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Abstract: This paper develops an optimization modeling framework to select strategies of land
development and population and employment densities for a growing metropolitan area. The
modeling core involves a non-linear commuting model, which accounts for spatial structure variables
and is empirically estimated by Tobit regression. This commuting model is then embedded into a non-
linear optimization model that allocates increments in the population and employment (activities)
to available land, while minimizing the total future commuting costs under various combinations
of land expansion boundaries and population and employment densities. The resulting minimum
cost surface is approximated via polynomial regression and combined with land development
and congestion cost functions to derive the overall optimal strategy. These models are estimated
and calibrated with data from the Census Transportation Planning Package (CTPP) and Auditor’s
property database, and are applied to the Fredericksburg metropolitan area, Virginia. The results
demonstrate that the optimal development densities are very sensitive to the congestion cost function.
A land development strategy that allows for limited sprawl might be a smart policy to reduce both
regional vehicle mile travel (VMT) and related congestion and pollution.

Keywords: population location and density; employment location and density; commuting spatial
interactions; urban boundary; land availability; cost minimization

1. Introduction
1.1. Historical Overview of Urban Modeling

Accurately predicting the spatial pattern of population and economic activity is nec-
essary for developing successful regional plans and policies. Computer-based urban
simulation models originated in the U.S. in the 1950s’ metropolitan transportation studies
and used geographic accessibility concepts. However, the attempts to build large-scale
urban models failed over the next 15 years. After Lowry [1] introduced a comprehensive
spatial interaction model called “The Lowry Model” to simulate location patterns of residen-
tial and commercial/service activities for a given pattern of basic (export manufacturing)
employment locations, while accounting for accessibility, a renaissance in urban modeling
took place, based on spatial interaction modeling (SIM), with initial formulations using
the gravity model. During the 1960~1970s, the focus of SIM was primarily on population
and activities. The 1980~1990s witnessed efforts at integrating land-use and transportation
modeling. More recently, comprehensive models have involved environmental modeling,
and the advent of the digital era, advances in computer technology, sophisticated spatial
analysis methods, and the availability of big data, combined with geographic information
systems (GIS), have generated new urban models.

In order to provide an appropriate background for this research, we critically review
the literature on SIM, the relationship between SIM and planning optimization models,
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and the costs of urban sprawl and congestion. We then summarize the shortcomings of
past research and outline the goals of this research.

1.2. Spatial Interaction Modeling: Structure and Variables

Spatial interaction modeling (SIM) represents various models that explain and predict
spatial flows, including residence–workplace commuting, shopping travel, inter-city travel,
migration, tourism, commodity flows, financial transactions, and various telecommuni-
cation forms. SIM ranges from the standard gravity model (GM), reflecting Newtonian
physics, to entropy models to discrete spatial choice models. The basic GM is formulated
as follows:

Tij = kRiWj/Dij
α (1)

In this equation, Tij is the flow from origin i to destination j, Ri and Wj are the measures
of the sizes of the origin i and destination j, respectively, Dij is the distance between them,
and α is a positive parameter that represents the distance friction. The Ri and Wj variables
are proxies for the abilities of the origin to generate flows and of the destination to attract
them. Generalized versions of Equation (1) include several variables that characterize
both the origin and destination, and several friction factors. This model has been termed
as unconstrained SIM. The estimation of (1), subject to the given total outflows for all
the origins and given total inflows for all the destinations, is termed as constrained or
entropy SIM. The focus here is on the unconstrained case. These models consider aggregate
flow data (e.g., the number of commuters between the origins and destinations). Another
interpretation of SIM is related to discrete choice models (e.g., multi-nomial logit models),
using disaggregate data at the level of the individual decision maker. Anas [2] argues that
the gravity and discrete choice models are two equivalent views of the same problem. For
reviews of the theory and applications of SIM, one can refer to the work of Sen and Smith [3],
who discuss the theoretical foundations and practical applications of gravity models to
commuting, and Nijkamp and Ratajczak [4], who review the relevance of gravitational
principles in regional science and spatial economics, and address their application to trade
flow analysis.

The above SIM approach suffers from the problem of independence from irrelevant
alternatives. SIM models have been improved by incorporating variables that represent the
effects of the spatial structure, thus eliminating the estimation bias of the friction parame-
ters. Fotheringham [5] introduced a competing destination (CD) factor that measures the
accessibility of any destination j to all (or a subset of) the other destinations. If the effect
of CD is negative, competition to attract flows can be detected among the destinations;
the closer destination j is to the other destinations, the smaller the flow terminating at j. If
the effect of CD is positive, agglomeration effects can be observed among the neighboring
destinations (e.g., a set of different brand stores within a shopping mall). Another approach
to accounting for the spatial structure involves the intervening opportunities (IO) factor [6],
which measures the accessibility of an origin to destinations located between the origin and
the destination. IO measures the absorbing effects on the originating flow. Gitlesen and
Thorsen [7] present an application of the CD concept to commuting modeling in Norway,
while accounting for discontinuities in the road network.

Sirmans [8] is among the first to highlight the importance of incorporating various
socio-economic determinants into SIM models, including cost, gender, race, income, age,
and education and outlines the following points: (1) cost variables are expected to have a
negative influence on commuting flows; (2) age variables are expected to have a negative
influence on commuting flows, due to increased costs; (3) the higher the education level, the
higher the commuting flows; (4) income variables are expected to have a positive influence
on commuting flows; (5) race variables (percentages of minorities) are expected to have a
negative influence on commuting flows. The results also point out that the determinants of
commuting vary across gender.

Sandow [9] shows that women commute shorter distances than men. Sermons and
Koppelman [10] also show that the presence of children, the occupation of the male worker
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in a household, and the last change in the female worker’s workplace are important de-
terminants of gender differences in commuting behavior. Prashker et al. [11] investigated
various factors that influence an individual’s choice of residence location, using a logit
model, and showed the importance of area characteristics and commuting distance in select-
ing a residential location, with significant differences between genders. They also showed
that commuting distance becomes less important with increasing income, education, and
car ownership. O’Kelly et al. [12], using Irish data, show that commuting trip length varies
by occupation and gender. Lin et al. [13] reviewed the impacts of socio-economic factors on
commuting.

Another SIM research stream is the relationship between housing prices/locations,
employment centers’ locations, and commuting. Kim et al. [14] developed an empirical
model to show how housing prices, wages, and commuting times affect joint residential
and workplace location choice. They show that residents trade lower housing costs for
lower wages, and higher housing costs for higher wages. Wu [15] analyzed the impacts
of employment and housing development on commuting in the Silicon Valley region and
indicated that housing affordability and land-use patterns are important determinants of
residential location choices and commuting flows, and that accessibility, local government
expenditures, land availability, and ethnic background are important determinants of the
spatial distribution of employment. Glenn et al. [16] show that commuting flows result
not only from wage differentials and distances, but also from a spatial mismatch between
the types of jobs and the categories of workers. Ahrens and Lyons [17], using a gravity
model with Irish data, show that rising housing rents lead to longer commutes. Sohn [18]
examined how commuting patterns reveal urban structures (where jobs and housings are
located), by including locational variables (distance from the city center) for the origins and
destinations of commuting flows in a modified gravity model.

1.3. Planning Optimization Models and Spatial Interaction Modeling

There have been various research efforts to design normative models for delineating
more efficient urban patterns, including convex programming models that embed spatial
interaction models within activity-allocation frameworks [19]. Kim [20] further expands
this approach by adding alternative transportation systems. Some important works in this
line of research include [21–25]. Prastacos’ POLIS model maximizes total locational surplus
and combines the allocation of employment and a multi-modal transportation system. It
is a programming formulation of the Lowry model and incorporates the location of basic
employment with data from the San Francisco region.

Barber [26] uses the Lowry model reformulated in matrix form by Garin [27] to develop
a linear goal programming model, which determines the basic employment distribution
that minimizes deviations from target zonal populations. Using the newly distributed pop-
ulation, the model then estimates zone-specific service and retail employment. Barber [28]
develops a linear programming model to allocate the future growth in basic employment
to minimize total travel time. Basic employment, and hence basic land-use requirements,
is the control variable, whereas service employment and population and their land-use
requirements are not. The objective function reflects total travel time for all work- and
home-based service trips.

More recent land-use allocation and transportation simulation models include those
proposed by Ma et al. [29] and Samani et al. [30]. These models include gravity-based
components of the ITLUP (integrated transportation and land-use planning) model, ini-
tially developed by Putnam [31]. Some recent studies focus on the relationship between
accessibility and the spatial structure of economic activities. Wu et al. [32] evaluate the
relationship between the spatial structure of medical resources and the accessibility of
medical facilities in different traffic analysis zones and shed light on the potential optimal
solutions for the spatial allocation and efficient utilization of medical services. Zhang
et al. [33] scrutinize the relationship between the spatial pattern of roadway networks
and the quality of business environments. Finally, one should mention the recent stream
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of multi-objective land-use optimization models, exemplified by [34,35]. However, these
models do not incorporate the transportation system or transportation interactions (e.g.,
commuting), and built-up areas are not differentiated in terms of internal land use. The
focus of these models is on sustainability and ecological protection.

1.4. Sprawl versus Compact City: Cost Assessment

The effect of urban sprawl on commuting patterns seems to be controversial. Some
argue that sprawl has negative consequences for commuting, with longer commutes and
congestion [36]. Ewing et al. [37] find no relationship between sprawl and commuting time.
Weber and Sultana [38], using 1990 and 2000 Census Transportation Planning Package
(CTPP) data for Birmingham, Alabama, differentiate workplace sprawl from residential
sprawl, and examine the impact of employment sprawl on the commuting of White and
Black workers. Their results show that workplace sprawl reduces commuting distances
for those who commute to the sprawling areas and suggest that workers may be able
to reduce their commutes as more workplaces relocate to suburban areas. However,
workplace sprawl may increase commutes for those who may not be able to adjust their
residential location. Variables found to influence commuting length include race, income,
mode of transportation, location, population and household density, employment density,
homeownership, and time leaving home for work [39].

