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Abstract: Soil scientists can aid in an essential part of ecological conservation and rehabilitation by
quantifying soil properties, such as soil organic carbon (SOC), and is stock (SOCs) SOC is crucial for
providing ecosystem services, and, through effective C-sequestration, the effects of climate change
can be mitigated. In remote mountainous areas with complex terrain, such as the northern Maloti-
Drakensberg in South Africa and Lesotho, direct quantification of stocks or even obtaining sufficient
data to construct predictive Digital Soil Mapping (DSM) models is a tedious and expensive task.
Extrapolation of DSM model and algorithms from a relatively accessible area to remote areas could
overcome these challenges. The aim of this study was to determine if calibrated DSM models for
one headwater catchment (Tugela) can be extrapolated without re-training to other catchments in
the Maloti-Drakensberg region with acceptable accuracy. The selected models were extrapolated to
four different headwater catchments, which included three near the Motete River (M1, M2, and M3)
in Lesotho and one in the Vemvane catchment adjacent to the Tugela. Predictions were compared
to measured stocks from the soil sampling sites (n = 98) in the various catchments. Results showed
that based on the mean results from Universal Kriging (R2 = 0.66, NRMSE = 0.200, and ρc = 0.72),
least absolute shrinkage and selection operator or LASSO (R2 = 0.67, NRMSE = 0.191, and ρc = 0.73)
and Regression Kriging with cubist models (R2 = 0.61, NRMSE = 0.184, and ρc = 0.65) had the most
satisfactory outcome, whereas the soil-land inference models (SoLIM) struggled to predict stocks
accurately. Models in the Vemvane performed the worst of all, showing that that close proximity
does not necessarily equal good similarity. The study concluded that a model calibrated in one
catchment can be extrapolated. However, the catchment selected for calibration should be a good
representation of the greater area, otherwise a model might over- or under-predict SOCs. Successfully
extrapolating models to remote areas will allow scientists to make predictions to aid in rehabilitation
and conservation efforts of vulnerable areas.

Keywords: soil carbon; digital soil mapping; Afromontane; Maloti-Drakensberg

1. Introduction

Soil has a multifunctional role within the ecosystem [1], such as water filtration,
serves as a habitat for microorganisms, growing medium for plants, and ensures good
biodiversity under the right circumstances. Quantifying soil properties and their spatial
distribution are essential in ecological conservation and rehabilitation. Soil organic carbon
(SOC) is likely the soil property that has received most attention in recent years. SOC is
a valuable resource regarding ecosystem services and, therefore, is an effective indicator
to determine soil degradation/health status [2]. However, The SOC concentration varies
strongly among different climatic conditions, land use practices [3], biomes, and even
within a specified biome.
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Grassland biomes contain up to 30% of the world’s carbon [4], and occupy around
40% of the Earth’s landmass, thus it can be considered as critical performers in C cycling [5].
A decrease in these biomes’ sequestration capacity can result in substantial changes in the
global C-budget [4]. Correct management of grasslands can have a significant impact on
mitigating climate change through enhanced sequestration, but degradation can result in
considerable losses of sequestered carbon to the atmosphere [6].

In Southern Africa, the alpine areas of the Maloti-Drakensberg have some of the highest
SOC concentrations of the region. These carbon hotspots are being degraded, mostly due
to mismanagement of livestock [7]. There is a need to quantify these stocks and their
spatial distribution in the area in order to preserve them. However, the complex terrain
of the Maloti-Drakensberg region presents a challenging task to conduct conventional
soil surveys. This is due to the limited accessible roads, very steep terrain, and the high
elevation (>3000 m.a.s.l.). Digital soil mapping (DSM) is proposed as a cost-effective
alternative to conventional soil mapping, especially in remote areas [8]. With DSM, soil
properties could be map if relationships between these properties and their environment
could be established through the use of predictive statistics or geo-statistics [9,10]. In the
recent past, numerous studies have successfully predicted the spatial distribution of SOC
in various environments [11–15]. Other studies focused on the potential of constructing
DSM models in one area and extrapolating these to other locations [16,17].

