminated catchments is arguably
analogous to the redistribution of other pollutants associated with sediments.

Intensive climatic fluctuations and anthropogenic impacts are actualizing monitoring
studies on small river basins subjected to radioactive contamination. The lack of monitoring
data in previous years can be partially compensated for by studies on the vertical distribu-
tion of the radionuclides in reservoirs [124,125,148]. The duration of the post-Chernobyl
period allows us to study the change dynamics through repeated field surveys of the
catchments combined with observations made decades ago.

8. Main Messages

1. Under the conditions of the reduction in the surface runoff from the slopes during the
snowmelt and the relatively stable area of arable land over the last two decades, the
intensity of the transfer of the particulate 137Cs from the arable slopes has decreased.
From a quantitative perspective, the process of the sediment fluxes overcoming
the lower boundaries of arable land remains poorly studied. In these relatively
compact zones, fundamental changes in the flow conditions occur. The functional
connectivity of the catchments with high proportions of arable lands is critical. We
can use technological solutions that make it possible to obtain statistically reliable
amounts of information within relatively short time intervals to solve this problem.
Such methods include complex radiocesium studies, such as in situ measurements
and repeated high-precision geodetic surveys with the involvement of UAVs.

2. Dry valley bottoms are the main material sinks for sediment and sediment-associated
137Cs that have eroded from cultivated slopes. The creation of new artificial reservoirs
in the bottoms of dry valleys isolated in a substantial portion of the river basins has
led to a considerable reduction in the river sediment yield.

3. The recent reduction in the spring flood levels of the regional rivers promotes
an increase in the disconnectivity between the streams and catchment slopes. Un-
der conditions of high anthropogenic loads, the sediment yield is expected to take
a minor portion of the sediment budget. However, this is the main mechanism of
radionuclide delivery outside the zone of intense fallout. The lateral migration of the
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particulate 137Cs slightly changed the spatial pattern of the contamination. Within
some of the sediment traps located along the 137Cs transport path from the slopes to
the permanent streams, substantial changes in the deposits occurred. At the same
time, the accumulation of polluted sediments in the artificial reservoirs serves as
a mechanism for the formation of new environmental risks when pollutants are
released into the river systems, which requires consideration when making water
management decisions.

4. According to the research experience in the areas of Chernobyl contamination, the
analysis of the vertical distribution of the radionuclides in the accumulative strata
makes it possible to reconstruct the transformation of the sediment budget and the
behaviour of the pollutants in the fluvial systems. This source of information becomes
particularly important under the condition of incomplete or no hydrological monitor-
ing observations. Activation of the redistribution of the material accumulated on the
bottoms by the bottom gullies is a probable scenario under climate change.
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State Task 121051100166-4 “Hydrology, morphodynamics and geoecology of erosion-channel systems”
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