Dunphy and Fisher [40] report that increasing density decreases the number of daily
trips per person, but also assert that high density causes more congestion and pollution.
Levinson and Kumar [41] test the influence of residential density on commuting patterns,
and conclude that density is an important explanatory variable, with noticeable negative
effects on the speed and distance of trips. They use 1980/1990 U.S. Census data and
1990/1991 Nationwide Personal Transportation Survey (NPTS) data. Auto travel time is
negatively related to density below a density threshold (10,000 persons per square mile) and
positively so above this threshold. O’Toole [42] indicates that there is no consensus about
how much compact development reduces total driving and he suggests that the benefits
of compact development are often likely to be overstated and its costs understated. The
costs of compact development include loss of property rights, reduced geographic mobility,
higher housing costs and lower home-ownership rates, higher taxes or reduced urban
services to subsidize compact development, increased traffic congestion, and reduced eco-
nomic mobility. Cambridge Systematics, Inc. [43] reports that congestion would be clearly
a major result of a compact development plan and estimates that doubling densities from
an average of 3000 people per square mile to an average of 7000 people would reduce per
capita driving by less than 15 percent, but would still lead to a 100 percent increase in total
vehicle travel miles. Without new road/highway expansion to accommodate this increased
demand, there would be a large increase in regional congestion. Stevens [44] conducted a
meta-regression analysis of the results of 46 studies to derive a clearer understanding of
the influence of compact development on driving, and found a generally small, although
significant, reduction in driving.

Air pollution has also been analyzed in the context of the sprawl/compactness de-
bate. Emrath and Liu [45] show that the vehicle miles travelled (VMT) declines as the
compactness of subdivisions increases, but with less efficient speeds. However, on balance,
CO2 emissions still tend to be lower in more compact developments. Stone [46], using
data on 45 large U.S. metropolitan areas, shows that sprawling areas are associated with
more ozone exceedances than more spatially compact metropolitan regions. Schindler
and Caruso [47] develop a theoretical monocentric urban model to analyze the trade-off
between traffic-based pollutant emissions and pollution exposure. Solving the model with
parameters drawn from the literature, they find that emissions increase with sprawl and
exposure increases with compactness, underscoring the difficulty in assessing compactness
net benefits. Finally, Zhang et al. [48] show that there is a significant correlation between
urban development patterns and PM2.5 concentrations.
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1.5. Summary and Research Goals

Although spatial interaction modeling of commuting has been the subjects of much
urban research, there have not been many planning/optimization applications to resi-
dential and employment allocations that incorporate SIM. Both Barber’s and Prastacos’
models are essentially programming formulations of the Lowry model, where only basic
employment is a control variable, with residential allocations automatically derived. In
addition, few commuting models have incorporated SIMs and spatial structure factors. It is
clear that improved SIMs should incorporate spatial structure effects in order to avoid the
misspecification of conventional gravity models and that planning/optimization models
should also consider land development costs and congestion/pollution costs, in addition
to commuting costs.

Given the above shortcomings, the goals of this research are as follows:

1. Develop a new SIM for commuting trip distribution, based on Tobit regression estima-
tion [49] and including spatial structure variables measured by competing destinations
(CD) [5] and intervening opportunity (IO) [6] factors. It is expected that incorporating
these factors will better represent commuting behavior and commuting costs.

2. Using the Tobit commuting SIM, develop a new commuting cost minimization model
that simultaneously allocates target increments in the population and employment
to geographical units across a city or metropolitan area under various scenarios of
(a) population and employment densities (land consumption per resident and per
employee) and (b) land availability in each geographical unit, as determined by
the growth boundaries and environmental constraints. The results of this optimiza-
tion include a minimum commuting cost surface, which is then to be estimated by
polynomial regression, with the densities as independent variables.

3. Combining the polynomial commuting cost model with estimated land development
cost models and synthetic congestion cost models, develop a total cost minimization
model to determine the optimal densities under various growth boundary scenarios
and various parametric assumptions for the congestion cost functions.

4. Use data on a specific U.S. metropolitan area to test the feasibility of the above-
methodological goals. This would be a proof-of-concept goal, but is not intended to
provide an actual plan for the local authorities of this metropolitan area.

2. Data and Methods
2.1. Overview of the Study Area

The Fredericksburg Area Metropolitan Planning Organization (FAMPO) was estab-
lished in 1992, in accordance with Federal regulations, stating that “a metropolitan planning
organization (MPO) shall be designated for each urbanized area with a population of more
than 50,000 individuals.” To be classified as an urbanized area, a central place and any
contiguous areas must have a density of at least 1000 persons per square mile. Based on
the 1990 Census, an urbanized area consisting of the city of Fredericksburg and portions of
Spotsylvania and Stafford counties met this threshold. FAMPO chose to expand its bound-
aries to include the three jurisdictions in their entirety. The Planning District 16 (George
Washington Regional Commission—GWRC) in Virginia deals with FAMPO jurisdictions
of two additional rural counties, King George and Caroline. For convenience, the terms
“FAMPO region” and “George Washington Region” are used interchangeably in this paper.
The location of FAMPO within Virginia is indicated in Figure 1.

The FAMPO region, because of its proximity to the rapidly growing suburbs of the
Washington, D.C., metropolitan area (to the north) and the Richmond-Petersburg metropoli-
tan area (to the south), is the fastest growing region in Virginia, with a 2006 population of
310,000 persons, nearly a third more than in 2000. The projections suggest that an additional
250,000 people will be living in FAMPO by 2035. As a result, the region is experiencing the
growing pains related to sprawl, traffic safety and congestion. FAMPO’s central location
and proximity to expanding employment opportunities has encouraged the significant
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migration of new residents, both to fill local jobs and to seek affordable housing and rural
and lower density suburban lifestyles.
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2.2. Data Sources
2.2.1. CTPP 2000

Most of the data are drawn from the 2000 Census Transportation Planning Package
(CTPP), a set of special tabulations prepared for transportation planners, based on data
from the decennial census. CTPP data are downloadable from the following website: CTPP
Data—Transportation.org. It is the only Census product that summarizes data by place of
work and provides information on travel flows between homes and workplaces. It provides
summary tabulations for traffic analysis zones (TAZs) and other small geographic areas.
The CTPP is divided into the following three parts: Part 1 includes residence-based data,
summarizing worker and household characteristics; Part 2 includes place-of-work data;
and Part 3 data includes data on commuting flows from residences to workplaces. The
geographical unit of analysis in this research is the TAZ, and there are 188 TAZs in FAMPO.
The year 2000 was the last year when the CTPP was produced by the Bureau of the Census,
in collaboration with the Bureau of Transportation Statistics, using data from the Long
Form survey (16% sampling). This decennial survey was cancelled by the U.S. Congress
and replaced by the Annual Community Survey (ACS), with a sampling rate of 3%. Data
derived from the ACS are more uncertain, hence the choice of the CTPP 2000 data. It is,
however, important to emphasize that the goal of this paper is to present a new planning
methodology and to use data to demonstrate its feasibility, and not to produce a plan to be
used by FAMPO.

The 2000 population and employment distributions are mapped in Figures 2 and 3.
The highest population concentrations are located in the north of Stafford County (A); south
of Route 3 and west of the I-95 interstate highway (B); and around the city of Fredericksburg,
the center of the region (C). There are three employment clusters, which are as follows:
the CBD of Fredericksburg (D); the Quantico military base located in the north of Stafford
County (E); and Dahlgren, the site of a U.S. naval base located at the eastern corner of King
George County (F).

Population and employment distribution across the FAMPO region are summarized
by jurisdiction in Table 1. Two urban counties, Spotsylvania (37.5%) and Stafford (38.4%),
function as major residential areas and also, together with the city of Fredericksburg,
provide most of the regional employment (31.1% Spotsylvania; 31.8% Stafford; and 23.2%
Fredericksburg).
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Zone-to-zone and jurisdiction-to-jurisdiction flows for 2000 are summarized in Table 2.
Fredericksburg displays high interactions with the other jurisdictions (18.91%), while
Spotsylvania has the highest level of internal flows (23.62%). A high share of the people
living in Stafford work there (17.08%).
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Table 1. FAMPO Region Population and Employment in 2000.

Jurisdiction Population % Employment %

Caroline 22,120 9.2% 1945 2.3%
Fredericksburg 19,275 8.0% 19,760 23.2%

King George 16,805 7.0% 9912 11.6%
Spotsylvania 90,405 37.5% 26,521 31.1%

Stafford 92,460 38.4% 27,059 31.8%
Total 241,065 100.0% 85,197 100.0%

Table 2. Commuting Flows (Number of Commuters) in 2000.

Flow %

FAMPO
Internal 7125 10.61

TAZ-to-TAZ 60,023 89.39

Jurisdiction

Caroline
Internal 1261 1.88

Jurisdiction-to-Jurisdiction 203 0.30

Fredericksburg Internal 4056 6.04
Jurisdiction-to-Jurisdiction 12,699 18.91

King George Internal 4314 6.42
Jurisdiction-to-Jurisdiction 3173 4.73

Spotsylvania Internal 15,863 23.62
Jurisdiction-to-Jurisdiction 6377 9.50

Stafford
Internal 11,469 17.08

Jurisdiction-to-Jurisdiction 7733 11.52
Total Flow 67,148 100%

2.2.2. Property Data

Real estate data have been collected from the planning departments of local govern-
ments and combined into a regional data set to maintain consistency and comparability.
The collected assessment data all apply to 2006. The following variables are available for
each record that characterizes a parcel: parcel I.D.; land use; total land value; total building
value; total property value; size (acre); jurisdiction; TAZ I.D. Average values per parcel for
size, land value, building value, and property value by jurisdiction are provided in Table 3.
These data can be obtained from the following Tax Assessor Offices:

Real Estate Taxes|Fredericksburg, VA—Official Website (fredericksburgva.gov);
Stafford County, VA (staffordcountyva.gov);
Assessment Office, Spotsylvania County, VA; Real Estate, Caroline County, VA;
Real Estate, King George County, VA (kinggeorgecountyva.gov).