Here, we also focussed on the potential of different DSM models to be extrapolated
alpine areas of the northern Maloti-Drakensberg. Mapping the entire alpine region of the
Maloti-Drakensberg at adequate scale will be very costly and time-consuming as very
few areas are readily accessible. Therefore, the overall aim was to determine if previously
calibrated models for SOC prediction [18] in a relatively accessible area (Tugela headwater
catchment) can predict SOC stocks in other areas without re-training the models. Specific
objectives were to sample and quantify soil organic carbon stocks (SOCs) of new catchments
in the region using DSM techniques, and statistical comparison of the accuracy of the
models to determine the best suited for extrapolation.

2. Materials and Methods
2.1. Study Area

This study was conducted in headwater catchments in the northern Maloti-Drakensberg
region. The Tugela headwater catchment (300-ha) includes Mont-Aux Sources (3282 m.a.s.l.)
and the Tugela Falls (2973 m.a.s.l.), and is situated near borders of Lesotho, KwaZulu-Natal,
and the Free State provinces. This catchment was the focus of a DSM study [18] and served
as ‘training ground’ from which the models were extrapolated. The four focus catchments
in the current study were named Vemvane (28◦45′13.0′′ S, 28◦52′16.0′′ E), M1 (28◦51′23.9′′ S,
28◦46′55.7′′ E), M2 (28◦52′49.3′′ S, 28◦48′17.7′′ E), and M3 (28◦53′46.9′′ S, 28◦47′30.6′′ E),
based on the rivers running through them (‘M’ is for the Motete River). All four study
catchments are situated above 3000 m.a.s.l. with the highest point reaching 3319 m.a.s.l.
in the M1 catchment. The Vemvane (145 ha) catchment is situation next to the Tugela
headwater catchment in the Free State’s border, whereas the M1 (189 ha), M2 (132 ha), and
M3 (192 ha) catchments are within Lesotho’s borders next to the A1 national road (Figure 1).

All four catchments have montane wetlands in the footslope and hillslopes as seeps.
The catchments boasted a range of soil types, which included Leptic Fibric- and Leptic
Sapric-Histosols, Chernic-, Umbric-, Dystric-, and Cutanic-Leptosols. The soil profiles
in the valley bottom are saturated with water for long periods of time. The area has a
grassy ecosystem [19], which is frequently visited by grazing animals. Ice rats, Otomys
sloggetti robertsi, also inhabit the alpine areas of northern Lesotho [20], where they make
their burrows in the ground; however, there were no sightings in the Vemvane. The
area falls within a cool, wet, summer rainfall region, with cold winters where the surface
is covered in frost. The rainfall for the Vemvane catchment is estimated to be between
1200–1500 mm, whereas the Motete catchments are considered to experience an annual
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rainfall of >1500 mm [21]. The geology of the larger area can be considered to form part of
the Drakensberg group that consists of mainly basalt and non-intrusive dolerite [22].
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Figure 1. Tugela, Vemvane, and Motete headwater catchments. The Motete catchments are in
Lesotho, whereas the Vemvane catchment in within the Free State Province in South Africa, next to
the Tugela catchment.

2.2. Mapping and Modeling Methods

The same models were used for extrapolation, and was calibrated by using only sam-
ples gathered in the Tugela headwater catchment. Thus, SOCs from the Tugela (90 sampling
sites) were divided into an 80% calibration and 20% validation ratio. The Tugela validation
data was not added back to the calibration data when extrapolated to ensure that the
models remained the same after they were calibrated. The models that were extrapolated
included SoLIM rule-based and sample-based methods (SoLIM-RB and SoLIM-SB), random
forest (RF), least absolute shrinkage and selection operator (LASSO), regression Kriging
with cubist (RK-CB), and universal Kriging (UK).

For the other headwater catchments, all the samples gathered within each area were
solely used for testing and not training. The models were therefore not recalibrated and
used as is to assess if they could be used for extrapolation.