Table 3. Average Parcel Data in 2006.

Residential Property Workplace Property

Jurisdiction Average
Size (Acre)

Average
Property

Value
(USD)

Average
Land
Value
(USD)

Average
Building

Value
(USD)

Average
Size (Acre)

Average
Property

Value
(USD)

Average
Land
Value
(USD)

Average
Building

Value
(USD)

Caroline 2.3658 220,462 47,598 162,618 5.3395 576,642 144,972 304,321
Fredericksburg 0.3525 260,831 53,914 178,740 1.2749 945,372 388,820 506,586

King
George 3.2624 245,225 72,054 167,082 4.5400 517,810 196,227 271,619

Spotsylvania 1.3127 147,640 65,580 82,059 14.0769 3,717,248 3,330,981 386,267
Stafford 1.1375 372,153 102,621 269,531 3.3182 1,241,485 479,788 761,687
FAMPO 1.4254 247,782 77,390 167,696 8.3923 2,309,510 1,809,006 481,376

fredericksburgva.gov)
staffordcountyva.gov
kinggeorgecountyva.gov
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2.3. Variables
2.3.1. Dependent Variable

The TAZ-to-TAZ flow table from CTPP 2000 Part 3 includes a large number of zero
values. The number of potential commuting connections (all records) is 35,344 (188 × 188),
including 188 intra zonal flows. Among these connections, 90.2% (31,875) have zero flow
values. Tables 4 and 5 present the descriptive statistics for these flows. Records with zero
flows embody useful information, and therefore cannot be discarded in statistical analyses.

Table 4. Descriptive Statistics for Non-Zero Flows in 2000.

Variable N Mean Standard Deviation Minimum Maximum

F: flow 3469 19.35 34.17 4.00 990.00
P: population 3469 2332.27 2659.69 15.00 15,730.00
E: employees 3469 1683.79 1687.31 4.00 6415.00
D: distance 3469 10.51 6.97 0.42 41.07

Table 5. Descriptive Statistics for Zero Flows in 2000.

Variable N Mean Standard Deviation Minimum Maximum

F: flow 31875 0 0 0 0
P: population 31875 1167.99 1765.41 0 15,730.00
E: employees 31875 319.25 734.31 0 6415.00
D: distance 31875 18.76 9.25 0.70 50.53

2.3.2. Independent Variables

The potential independent variables have been directly drawn from CTPP Parts 1 and
2 or are derived from these primary variables. These variables can be grouped as follows:
Group A: residence-based variables (CTPP 2000 Part 1); Group B: workplace-based variables
(CTPP 2000 Part 2); Group C: impedance variable; Group D: spatial structure variables.

Group A

The larger the population of a residential TAZ (P), the larger the commuting flow
expected to originate from it. Gender differences have been shown to affect human behavior;
therefore, the share of the male population (P_M_RES) is selected. Unemployment rates
are also likely to have negative impacts on flows; therefore, the total (P_UNEMP_RES) and
male (P_MUNEMP_RES) unemployment rates are selected. A high percentage of people
driving alone to work implies more cars on the roads, and therefore larger commuting
flows. High car-pooling rates can be expected to reduce flows; therefore, the following
variables are selected:

- Percentage of workers driving alone from their residence (P_DA_RES);
- Percentage of workers carpooling from their residence (P_CP_RES);
- Percentage of male workers driving alone from their residence (P_MDA_RES);
- Percentage of male workers carpooling from their residence (P_MCP_RES).

Age variables, such as the percentages of residents aged 25 to 64 (P_AGE25_64) and
of residents aged 65 + (P_AGE65PLUS), are likely to have positive and negative impacts
on commuting flows, respectively. Employment occupation may have an effect on flows,
although the direction of the effect is a priori unclear. The following variables are selected:

- Percentage of residents in sales or service occupations (P_OCC1_RES);
- Percentage of residents in clerical or administrative support occupations (P_OCC2_RES);
- Percentage of residents in manufacturing, construction, or maintenance occupations

(P_OCC3_RES);
- Percentage of residents in professional, managerial, or technical occupations (P_OCC4_RES);
- Percentage of male residents in sales or service occupations (P_MOCC1_RES);
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- Percentage of male residents in clerical or administrative support occupations (P_
MOCC2_RES);

- Percentage of male residents in manufacturing, construction, or maintenance occupa-
tions (P_MOCC3_RES);

- Percentage of male residents in professional, managerial, or technical occupations
(P_MOCC4_RES).

It has been argued that low-income minorities experience poor employment opportu-
nities due to underprivileged accessibility. In order to test such effects, and particularly
race impacts on travel patterns, the following variables are selected:

- Percentage of Hispanic or Latino residents (P_HIS_RES);
- Percentage of White residents (P_WHT_RES);
- Percentage of Black or African American residents (P_BLK_RES).

A higher share of White residents within a population, probably associated in part
with higher income, is likely to produce larger commuting flows. The share of disabled
people (P_DIS_RES) is likely to have a negative relationship with flows. Income and
earnings are likely to have a positive effect on flows. To test these hypotheses, the following
variables are selected:

- Percentage of resident households with an income of USD 75,000 or more in 1999
(P_HINC_RES);

- Median resident household income (MHI_RES);
- Percentage of resident workers with high earnings (USD 50,000+) in 1999 (P_HERN_RES);
- Percentage of resident workers below the poverty level in 1999 (P_POV_RES);

Home ownership is measured by the following variables:

- Percentage of households with self-owned housing (P_OWNSELF_
RES);

- Percentage of households with owned housing with and without a mortgage (P_OWN_
RES).

High vehicle availability is measured by the percentage of households with 3 or more
vehicles (P_3VEH_RES). High housing occupancy rates are measured by the percentage
of occupied housing units (P_OCCU_RES). Higher education rates are measured by the
percentage of residents with a bachelor’s degree or higher (HEDU_RES). These variables
are also likely to have positive effects on commuting flows. Descriptive statistics for Group
A variables across the 188 TAZs of FAMPO are presented in Table 6.

Group B

The level of employment (EMP) at the workplace (destination) is likely to have a
positive impact on attracted flows. It is also likely that higher rates of full-time workers
lead to higher flows. This is measured by the percentage of people who worked 40+ hours
per week in 1999 at their workplace (P_Full_EMP). Vehicle availability is also likely to
increase commuting flows, and it is measured by the percentage of people with 2 or more
vehicles at their workplace (P_Veh2plus_EMP). Variables that are likely to have a negative
relationship with flows include the following:

- Percentage of employees below the poverty level (P_BlwPov_EMP);
- Mean travel time (MTT_EMP);
- Percentage of workers with low earnings (P_LERN_EMP);
- Percentage of workers that carpool (P_CarPool_EMP).

The percentages of workers with high earnings (P_HEARN_EMP), driving alone
(P_DA_EMP), and arriving at the morning peak period (P_AM7_10_EMP) are likely to
have positive effects on commuting flows. Type-of-industry variables are likely to have
mixed impacts and include the following:

- Percentage of workers in manufacturing (P_Mfg_EMP);
- Percentage of workers in wholesale trade (P_WhlTrd_EMP);
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- Percentage of workers in retail trade (P_RetTrd_EMP);
- Percentage of workers in service industries (P_serv_EMP);
- Percentage of workers in public administration (P_Pub_EMP).

Table 6. Descriptive Statistics for Group A Variables.

Variable N Mean Median Standard
Deviation Minimum Maximum

P 188 1282.26 625.00 1903.91 0.0 15,730.0
P_DA_RES 188 0.7601 0.7782 0.1498 0.0 1.000
P_BLK_RES 188 0.1525 0.1165 0.1421 0.0 0.674

P_OCC1_RES 188 0.1618 0.1627 0.0844 0.0 0.600
P_OCC2_RES 188 0.1858 0.1920 0.0914 0.0 0.455
P_OCC3_RES 188 0.2150 0.2000 0.1140 0.0 0.580
P_OCC4_RES 188 0.1769 0.1700 0.1002 0.0 0.495

P_M_RES 188 0.4981 0.4912 0.0918 0.0 0.984
P_UNEMP_RES 188 0.0214 0.0165 0.0256 0.0 0.150

P_MUNEMP_RES 188 0.0189 0.0000 0.0305 0.0 0.200
P_CP_RES 188 0.1480 0.1334 0.1031 0.0 0.700

P_MDA_RES 188 0.7538 0.7802 0.1866 0.0 1.000
P_MCP_RES 188 0.1517 0.1303 0.1305 0.0 1.000

P_MOCC1_RES 188 0.1232 0.1172 0.1031 0.0 0.667
P_MOCC2_RES 188 0.0837 0.0817 0.0696 0.0 0.400
P_MOCC3_RES 188 0.3279 0.3094 0.1731 0.0 1.000
P_MOCC4_RES 188 0.2047 0.2000 0.1375 0.0 0.695

P_HIS_RES 188 0.0185 0.0000 0.0309 0.0 0.192
P_WHT_RES 188 0.7876 0.8220 0.1699 0.0 1.000
P_DIS_RES 188 0.1429 0.1250 0.1028 0.0 0.600

P_HINC_RES 188 0.4013 0.4006 0.2163 0.0 1.000
MHI_RES 188 54,720.88 52,675.00 18,921 0 109,770

P_HERN_RES 188 0.2071 0.2032 0.1140 0.0 0.5052
P_POV_RES 188 0.0218 0.0112 0.0331 0.0 0.250

P_OWNSELF_RES 188 0.1881 0.1667 0.1385 0.0 1.000
P_OWN_RES 188 0.7895 0.8546 0.2137 0.0 1.125
P_3VEH_RES 188 0.3406 0.3354 0.1614 0.0 0.769
P_OCCU_RES 188 0.9131 0.9486 0.1428 0.0 1.000

HEDU_RES 188 0.0384 0.0341 0.0381 0.0 0.388

Descriptive statistics for these variables are presented in Table 7.