2.2.1. SoLIM Rule-Based

SoLIMSolutions 2015 were used to create both SoLIM rule-based (SoLIM-RB) and
sample-based (SoLIM-SB) maps. With SoLIM-RB, a single hardened map is generated
containing a combined map of all soil associations that is a function of fuzzy membership
maps obtained through soil associations. This approach is usually best suited for mapping
categorical data; however, continuous soil properties can also be mapped by combining the
soil association distribution with mean or typical values of the soil property [23].

The soil samples from the Tugela were classified into five groups: organic, shallow
humic profiles (Hs), deep humic profiles (Hd), deep orthic profiles (Od), and shallow orthic
profiles (Os) [18]. The expert knowledge approach was used to link the five soil groups to
their respective positions in the landscape. The rules assigned to each soil group (Table 1)
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in order to extract fuzzy membership maps that lead to the SoLIM-RB map was kept the
same for the extrapolation process.

Table 1. Fuzzy membership rules created based on expert knowledge of the landscape in order to
create the SoLIM-RB model for the Tugela catchment [18].

Soil Association Soil-Landscape Rules

Vertical Distance
to Channel

Network (VDCN)

Slope
Percentage

Topographic
Wetness Index

(TWI)

Multiresolution
Index Valley

Bottom Flatness
(MrVBF)

Normalized
Difference

Vegetation Index
(NDVI)

Organic <7 m <8% >12 >2 >0.16
Shallow Humic (Hs) <35 m 8–13% 7–12 0.3–2 >0.16

Deep Humic (Hd) 35–60 m 13–18% 7–12 0.01–1 >0.16
Deep Orthic (Od) 35–80 m 18–25% <7 0.01–1 <0.16

Shallow Orthic (Os) >60 m >25% <7 <0.01 <0.16

The goal for these rules was to assign a range of values where an environmental
variable is more optimal for a soil group, i.e., where high optimal values occur there is a
strong relationship or similarity for a specific group to occur [24].

2.2.2. SoLIM Sample-Based

SoLIM-SB makes use of sampled/measured values gathered from the field rather than
rules formulated by the expert [24]. The method assumes that sampling locations that
have similar or close to similar environmental conditions would have similar soil property
values [15]. Thus, SoLIM can predict the soil properties, such as SOCs of a location by
assigning similar or close to similar values based on the environmental covariates and their
similarities to observed properties [15,24].

2.2.3. Random Forest

The Random Forest (RF) algorithm is based on bagging (ensemble learning), which
entails aggregating a large number of trees (predictions) into one by streamlining it into an
average of the individual tree [12,13,25]. By generating multiple trees, RF can perform both
classification and regression [13,25]. This can enhance prediction accuracy by reducing
experimental noise [12]. To map SOCs, the RF model has three main parameters that
required tuning during the training phase. The parameters were ntree (the number of
trees), mtry (the number of variables used to construct each tree), and nodesize (the
minimum number of nodes for each tree). In order to successfully model with RF, the mtry
parameter can be considered especially important and should be considered with particular
understanding [13]. For this study, the mtry parameter was determined through the caret
package using the randomForest algorithm.

2.2.4. Least Absolute Shrinkage and Selection Operator

LASSO (least absolute shrinkage and selection operator) can be used for selecting the
important covariates by eliminating non-relevant predictors [26]. Similar to elastic net and
ridge regression, LASSO is based on least squares regression. However, it introduces a
penalized residual sum of squares, with the penalty being equal to the weighted sum of
absolute values of the estimated coefficients [26,27]. The penalty value (λ) is what separates
it from a normal least square regression and is the major parameter that should be carefully
calculated when training the model. Using cross-validation allowed for finding the optimal
λ value by considering the increase or decrease in error, by referring to the RMSE value
associated with the corresponding λ value. The glmnet algorithm through the caret package
was used for cross-validation, where resampling through an 8-fold cross repeated 10 times
was done.
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2.2.5. Regression Kriging with Cubist Models

Regression kriging with cubist (RK-CB) is a hybrid approach that entails a cubist
model combined with the kriged residuals to produce a single map [25]. On its own the
cubist model is remarkably similar to regression trees, such as the RF model, where it can
perform observations of linear and non-linear relationships through a data partitioning
algorithm [13,25,26]. It divides the data up into subsets with similar characteristics to the
target variable and covariates rather than using the whole dataset at once [12]. Regression
kriging uses a combination of a regression from the soil property on covariates and the
Kriged residuals of the soil property [28]. Through the use of regression Kriging the CB-RK
model is an effective method for predicting the spatial distribution of soil properties.