Table 7. Descriptive Statistics for Group B Variables.

Variable N Mean Median Standard
Deviation Minimum Maximum

EMP 188 453.1755 75.0000 964.605 0.0000 6415.0
P_Full_EMP 188 0.3321 0.3099 0.2435 0.0000 1.0000

P_Veh2Plus_EMP 188 0.7334 0.8265 0.2895 0.0000 1.0000
P_BlwPov_EMP 188 0.0364 0.0108 0.0698 0.0000 0.6667

MTT_EMP 188 24.712 25.000 15.369 0.0000 102.3
P_LERN_EMP 188 0.3681 0.3631 0.2498 0.0000 1.0000

P_CarPool_EMP 188 0.0883 0.0809 0.0923 0.0000 0.4000
P_Mfg_EMP 188 0.0379 0.0000 0.0948 0.0000 0.7500

P_WhlTrd_EMP 188 0.0192 0.0000 0.0480 0.0000 0.4000
P_RetTrd_EMP 188 0.0864 0.0106 0.1413 0.0000 1.0000

P_serv_EMP 188 0.3687 0.3637 0.3014 0.0000 1.0000
P_Pub_EMP 188 0.0327 0.0000 0.0777 0.0000 0.4427

P_Finan_EMP 188 0.0561 0.0000 0.1341 0.0000 1.0000
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Group C

Distances have been computed as Euclidian distances (miles) between the zone cen-
troids. Table 8 provides descriptive statistics for the inter-TAZ distances (D).

Table 8. Descriptive Statistics for Inter-TAZ Distances.

Variable N Mean Median Standard Deviation Minimum Maximum

D 35,344 17.947 17.380 9.379 0.420 50.530

Group D

The intervening opportunity (IO) and the competing destinations (CD) factors are
based on employment. The CD factor measures the accessibility of destination j to other
destinations in the neighborhood of j, while the IO factor measures the accessibility of
origin i to other origins in the neighborhood of i. The following three different types of IO
factors have been proposed by Guldmann [50]: the IO circle, IO sector, and IO corridor.
In this research, the IO circle, as originally used by [6], is retained. The neighborhoods
for the IO and CD factors of a given TAZ are circles of a 10-mile radius centered on the
centroid of the TAZ. A higher IO factor is expected to reduce outgoing commuting flows
(negative relationship), while the CD factor could have either negative or positive effects
on commuting flows. A positive effect suggests the presence of agglomeration forces at the
destination, and a negative one suggests the presence of competition forces. The IO and
CD factors are defined mathematically as follows:

IO = ∑
k

Ekdγ
ik, → k 6= i and k ∈ Neighborhood of TAZ i (2)

CD = ∑
l

Eldε
jl , → l 6= j and l ∈ Neighborhood of TAZ j (3)

In order to illustrate the computation of the IO and CD factors, one must consider
Figure 4, with the origin TAZ 5 and destination TAZ 17. The neighborhood TAZs for TAZ
5, within a 10-mile radius, are {2,6,7,8}. Similarly, the neighborhood TAZs for TAZ 17 are
{6,15,18}. The factors are computed as follows:

IO5,17 = ∑
k 6= 5
k ∈ {2, 6, 7, 8}

Ekdγ
5,k (4)

CD5,17 = ∑
l 6= 17
l ∈ {6, 15, 18}

Eldε
17,l (5)

2.4. Statistical and Optimization Methodology

Spatial interaction models (SIMs) of commuting flows are estimated with, as explana-
tory variables, the population Pi at the origin i, the employment Ej at the destination j,
several socio-economic variables characterizing either i or j (X . . . , Y . . . ), the distance
dij, and competing destinations (CDj) and intervening opportunity (IOi) variables that
characterize the spatial structure. If Fij is the commuting flow between i and j, a general
SIM can be calculated as follows:

Fij = f (Pi, Ej, dij, X, . . . , Y, . . . , CDj, IOi) (6)

Tobin [49] analyzed household expenditures on durable goods, while taking into
account the fact that expenditures cannot be negative. He proposed a regression method
applied to data with censored values, which became known as the Tobit model. The
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basic dependent variable in this research, commuting flow, cannot be negative, and any
examination of an actual flow matrix shows that many flows are equal to zero. The Tobit
model is a reasonable approach to deal with this problem.
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The conceptual basis for using the Tobit model is based on resident worker (RW)
utility maximization. One must assume that the RW has a choice among multiple origin–
destination (O–D) trips (by virtue of residential and employment location decisions), and
that only one O–D trip turns out to be positive, with all the others turning out to be
negative at the utility maximum. These negative values are not observed and become zero
values in terms of actual trips. The observed flows can then be viewed as the sums of
these individual commuting decisions, and the zero flow values represent the censored
unobserved negative values. Therefore, the latent variable of the Tobit model captures both
positive and negative sums of commuting flows. With standard regression approaches with
only positive observed values, the information embodied in zero flow observations is lost.
Ordinary least squares (OLS) estimation applied to a truncated sample will be biased and
inconsistent. The Tobit model allows the explicit inclusion of zero commuting observations.
This is particularly important if there are large volumes of zero observations.

The latent variable In the Tobit is specified as follows:

F̂ij = βxij + ε (7)

The actual flow Fij is defined as

Fij =

{
F̂ij = βxij + ε if F̂ij > 0
0 if F̂ij ≤ 0

ε ∼ N(0, σ2)

(8)

F̂ij is the latent variable that represents the “desired” commuting flows, which can be
negative. A Tobit linear commuting flow SIM can be formulated as follows:

Fij = a0 + ∑
i

aiXi + ∑
j

bjXj + ∑
i,j

cijZij (9)
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where ai, bj, and cij are the parameters, Xi and Xj are the variables that characterize the
origin i and destination j, Zij represents the impedance variables (e.g., distance, time and
price) and Fij is the commuting flow.

P0
i and E0

j represent the existing (base year) population and employment in zones
i and j, respectively. The population and employment allocation problem involves the
optimal allocation of total population and employment increments, ∆PT and ∆ET , to all
zones where land is available for a certain target year. xi and zj are the population and
employment increments allocated to zones i and j, and Z and X are the corresponding
vectors. In addition, ULP is the population density (land area per new resident), ULE is
the employment density (land area per new employee), and LANDi is the land available
in zone i for new residents and new employees. The parameters ULP and ULE uniformly
apply to all the geographical units. However, the model could be easily modified to test for
spatially varying density scenarios. If Cij is the fixed unit commuting cost between i and j,
a general total commuting cost minimization model can be as follows:

Minimize Z = ∑
i,j

CijFij (10)

This is subject to
∑ xi = ∆PT (11)

∑ zj = ∆ET (12)

Fij ≥ F̂ij(P0
i + xi, E0

j + zj, dij, X . . . Y . . . , CDj(Z), IOi(X)) (13)

ULP.xi + ULE.zi ≤ LANDi (14)

Fij ≥ 0 xi ≥ 0 zj ≥ 0 (15)

The objective (10) is to find the minimum total commuting cost. Constraint (11)
guarantees that the sum of all increments in the population equals the total population
increment, and constraint (12) ensures the same for employment. The Tobit constraint
(13) defines the commuting flow between i and j, and constraint (15) guarantees that
Fij = 0 when the right-hand side of constraint (13) is negative. ULP and ULE are the given
parameters in the optimization model, but can be varied in the context of scenario analyses.
Constraint (14) simply states that the land to be used for new residents and employees in
zone I cannot exceed the land available. In the specific case of the FAMPO region with
188 zones (TAZs), this model has 36,097 variables and 35,911 constraints.

However, minimizing the total commuting costs cannot be the sole objective of the
model. Other costs need to be considered. For instance, compact development is assumed
to reduce pollution emissions by reducing driving and housing a higher percentage of
people in multi-family and mixed-use developments at more central locations, reducing
utility costs and utilizing more transit and fewer highways. Land development costs would
be smaller in such developments. However, some argue that compact developments can
be more costly than often estimated [42], because compact cities may increase emissions
by increasing roadway congestion. These costs are often neglected. In addition, compact
development may entail higher housing costs and lower homeownership rates, reduced
geographic and economic mobility, higher taxes, reduced urban services, higher consumer
costs, etc. A more general cost function can then be stated as follows:

TOTALCOST = commutingcost(TCOM)
+landdevelopmentcost(LDC)
+congestioncost(TCON)

(16)

All the costs in (16) were formulated in terms of both residential and employment
densities, or, alternatively, in terms of unit land consumption per resident (ULP) and per
employee (ULE). The higher the ULP and ULE, the lower the corresponding densities.
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Commuting costs and land development costs increase, and congestion costs decrease
with ULP and ULE. These cost curves, and the total cost curve are illustrated in Figure 5.
The LDC would include all annualized land/building costs for both employment and the
population. The TCOM represents the annual commuting cost. The TCON represents the
congestion costs for both the population and employment. Within the given ranges of
ULP and ULE, the total cost function (TCD) will point to the optimal ULP and ULE that
minimize the total cost.
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3. Results
3.1. Tobit Regression

The estimation of the final Tobit model with SASTM procedure QLIM (qualitative and
limited dependent variable models) is the outcome of a multi-step exploratory process.
The first estimated model (Model 1) involved only three independent variables that appear
in most gravity models, which are as follows: population (P), employment (EMP) and
distance (D). All the coefficients turned out to be highly significant (p < 0.0001), with the
expected positive sign for P and EMP, and the expected negative sign for D, and with
R2 = 0.297 and Pseudo-R2 = 0.042. The Pseudo-R2 is defined as follows:

R2
MF =

LRT
LRT∗ =

(lM − l0)
(lMAX − l0)

= 1− lM
l0

, (17)

where LRT is the likelihood ratio statistic; lM is the log-likelihood value of the model; l0 is
the log-likelihood value if the non-intercept coefficients are restricted to zero; lMAX is the
maximum possible likelihood. One can refer to [51] for a discussion on the Pseudo-R2 for
limited dependent variable models.

The second step was to add the spatial structure variables IO and CD to Model 1. Since
the IO and CD factors involve additional parameters (exponents of distance) that need to
be estimated, a grid sensitivity analysis was conducted to search for the optimal parameter
set. For both γ (IO factor) and ε (CD factor), the range (−2.0, 0) was selected, as typical
in the literature, with a 0.1 increment. Hence, 400 combinations of γ and ε values were
evaluated in this sensitivity analysis. The combination of γ = −0.1 and ε = −0.3 yielded the
highest log-likelihood, as well as the highest Pseudo-R2. All the five variables of this model
(Model 2) turned out to be very significant (p < 0.0001), with a negative sign for IO (as
expected) and a positive sign for CD, pointing to agglomeration effects at the destination.

The third step was to add socio-economic variables, as listed in Groups A and B, to
Model 2. The following variables improved in Model 2 (significance and sign; overall
performance) and were retained in Model 3: P_DA_RES, P_BLK_RES, P_OCC1_RES,
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P_OCC2_RES, P_OCC3_RES, P_OCC4_RES, P_Mfg_EMP, P_WhlTrd_EMP, P_RetTrd_EMP,
P_Finan_EMP, P_serv_EMP, and P_Pub_EMP. However, none of the INCOME, GENDER
and AGE-related variables turned out to be significant. For Model 3, R2 = 0.355, and
Pseudo-R2 = 0.121.

The final model (Model 4) expands on Model 3 by introducing quadratic terms. The
following significant quadratic terms were selected:

E2 = EMP * EMP (18)

P2 = P * P (19)

POPEMP = P * EMP (20)

EMPCD = EMP * CD (21)

Table 9 represents the parameter estimates of Model 4, with R2 = 0.466, and Pseudo-
R2 = 0.239. Model 4 has stronger performance criteria than Model 3, pointing to the non-
linear relationship between commuting flows and the variables P, EMP, D, and CD. The
more workers that drive alone to their workplace (P_DA_RES), the higher the flow. The
magnitude of this variable coefficient is relatively high (33.11). The share of Black citizens
within a population (P_BLK_RES) also has a positive impact on flows. The Black pop-
ulation in the region is a highly educated and affluent middle-class community, hence
its mobility and likely positive impact on flows. The occupation and industry variables
display the expected signs. The more residents with sales or service (P_OCC1_RES) or
clerical or administration (P_OCC2_RES) occupations, the larger the commuting flows.
These occupations have stronger impacts than the other two occupations. The percentages
of workers in manufacturing, wholesale trade, retail trade, fire, service, and public ad-
ministration occupations all have positive impacts on commuting flows. Wholesale trade
(P_WhlTrd_EMP) and public administration (P_Pub_EMP) have the largest coefficients,
90.08 and 89.72, respectively, followed by manufacturing (55.57), retail trade (45.22), finance
industries (36.17), and service occupations (22.13). This result is consistent with the exis-
tence of large regional distribution centers, such as CVS and UPS, as well as government
and military workers.

3.2. Minimizing Commuting Costs in the Allocation of Population and Employment
3.2.1. Scenarios

The control totals for population and employment for the horizon year 2035 were
obtained from the Virginia Employment Commission (VEC) and the GWRC. The model
allocates the total regional increments in the population and employment to the 188 TAZs
of FAMPO, while assuming that the existing population and employment levels remain
at their current locations. The existing and target population and employment levels are
presented in Table 10.

Vacant land is made available for any future housing and employment develop-
ment, except in physically, environmentally, and historically sensitive lands. Devel-
oped/developable land is delineated using a geographical information system (GIS) and
is classified into the following five categories: existing residential developed land, exist-
ing commercial developed land, existing industrial developed land, undevelopable land,
and vacant developable land. Vacant developable land is selected for possible further
development expansion.

Each jurisdiction in FAMPO has primary settlement/growth area boundaries in its
comprehensive long-range plan. These boundaries are not exactly the same as the urban
growth boundaries (UGB) that control urban expansion into farm and forest lands in Port-
land, Oregon. One can also refer to [52] for information on rigid vs. flexible boundaries in
the context of urban growth/development boundaries and an application for delineation.
They are not used to control growth, but rather to define long-term city boundaries. How-
ever, this land-use control tool functions rather well in managing urban growth in the
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region. It has been observed that new housing developments built since 2000 have taken
place around and within these boundaries. The following five land development scenar-
ios were initially considered: L1—within UGB (35,535 acres); L2—within UGB + 1.0 mile
(171,241 acres); L3—within UGB + 2.0 mile (252,508 acres); L4—within UGB + 3.0 mile
(305,921 acres); L5: all developable land (503,412 acres). These scenarios are illustrated in
Figure 6. After initial exploratory modeling, the scenarios L1 and L5 were discarded as too
restrictive and too unconstrained, respectively. The Scenarios L2 and L4 were then retained
as sufficiently contrasted scenarios to provide insights into the impact of land availability.

Table 9. Tobit Parameter Estimation of Model 4.

Parameter Estimate Standard Error t-Value Approx Pr > |t|

Intercept −80.267754 4.532873 −17.71 <0.0001
P 0.011133 0.000426 26.13 <0.0001

EMP 0.027680 0.001218 22.73 <0.0001
D −3.966485 0.158067 −25.09 <0.0001

IO_E −0.000324 0.000024329 −13.33 <0.0001
CD_E 0.000160 0.000035343 4.53 <0.0001

P_DA_RES 28.859800 3.679491 7.84 <0.0001
P_BLK_RES 9.602796 3.023634 3.18 0.0015

P_OCC1_RES 23.840650 6.515631 3.66 0.0003
P_OCC2_RES 12.881209 5.595655 2.30 0.0213
P_OCC3_RES 16.725051 4.991596 3.35 0.0008
P_OCC4_RES 17.346662 5.671378 3.06 0.0022
P_Mfg_EMP 36.628397 4.083194 8.97 <0.0001

P_WhlTrd_EMP 53.338335 7.888539 6.76 <0.0001
P_RetTrd_EMP 22.840645 3.075172 7.43 <0.0001

P_Pub_EMP 43.681025 5.569463 7.84 <0.0001
P_Serv_EMP 19.602157 1.794940 10.92 <0.0001

P_Finan_EMP 21.147896 2.754040 7.68 <0.0001
P2 −0.000000662 3.1856992 × 10−8 −20.78 <0.0001
E2 −0.000002661 0.000000158 −16.87 <0.0001
D2 0.048005 0.004843 9.91 <0.0001

POPEMP 0.000002331 0.000000113 20.68 <0.0001
EMPCD −0.000000109 1.807805 × 10−8 −6.03 <0.0001
R-square 0.4657

Pseudo-R2 0.2394
Log-likelihood −20,466

Table 10. Target Population and Employment.

Jurisdiction 2035
Employment Population

Caroline County 14,216 47,007
Fredericksburg 43,679 29,852

King George County 17,821 40,744
Spotsylvania County 62,551 236,885

Stafford County 69,574 238,208
Total GWRC (PD 16) 207,841 592,696

2000 (Existing) Increments
Employment Population ∆E ∆P

85,197 241,065 122,644 351,631
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While rural areas have higher average land consumption per resident (ULP) and
employee (ULE), in the range of (2~3) acres, urban areas are characterized by denser
developments in the range of (0.1~0.2) acres. All the areas of the FAMPO parcels of land
currently occupied by the population and employment have been summed up at the TAZ
level. Using the existing (2000) TAZ population and employment data, the following
region-wide average densities have been derived: ULP = 0.429 acres and ULE = 0.223 acres.
Using the increments ∆P and ∆E for population and employment, and the above density
values, the total amount of land required by 2035 would be 178,199 acres. It is assumed
that, in the future (target year 2035), the average ULP and ULE values will be smaller than
the current values, and the following 9 × 9 grid of values is considered:

ULP: (0.10–0.50) by 0.05 increments
ULE: (0.05–0.25) by 0.025 increments

Except for the variables POP and EMP, which are endogenous to the optimization
model, all the other variables of the Tobit model are also assumed to remain constant over
time. It is also assumed that the share variables (P_DA_RES, P_BLK_RES, P_OCC1_RES,
P_OCC2_RES, P_OCC3_RES, P_OCC4_RES, P_Mfg_EMP, P_WhlTrd_EMP, P_RetTrd_EMP,
P_Pub_EMP, P_Serv_EMP, and P_Finan_EMP) remain constant and equal to their current
values.

3.2.2. Model Formulation

The optimization model presented in Section 2.4 (Equations (10)–(15)) is adjusted as
follows. First, the commuting travel costs are proxied by the total vehicle miles traveled
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(VMT). If Dij is the distance between TAZs i and j, the objective function to be minimized is
as follows:

Z = ∑
i

∑
j

DijFij (22)

Second, Equation (13) is reformulated as Equation (23) by using the Tobit parameters
presented in Table 9, in which P0

i is the existing 2000 population in TAZ i, E0
j is the existing

2000 employment level in TAZ j, (P0
i + xi)

2 is the square of the final population (existing

plus increment) in TAZ i; (E0
j + zj)

2 is the square of the final employment level (existing
plus increment) in TAZ j.

The model is a non-linear program because of the squares and products of the decision
variables. The optimization is implemented with the general algebraic modeling system
(GAMS) and with the non-linear solver CONOPT.