For the cubist part of the hybrid model, the cubistControl parameter in the Cubist
package is considered the main parameter. It includes the number of rules, committees, and
extrapolation (expressed as percentage). For the regression Kriging part, it is essential that
the coordinate reference system (CRS) for point data and the covariates are identical. The
variogram should then be fitted to find the optimal model, nugget, sill, and range values.
The variogram function in the automap algorithm served as an essential part for fitting the
variogram for any model structure. The residual kriging model was done through the gstat
package. Lastly, the cubist model and regression Kriging model was combined to form the
RK-CB model.

2.2.6. Universal Kriging

Universal Kriging (UK) can from an optimal linear model by analysing the covariate
information and the spatial dependence imposed by each observation [11]. It is considered
a powerful modelling method because it is both a regression and variogram-based model,
which can result in uncertainty predictions through variance Kriging [25]. In other words,
the UK model uses a regression for the observed soil data and covariates, but also models
the residuals on a variogram. The SOCs were modelled and mapped using the gstat
package in R. As with regression Kriging, the coordinate reference system (CRS) in UK of
the point data should match that of the covariates. The optimal model, nugget, sill, and
range values for the variogram was also determined through the variogram function in the
automap algorithm.

2.3. Environmental Covariates

Before modelling and mapping can occur, it is essential to select the correct set of
ancillary information or covariates that can predict the soil property under consideration
based on the soil-environment relationship [29–31]. From the soil–environment relationship,
DSM techniques can generate statistical relationships between the soil property sampled
and the raster covariates [32].

In this study, the covariates that were used were the same as in the study to map the
Tugela headwater catchment. The covariates used (Table 2) were slope percentage, planform
curvature, vertical distance to channel network (VDCN), topographic wetness index (TWI),
and multi-resolution index of ridge top flatness (MrRTF), which were all derived from
a 30 m SRTM DEM obtained from USGS Earth Explorer. Whereas the vegetation index
used (EVI) was created from a Sentinel 2 image that had a 10 m resolution. The SoLIM-RB
approach was the only exception that did not use the same covariates, due to it being
characterised by the expert’s knowledge of the area.
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Table 2. Summary of the terrain and vegetation covariates created from the DEM and Sentinel 2 used
in the study.

Covariates Type Description Required

Enhanced vegetation
index (EVI) Vegetation

Vegetation index with canopy
background and
atmospheric corrections.

Multispectral scanner

Multiresolution index of ridge
top flatness (MrRTF) Morphometry Identify higher areas of a landscape

and characterize its flatness. DEM

Planform curvature Morphometry Characterize flow as either
convergence or divergence. DEM

TWI Hydrology
Quantifies the influence of
topography on
hydrological processes.

Slope and catchment area

Slope Morphometry The measurement of steepness or
the degree of inclination. DEM

VDCN Hydrology
An interpolated value of a location
for the height above a
river network.

DEM and channel network

2.4. Field Design and Sampling

The conditioned Latin hypercube sampling method (cLHS) sampling design was used
to identify sampling locations. It is a stratified random procedure that serves as an efficient
method for ensuring that soil variables from multivariate environmental distributions are
sampled [29,30,32]. In other words, the design does not focus of the geographical space
between samples, but rather focusses on the attribute space of each sampling site [8,29].
The covariates that were used to fill the hypercube included the topographic wetness index
(TWI), vertical distance to channel network (VDCN), Multi-resolution index of ridge top
flatness (MrRTF), slope in percentage rise, planform curvature, and enhanced vegetation
index (EVI).

The calibrated catchment was the Tugela headwater catchment. From here, there were
90 sampling sites selected, from which a total of 119 samples collected with an auger and
cores. The sampling depth was determined by the depth of the soil profile (surface to
bedrock). Each sample was classified into different diagnostic horizons (A and B horizons)
according to the Soil Classification Working Group guidelines [33]. On these samples bulk
density and SOC concentration were determined. Depth to bedrock was determined by
using an auger and bulk density calculations were possible due to sampling undisturbed
core samples.