However, because of its non-linearity and non-convexity, this model only provides
local optima, and a global optimum search is infeasible, due to the model size (36,097
variables and 35,911 constraints). In other words, the optimal solution obtained for any
set of values for ULP and ULE may vary depending on the initial starting point of the
optimization algorithm. Thus, the only way to deal with this problem is to repeatedly solve
the model with the CONOPT solver, and to select the solution with the smallest objective
function (OF) value. The results presented below are the outcomes of this process.

Fij ≥ −80.267754 + 0.011133 · (P0
i + xi) + 0.027680 · (E0

j + zj)− 3.966485Dij

−0.000324 ·

 ∑
k 6= i

k ∈ Neighborhood_o f _i

(
E0

k + zk
)

D−0.3
ik

+ 0.000160 ·

 ∑
l 6= j

l ∈ Neighborhood_o f _j

(
E0

l + zl
)

D−0.1
jl


+28.859800 · (P_DA_RES)i + 9.602796 · (P_BLK_RES)i

+ 23.840650 · (P_OCC1_RES)i + 12.881209 · (P_OCC2_RES)i

+16.725051 · (P_OCC3_RES)i + 17.346662 · (P_OCC4_RES)i

+ 36.628397 · (P_MFG_EMP)j + 53.338335 · (P_WhlTrd_EMP)j

+ 22.840645 · (P_RetTrd_EMP)j + 43.681025 · (P_Pub_EMP)j

+ 19.602157 · (P_Serv_EMP)j + 21.147896 · (P_Finan_EMP)j

−0.000000662 · (P0
i + xi)

2 − 0.000002661 · (E0
j + zj)

2
+ 0.048005D2

ij

+ 0.000002331 · (P0
i + xi) · (E0

j + zj)− 0.000000109 · (E0
j + zj) ·

 ∑
l 6= j

l ∈ Neighborhood_o f _j

(
E0

l + zl
)

D−0.1
jl



(23)

3.2.3. Optimization Results

In order to contrast the VMT minimization results between high- and low-density sce-
narios, two sets of ULP and ULE pairs, including (1) high density: ULP = 0.10; ULE = 0.050
and (2) low density: ULP = 0.40; ULE = 0.200, were selected among the 9 × 9 grid of values
and combined with the L2 and L4 land development scenarios.

The optimal TAZ-to-TAZ flows have been summarized into jurisdiction-to-jurisdiction
flows, as presented in Table 11. The optimal values of the OF, total flows and average
commuting distance are summarized in Table 12. The OF and the total flow decrease
with more land available and a higher density, which indicates that a land-use policy
that confines new developments within UGBs would significantly increase regional VMT.
This large flow increase leads to increased congestion and air pollution costs, which are
addressed in Section 3.3.4.
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Table 11. Optimal Commuting Flows by Jurisdiction.

Scenario L2 To
ULP = 0.400 ULE = 0.200 CR FR KG SF SP

From

CR 1000 3830 4849 7395 4223
FR 0 961 33 528 802
KG 9 2205 5531 2891 2369
SF 0 4481 1575 10,991 3796
SP 40 5855 1545 6215 10,695

Scenario L2 To
ULP = 0.100 ULE = 0.050 CR FR KG SF SP

From

CR 29 1582 382 967 1463
FR 0 812 0 341 562
KG 0 350 92 20 282
SF 0 2016 0 3251 1322
SP 0 2848 0 1417 3936

Scenario L4 To
ULP = 0.400 ULE = 0.200 CR FR KG SF SP

From

CR 136 288 1349 2304 1415
FR 0 780 48 472 592
KG 0 813 1057 1405 919
SF 0 3836 1146 9045 2751
SP 0 4886 1544 5245 8266

Scenario L4 To
ULP = 0.100 ULE = 0.050 CR FR KG SF SP

From

CR 2 7 0 0 23
FR 0 763 0 357 549
KG 0 0 17 0 0
SF 0 1787 0 4030 1170
SP 16 4038 0 2075 3837

CR: Caroline; FR: Fredericksburg; KG: King George; SF: Stafford; SP: Spotsylvania.

Table 12. Optimal Objective Function, Total Flow, and Average Commuting Distance.

Land Scenario
Density Scenario

ULP = 0.400 ULP = 0.100
ULE = 0.200 ULE = 0.050

L2
Objective function 838,777 113,647

Total flows 81,819 21,671
Average commuting distance 10.25 5.24

L4
Objective function 473,283 106,347

Total flows 48,294 18,671
Average commuting distance 9.80 5.70

Figure 7 displays the optimal TAZ-to-TAZ flows, while Figures 8 and 9 present the
optimal allocations of the incremental population and employment, respectively. As
more land becomes available, the incremental population and employment tend to move
away towards rural areas. In addition, as density increases, more people and jobs are
located closer to the urban cores. An interesting observation is that, for a given density
scenario, when less land is available (e.g., L2 rather than L4), this requires higher levels of
commuting flows. The L2 UGB requirement leads to more spatial separation of population
and employment than under less restrictive land-use controls (L4). Thus, a tight UGB
strategy does not appear to be the best way to reduce VMT, and the resulting congestion
and air pollution. Another interesting observation is that moving from low to high density
and from L2 to L4 leads to the southern TAZs being more and more disconnected in terms
of flows, with most of the inter-TAZ and inter-jurisdictional flows concentrated in the
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northern TAZs. Compact development scenarios evidently result in the highest volumes
of commuting flows. This could be a justification for further transit development and
use. Most of the observed commuting flows involve private car transportation, and other
modes of transportation are not explicitly considered, because their shares are currently
very small.
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3.3. Minimizing All Costs in the Allocation of Population and Employment
3.3.1. Overview of Costs

The previous VMT-minimizing results demonstrate that density constraints are criti-
cal in determining the distribution of populations and employment, and therefore must
be carefully considered. For any given land development strategy, the highest possible
densities allow for minimizing commuting costs. However, commuting costs do not
represent all urban and regional costs, which also include land development costs and
congestion/pollution costs. The purpose of this section is to develop and optimize such an
expanded cost function (TDC), taken as the sum of the commuting costs (TCOM), the total
land development costs (LDC), and the total congestion costs (TCON).
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3.3.2. Estimation of the Commuting Cost Surface

In Section 3.2.3, the total commuting cost (TCOM) was minimized under two den-
sity scenarios. However, it is now necessary to consider the variations in TCOM over a
wider range of density values. A 9 × 9 grid analysis (ULP = 0.10~0.50 by 0.05 increments;
ULE = 0.050~0.250 by 0.025 increments) of density scenarios is used to build up the re-
lationship between the commuting cost and ULP and ULE. The general approach is to
solve the VMT minimization model over these 81 density parameters (ULP, ULE) for land
development strategies L2 and L4, and then to approximate the resulting cost surfaces
through polynomial regression analysis. The normalized minimum VMT values for each
pair of ULP and ULE are presented in Table 13. Normalized values provide a clearer
picture of the variations in the minimum VMT. For Scenario L2, the maximum value (100)
represents VMT = 930,741; for Scenario L4, the corresponding value is VMT = 560,790.
VMT values under L2 are larger than those under L4. This is reasonable because L4 is less
constraining (provides more location opportunities), which should lead to a lower VMT for
any given set of (ULP, ULE) values.

Table 13. Minimum Commuting Costs for a 9 × 9 grid of ULP and ULE values.

Normalized

Land Scenario L2
ULE

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

ULP

0.10 12.21 15.05 17.09 17.17 17.23 19.56 20.26 21.67 22.12
0.15 15.06 16.24 17.56 18.32 20.61 22.26 22.99 23.18 23.44
0.20 26.31 27.15 28.03 28.16 28.42 28.92 29.06 29.15 29.55
0.25 33.14 39.99 40.34 41.25 41.32 42.06 44.21 45.06 45.30
0.30 40.62 46.95 53.61 57.55 59.47 61.18 62.55 64.59 66.17
0.35 48.17 60.51 66.65 71.39 79.09 81.80 85.00 87.99 91.40
0.40 53.13 64.22 70.87 78.52 80.79 85.27 90.12 100.00
0.45 63.43 76.50 80.40
0.50

Normalized

Land Scenario L4
ULE

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

ULP

0.10 18.96 20.82 21.69 25.55 26.88 27.71 28.01 28.72 29.08
0.15 23.10 23.41 26.63 29.99 32.82 36.03 36.15 36.26 36.39
0.20 31.63 35.46 38.57 39.61 39.90 40.13 40.33 40.50 40.73
0.25 39.40 40.17 41.09 41.72 42.26 42.71 43.14 43.56 43.97
0.30 44.12 46.64 51.31 53.13 53.93 54.71 55.55 56.36 57.20
0.35 48.18 51.69 56.12 65.54 69.32 71.19 71.22 72.31 73.40
0.40 49.13 56.64 64.89 71.43 80.24 83.10 84.40 85.64 87.05
0.45 51.15 59.24 65.18 74.43 81.43 83.41 85.23 86.67 88.28
0.50 55.52 63.55 72.26 80.09 88.76 92.80 95.45 97.63 100.00

Note: Red cells correspond to unfeasible solutions.

The normalized commuting cost surfaces are illustrated in Figure 10. The surface for
L2 displays sudden drops at certain values of ULP and ULE, due to infeasibility. The VMT
values increase as the ULP and ULE increase. As expected, the VMT is minimized when
the ULP and ULE are the smallest. The surfaces suggest that the VMT is more sensitive
to the ULP than to ULE. The relationship between VMT and ULP and ULE for each land
development strategy is estimated using a third-order cubic polynomial regression analysis
and the results are presented in Table 14.

As the models minimize the total commuter mile flows (Equation (22)), it is necessary
to convert this quantity into the corresponding annual commuting cost, with the following
equation:

TCOM = CPM× ND×∑
i

∑
j

dijFij (24)
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where CPM is the average commuting cost per person mile, and ND is the number of
commuting days per year. CPM is estimated at USD 0.202 by dividing the 2005 purchases
of cars and trucks and the spending on gas and oil (USD 988.2 billions), by the 2005 number
of person travel miles (4884.557 billions of vehicle miles). In order to annualize the total
commuting cost, the average number of workdays per year (ND) is calculated by assuming
2 weeks of vacation (10 days) and 10 days of federal holidays. Hence, ND = 240 days
(50 weeks × 5 days–10 days).
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Table 14. Results of 3rd Order Regression of TCOM over ULP and ULE.

Variables
Land Development Strategy

L2 L4

Intercept 188,109 (1.71) * 100,497 (2.16) *
ULP −3,410,307 (−3.34) ** −377,350 (−1.07)
ULE 2,816,147 (1.89) * 117,457 (0.17)

ULP × ULP 19,994,468 (5.65) ** 3,921,962 (3.54) **
ULE × ULE −14,772,237 (−1.68) * 2,136,213 (0.48)
ULP × ULE −4,477,808 (−0.93) 878,521 (0.52)

ULP × ULP × ULP −26,345,984 (−6.61) ** −5,919,163 (−5.02) **
ULE × ULE × ULE 31,053,141 (1.72) * −3,265,161 (−0.35)
ULP × ULP × ULE 24,799,246 (3.94) ** 9,630,043 (4.90) **
ULP × ULE × ULE −6,222,188 (−0.62) −13,204,059 (−3.36) *

R2 0.987 0.983
( ) t-statistics; * significant at 90% level, two-tailed test; ** significant at 99% level, two-tailed test.

3.3.3. Estimation of Land Development Costs

In order to develop land development cost functions for residence and workplace loca-
tions, with the ULP and ULE as determinants, parcel-level property values and developed
acres data are drawn from the 2006 (4th quarter) Real Estate database that is used by local
governments for tax assessment (Section 2.2.2). These data are aggregated at the TAZ level
in order to match them with population and employment data. Land development cost
functions, which involve acreage, population, and employees, are constructed as follows:

Total property value (land + building) = f (residential acreage; population) (25)

Total property value (land + building) = g (commercial + industrial + retail + office
acreage; employees)

(26)

The following three functional forms have been considered: (1) linear–linear; (2) log–
log; and (3) log–linear. The log–log specification resulted in the highest R2. However,
because the ULP and ULE are the basic variables in the commuting flow function TCOM,
the land development cost functions were re-estimated, in log–log form, with ULP and
ULE as determinants, together with population P_2006 and employment E_2006. As the
densities involve the ratios of acreages to population or employment, the same information
is embodied in the new formulations. Furthermore, the exponents of P_2006 and E_2006
must be equal to 1 to avoid scale effects with regard to these variables. This homogeneity
allows the estimated functions to be applied to any increment in the population and
employment. The new regression results are presented in Table 15.

Table 15. Regression Results for Land Development Cost Functions.

Land Development Cost (Residential) Land Development Cost (Employment)

Intercept 11.218 262.90
(<0.0001)

R2 0.85

Intercept 10.810 93.39
(<0.0001)

R2 0.78LN(P_2006) 1.000 Infty
(<0.0001) LN(E_2006) 1.000 Infty

(<0.0001)

LN(ULP) 0.014 0.34 (0.7311) LN(ULE) 0.502 10.40
(<0.0001)

RESTRICT 16.899 2.37 (0.0173) RESTRICT 98.442 5.01 (<0.0001)

Therefore, the total cost of development for the increments ∆P and ∆E are as follows:

Population : LDCP = e11.218 · ∆P ·ULP0.014 (27)

Employment : LDCE = e10.810 · ∆E ·ULE0.502 (28)
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In order to annualize these costs, the equivalent annual cost (EAC) formula obtained
from the Board of Governors of the Federal Reserve System is used, with the following
equation:

EAC = (Asset Price × IR)/(1 − (1 + IR)ˆ(−N)) (29)

IR = average mortgage interest rate over 1997~2006 = 6.71% = 0.0671
N = number of periods = 30 years (normal mortgage payment period)

The annualized functions (27) and (28) are adjusted with the multiplier 0.078.

3.3.4. Congestion Cost Synthetic Functions

High-density, compact cities can entail traffic congestion costs, reduced urban services,
air pollution and noise costs, etc. These costs can be assumed to decrease as density
decreases. However, they are not easily statistically estimated due to the lack of necessary
data. Here, these costs are assumed to be related to population, employment, and land
consumptions, with the following synthetic functional forms:

TCONP = K1*∆P*(ULP** − b) (30)

TCONE = K2*∆E*(ULE** − d) (31)

where b, d, K1 and K2 are positive parameters.
Consistent with the theories, these costs decline with increasing ULP and ULE values

(decreasing densities). The parameters K1 and K2 impact the height of the cost curves,
whereas b and d impact their steepness.

3.3.5. Total Development Cost Minimization

Therefore, the annualized total development cost, TDC, is as follows:

TDC = TCOM + LDCP + LDCE + TCONP + TCONE (32)

The allocated population and employment increments, ∆P and ∆E, are fixed. They
are implicit in the commuting cost function, and explicit in the other functions, where they
serve as given parameters. Hence, each of the cost components is only a function of the
inverse densities ULP and ULE. Therefore,

TDC = TDC (ULP, ULE) (33)

For instance, TDC with land strategy L2 is as follows:

TDC = 0.202× 240× (188109− 3410307×ULP + 2816147×ULE
+19994468×ULP2 − 14772237×ULE2 − 4477808×ULP×ULE
−26345984×ULP3 + 31053141×ULE3 + 24799246×ULP2 ×ULE− 6222188×ULP×ULE2)

+ (e11.218×∆P×ULP0.014×0.0671)
(1−(1+0.0671)−30)

+ (e10.810×∆E×ULE0.502×0.0671)
(1−(1+0.0671)−30)

+K1× ∆P×ULP−b + K2× ∆E×ULE−d

(34)

A similar function for land strategy L4 is also easily formulated, but is not presented
here. The optimal values ULP* and ULE* that minimize TDC depend upon the values of
the congestion cost function parameters K1, K2, b, and d. The optimal ULP* and ULE* are
obtained over the following grid of values for K1, K2, b, and d:

K1 = 0.1, 0.3, 0.5;
K2 = 0.1, 0.3, 0.5;
b = 1.0, 3.0, 5.0;
d = 1.0, 3.0, 5.0.

The optimal values of the development densities (ULP and ULE) are obtained by
solving a simple two-variable optimization problem over a grid of 81 combinations of
values for K1, K2, b, and d. In addition, the upper and lower bounds of the ULP and ULE



Land 2023, 12, 433 28 of 33

are included in the model to be consistent with the bounds used in estimating the TCOM
functions. The model is as follows:

Minimize TDC (ULP, ULE) (35)

s.t.
0.100 ≤ ULP ≤ 0.500 (36)

0.050 ≤ ULE ≤ 0.250 (37)

For a given set of K1, K2, b, and d values, the optimal ULP and ULE values that
minimize the total cost TDC are presented in Tables 16 and 17 with the land availability
strategy L2 (UGB + 1-mile buffer) and L4 (UGB + 3-mile buffer), respectively. The results
show that the optimal ULP and ULE vary, depending on the form of the congestion cost
functions, which depend on the parameters K1, K2, b, and d. The ULP and ULE values
marked with L and U represent the lower and upper bounds, respectively. The lower
bound characterizes the highest density, and the upper bound demonstrates the lowest
density.

Table 16. Grid Analysis for Optimal ULP and ULE—L2 Case.

K1
0.1 0.3 0.5

K2 b d ULP ULE ULP ULE ULP ULE

0.1

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.0805 0.1000 L 0.0805 0.1000 L 0.0805
5.0 0.1000 L 0.2211 0.1000 L 0.2211 0.1000 L 0.2211

3.0
1.0 0.1447 0.0500 L 0.1930 0.0500 L 0.2206 0.0500 L
3.0 0.1443 0.0805 0.1917 0.0803 0.2186 0.0801
5.0 0.1435 0.2213 0.1876 0.2212 0.2121 0.2209

5.0
1.0 0.3135 0.0500 L 0.5000 U 0.0500 L 0.5000 U 0.0500 L
3.0 0.3089 0.0793 0.5000 U 0.0763 0.5000 U 0.0763
5.0 0.2952 0.2194 0.3594 0.2174 0.3989 0.2160

0.3

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.1108 0.1000 L 0.1108 0.1000 L 0.1108
5.0 0.1000 L 0.2500 U 0.1000 L 0.2500 U 0.1000 L 0.2500 U

3.0
1.0 0.1447 0.0500 L 0.1930 0.0500 L 0.2206 0.0500 L
3.0 0.1439 0.1108 0.1905 0.1105 0.2168 0.1103
5.0 0.1435 0.2500 U 0.1872 0.2500 U 0.2113 0.2500 U

5.0
1.0 0.3135 0.0500 L 0.5000 U 0.0500 L 0.5000 U 0.0500 L
3.0 0.3051 0.1090 0.5000 U 0.1042 0.5000 U 0.1042
5.0 0.2932 0.2500 U 0.3551 0.2500 U 0.3917 0.2500 U

0.5

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.1285 0.1000 L 0.1285 0.1000 L 0.1285
5.0 0.1000 L 0.2500 U 0.1000 L 0.2500 U 0.1000 L 0.2500 U

3.0
1.0 0.1447 0.0500 L 0.1930 0.0500 L 0.2206 0.0500 L
3.0 0.1438 0.1285 0.1899 0.1283 0.2158 0.1280
5.0 0.1435 0.2500 U 0.1872 0.2500 U 0.2113 0.2500 U

5.0
1.0 0.3135 0.0500 L 0.5000 U 0.0500 L 0.5000 U 0.0500 L
3.0 0.3031 0.1265 0.5000 U 0.1205 0.5000 U 0.1205
5.0 0.2932 0.2500 U 0.3551 0.2500 U 0.3917 0.2500 U

L: Lower bound; U: upper bound.