For the validation of the extrapolation process, a total 98 samples were collected from
the four catchments. For the Vemvane, 20 sampling sites were chosen, where 29 samples
were collected in the field. From the Motete catchments, there were 15 sampling sites
chosen for each catchment; however, during the field survey, two additional sites were
added for M3. Thus, M1 and M2 had 15 sites, and M3 had 17 sites. The total number of
samples collected from the Motete catchment was 69. The samples were classified into
different diagnostic horizons. For the soil classification process, the Soil Classification
Working Group guidelines [33] were followed once again. The samples were categorised as
soil consisting of either organic (oo), humic (ah), or orthic (ot) topsoil.

The depth to bedrock of each profile was determined through the use of an auger,
while the traditional core method was used to collect the undisturbed samples for bulk
density calculations. Bulk density and SOC content were determined in the laboratory for
accurate measurements.

Figure 2 illustrates where samples were taken from and what they were used for. It
should be noted that the validation sample in the Tugela catchment were not added back
into the calibration set when extrapolation was done, thus the Tugela had 72 sampling sites
for calibration and 18 for validation.
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Figure 2. The locations from where samples were collected. (a) Tugela catchment with its calibration
and validation samples, (b) the Vemvane catchment with only validation samples, and (c) the Motete
catchments with validation samples from each of the three.

2.5. Laboratory Analysis
2.5.1. Bulk Density

The core method was used to determine soil bulk density. A metal core with a volume
of 100 cm3 was used to extract undisturbed core samples. Afterwards, the samples were
put into an oven to 105 ◦C for 48 h, and weighed after cooling down [34,35]. The bulk
density was then calculated by Equation (1):

ρb = Ms/Vt (1)

where:
ρb = bulk density (g cm−3);
Ms = dry mass (g);
Vt = Volume of core (cm3).

2.5.2. Soil Carbon Content and Stock

The carbon content (%) was determined through the dry combustion method [10,14],
with a TruSpec Leco CN analyser. After the depth, bulk density, and carbon content of each
profile was determined, the SOCs could then be expressed as the total mass of carbon per
square meter (kg C m−2). In this study, the soils contained substantial amounts of rock
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fragments (>2 mm), which could affect increase the bulk density, leading to higher carbon
stock values. Therefore, the coarse fraction should be accounted for [13,34,36,37]. The SOC
stocks were determined by Equation (2):

SOCs = Td × ρb × SOCc × (1 − Gi)/10 (2)

where:
SOCs = soil organic carbon stock (kg OC m−2);
Td = soil thickness (cm);
ρb = soil bulk density (g cm−3);
SOCc = organic carbon content (%);
Gi = volume fraction of rock material (%).

2.6. Statistical Indicators

The statistical indicators that were used to assess the accuracy of the modelled maps
were the concordance correlation coefficient (ρc), the coefficient of determination (R2), and
Normalised Root Mean Square Error (NRMSE). The NRMSE was used due to the difference
in RMSE between the catchments, and it was calculated by the between the maximum and
minimum of observed values [38] in Equation (3):

NRMSE =
RMSE

ymax − ymin
(3)

where:
ymax = maximum of observed values;
ymin = minimum of observed values.

3. Results
3.1. Carbon Content and Stock, Bulk Density, and Rock Fraction

Table 3 contains the results from the calibrated catchment (Tugela), Vemvane catch-
ment, and the Motete catchments. The M1 catchment had the highest SOC content (7.90%),
but that did not result in the highest SOCs (Table 3). The highest SOCs was found to be
in the M3 catchment (17.29 kg m−2) with an average SOC content of 6.58%. Conversely,
the catchment with the lowest SOCs was found to be the Vemvane (10.43 kg m−2), which
also had the lowest SOC content (4.17%). In terms of average depth, bulk density and rock
fraction all catchments reflected comparable results. It is important to note that after a test
for outliers (Dixon test) was done, one sample was identified in the M2 catchment. It had a
bulk density, rock fraction, and SOC content of 0.61 g cm−3, 0.00, and 31%, respectively,
which resulted in a SOCs of 132.94 kg m−2.