For example, if K1 = 0.1, K2 = 0.1, b = 1.0, and d = 1.0 in the L2 case, then the optimal
ULP and ULE values that minimize the total cost TDC are the lower bounds (ULP: 0.1000;
ULE: 0.0500), which means that, for these congestion cost functions, the highest density
strategy (compact development) for both residences and workplaces is optimal. However,
if the congestion function is characterized by the parameters K1 = 0.1, K2 = 0.1, b = 5.0,
and d = 5.0, then the optimal ULP and ULE values (ULP: 0.2952; ULE: 0.2194) demonstrate
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a lower density. Under this scenario, allowing sprawl to some extent may be the most
appropriate strategy. It is also interesting to note that the optimal value of ULE hits its
upper bound (ULE: 0.2500) in many cases, especially when d = 5.0 (steep function) and K2
≥ 0.3 (higher intercept), representing a high congestion cost for workplace locations, which
suggests that the suburbanization of workplaces can help to minimize TDC. When b = 1.0
(low steepness) for the congestion cost function for residential locations, ULP hits its lower
bound (0.1000), irrespective of the values of the other parameters. Similarly, when d = 1.0
(low steepness) for the congestion cost function for workplace locations, ULE hits its lower
bound (0.0500). These lower bounds point to the advisability of compact development
for residences and workplaces. The results demonstrate that the form of the congestion
function plays an important role in determining the optimal values of ULP and ULE.

Table 17. Grid Analysis for Optimal ULP and ULE—L4 Case.

K1
0.1 0.3 0.5

K2 b d ULP ULE ULP ULE ULP ULE

0.1

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.0810 0.1000 L 0.0810 0.1000 L 0.0810
5.0 0.1000 L 0.2218 0.1000 L 0.2218 0.1000 L 0.2218

3.0
1.0 0.1476 0.0500 L 0.2064 0.0500 L 0.2412 0.0500 L
3.0 0.1470 0.0809 0.2048 0.0807 0.2387 0.0806
5.0 0.1474 0.2223 0.2030 0.2227 0.2346 0.2228

5.0
1.0 0.3399 0.0500 L 0.4456 0.0500 L 0.5000 U 0.0500 L
3.0 0.3351 0.0801 0.4273 0.0794 0.5000 U 0.0787
5.0 0.3248 0.2226 0.3991 0.2220 0.4423 0.2215

0.3

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.1108 0.1000 L 0.1108 0.1000 L 0.1108
5.0 0.1000 L 0.2500 U 0.1000 L 0.2500 U 0.1000 L 0.2500 U

3.0
1.0 0.1476 0.0500 L 0.2064 0.0500 L 0.2412 0.0500 L
3.0 0.1466 0.1107 0.2037 0.1106 0.2368 0.1104
5.0 0.1480 0.2500 U 0.2036 0.2500 U 0.2351 0.2500 U

5.0
1.0 0.3399 0.0500 L 0.4456 0.0500 L 0.5000 U 0.0500 L
3.0 0.3316 0.1097 0.4170 0.1089 0.4783 0.1081
5.0 0.3243 0.2500 U 0.3973 0.2500 U 0.4391 0.2500 U

0.5

1.0
1.0 0.1000 L 0.0500 L 0.1000 L 0.0500 L 0.1000 L 0.0500 L
3.0 0.1000 L 0.1281 0.1000 L 0.1281 0.1000 L 0.1281
5.0 0.1000 L 0.2500 U 0.1000 L 0.2500 U 0.1000 L 0.2500 U

3.0
1.0 0.1476 0.0500 L 0.2064 0.0500 L 0.2412 0.0500 L
3.0 0.1465 0.1281 0.2032 0.1280 0.2360 0.1279
5.0 0.1480 0.2500 U 0.2036 0.2500 U 0.2351 0.2500 U

5.0
1.0 0.3399 0.0500 L 0.4456 0.0500 L 0.5000 U 0.0500 L
3.0 0.3299 0.1272 0.4126 0.1262 0.4676 0.1254
5.0 0.3243 0.2500 U 0.3973 0.2500 U 0.4391 0.2500 U

L: Lower bound; U: upper bound

4. Conclusions and Discussion

Using a Tobit commuting model that was empirically estimated with data for the
FAMP region, Virginia, a normative planning model has been developed, incorporating
alternative land development and density scenarios. Various growth management policy
scenarios have been tested and compared. The results, expressed in terms of population
and employment spatial patterns and expected commuting flows, demonstrate that tighter
growth control policies increase system-wide commuting costs and flows, and do not neces-
sarily reduce the average trip distances. The density constraints are critical in determining
the distribution of populations and employment and must be carefully considered. The
results also show that spatial structure variables are indeed important in estimating the
Tobit model. The commuting cost minimization model has been expanded to include land
development costs and congestion costs. The results demonstrate that the optimal develop-
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ment densities are very sensitive to the form of the congestion cost function and the land
availability scenarios (growth boundaries). When the congestion function is not steep, a
compact development strategy for residences and workplaces is advisable. However, with
increasing steepness and level of the congestion functions, a land development strategy
that allows for some sprawl minimizes the total urban development costs. The proposed
optimization approach could be used for policy analysis. Since government policies, such
as land-use controls and the provision of transportation infrastructure, play a major role in
shaping cities, this approach could contribute to a better understanding of the dynamics
of urban economies and allows planners to show the implications of policy scenarios to
decision makers.

What are the contributions of this research to the literature on land-use pattern studies
and policies? In the following section, we discuss three contribution areas, including
spatial interaction modeling (SIM), land-use optimization, and the debate on sprawl versus
compact development. First, the literature review in Section 1.2 shows that commuting
SIMs that use data on commuting flows and land uses have a long history in both statistical
estimation and policy simulation. However, we believe that the use of the Tobit model,
which accounts for the information embodied in zero flows, the large number of potential
residential and employment variables, and the spatial structure variables, all contribute to
the innovative nature of this SIM. Second, the optimization framework that accounts for
the commuting, land development, and congestion/pollution costs is, we believe, unique
in the land-use optimization literature, as discussed in Section 1.3. We are not aware of
similar research; therefore, it is not possible to compare the numerical results obtained here
with those of similar research, as would be possible with alternative statistical regression
models. While the literature presents many land-use simulation models, they are predictive
but not normative, and recent land-use optimization models are ecologically oriented, and
do not account for commuting interactions and costs. Third, this study sheds light on the
complexity of the debate between urban sprawl and compact city development. While the
costs of sprawl and congestion have been studied separately and in a discrete fashion (see
Section 1.4), they have not been integrated into a comprehensive framework, as was the
case in this study. This issue is further discussed below.

Contemporary American planning tends to support compact development strate-
gies in general, because they align with some key planning principles, such as reduced
transportation costs, improved public health, provision of affordable housing, reduced
urban sprawl, conservation of land, and protection of the natural environment. Therefore,
planners often tend to focus on the promotion of condensed development, along with
extensive mixed-use development and extensive public transportation systems, as they
are often found in European and Asian cities. This study questions the general notion of
preferrable compact development strategies when setting up public policy directions and
decision-making processes that incorporate all possible contexts and costs. The main argu-
ments against compact development are the deterioration of and stress on infrastructure,
lack of open space, negative impact on quality of life, higher housing costs, increased road
congestion, increased noise and increased air and water pollution. Compact development
can lead to higher land costs because of the limited land available, and it can be more costly
to secure land to prepare it for compact development because it often involves building in
already developed areas. On the other hand, compact development could lead to lower
development costs because it allows for more efficient land use and infrastructure and
takes advantage of the existing infrastructure. As for congestion costs, compact devel-
opment could lead to higher congestion costs when the increased traffic congestion is
caused by high population densities. However, compact development could also lead to
lower congestion costs when it promotes the use of public and active transportation, which
could eventually help to reduce traffic congestion. We believe that this study provides an
innovative approach to optimal urban growth boundaries or urban capacity strategies, con-
sidering not only commuting costs, but also various other costs, such as land development
costs and congestion costs, by applying empirical, analytical, or mathematical modeling
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approaches. We argue that a full spectrum of cost mechanisms should be examined in
developing growth control policies and compact development strategies.

In the following section, we discuss the possible research extensions. First, population
and employment could be disaggregated in terms of different industries, income level,
ethnic background, gender, etc. Disaggregated model specifications might help us to better
understand the spatial structure effects. Second, the model could be extended to include
different types of trips, in addition to commuting trips. Shopping trips are prominently
included in the Lowry model, but such data are more difficult to obtain. Third, the devel-
opment cost functions could be extended to include utility, roadways, and other costs that
are not reflected in property values. Fourth, congestion cost functions could be empiri-
cally estimated, if appropriate data become available. Fifth, the model could incorporate
other transportation modes (e.g., transit), which might alter the conclusions reached in
this research. Sixth, population and employment densities could vary across spatial units
(TAZs), and could be made endogenous to the model, that is, becoming decision variables.
This would increase the non-linearity of the optimization model and the complexity of
its resolution. Seventh, the SIM could be used to determine the factors underlying the
changes in commuting patterns, for instance before, during, and after a pandemic. Finally,
the optimization methodology could be expanded to more comprehensively account for
environmental factors. In the present approach, environmentally sensitive areas are simply
excluded as candidates for development. Ecological indices, based on remote sensing and
other data, could be developed, as proposed by Li et al. [53], and could act as constraints in
the optimization process. In addition, explicit air quality constraints, as proposed in [54],
could be set up to account for the pollution emissions from commuting traffic and eco-
nomic activities. Such extensions, possibly formulated in a multi-objective optimization
framework, could help us to analyze the trade-offs between economic and environmental
factors.
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