Table 3. Summary of all the catchments’ SOCs, SOC content, soil bulk density, and the rock fraction
(mean ± standard deviation).

Number of Samples (n) Depth (cm) Bulk Density
(g cm−3) Rock Fraction SOC Content

(%)
SOCs

(kg m−2)

Tugela 90 25 ± 13 0.96 ± 0.19 0.11 ± 0.06 6.26 ± 2.09 12.66 ± 7.02
Vemvane 20 28 ± 14 0.89 ± 0.09 0.10 ± 0.04 4.17 ± 2.03 10.43 ± 4.48

M1 15 31 ± 16 0.85 ± 0.10 0.08 ± 0.03 7.90 ± 4.31 13.37 ± 7.33
M2 14 34 ± 21 0.88 ± 0.14 0.08 ± 0.03 5.75 ± 2.87 12.23 ± 6.19
M3 17 35 ± 27 0.87 ± 0.08 0.11 ± 0.03 6.58 ± 2.75 17.29 ± 13.88
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3.2. Analysis of Environmental Covariates

An analysis of the covariate importance for the RF model (Figure 3) reflected that the
VDCN and EVI had the most influence on the SOCs. The removal of VDCN and EVI would
result in an increase in MSE, whereas slope was considered to have the least influence on
the models. In contrast, a multiple linear regression reflected that the TWI had the least
influence on the linear models; however, both the classification and regression models and
linear models indicated the importance of VDCN and EVI.

Figure 3. The relative covariate importance plot gained from the Random Forest (RF) model. The
importance is assigned based on the percentage increase in MSE that would occur from removing
each covariate.

Table 4 is the summary of all covariates used and their respective minimum, maximum,
mean, standard deviation, kurtosis, and skewness values. The planform curvature, MrRTF,
and TWI as covariates reflected similar mean values for all catchments with an exception
to the kurtosis and skewness of the data distribution (Table 4). In contrast, the EVI, slope,
and VDCN reflected differences in their mean values and the kurtosis and skewness.

The Vemvane reflected the lowest mean EVI (0.13) with relatively lower SOC con-
tent (4.17%) and SOCs (10.43 kg m−2). In regard to the MrRTF, it had the highest mean
(0.22), which is indicator of relatively flat ridge tops where deeper profiles were found
compared to the other catchments. In contrast, the M2 and M3 catchments had the highest
mean EVI (0.21 and 0.20, respectively), with the M3 catchment reflecting the highest SOC
content (7.90%).
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Table 4. Summary of all the catchments’ covariate values in terms of their minimum, maximum,
mean, standard deviation, kurtosis, and skewness.

Covariates
Catchments

Tugela Vemvane M1 M2 M3

Planform

Min ±Max
Mean ± SD

Kurtosis
Skewness

−0.002 ± 0.004
0.000 ± 0.001

1.50
0.80

−0.002 ± 0.003
0.000 ± 0.001

1.36
0.60

−0.002 ± 0.003
0.000 ± 0.001

0.85
0.40

−0.002 ± 0.002
0.000 ± 0.001

0.75
0.65

−0.001 ± 0.003
0.000 ± 0.001

0.56
0.82

EVI

Min ±Max
Mean ± SD

Kurtosis
Skewness

0.02 ± 0.27
0.14 ± 0.03

0.42
0.52

0.04 ± 0.27
0.13 ± 0.03

0.91
0.67

0.07 ± 0.62
0.18 ± 0.05

15.60
2.73

0.04 ± 0.58
0.21 ± 0.08

2.25
1.53

0.06 ± 0.60
0.20 ± 0.07

5.62
2.19

MrRTF

Min ±Max
Mean ± SD

Kurtosis
Skewness

0.00 ± 1.90
0.10 ± 0.22

20.50
4.11

0.00 ± 2.59
0.22 ± 0.36

9.08
2.79

0.00 ± 2.68
0.12 ± 0.32

19.00
4.10

0.00 ± 3.08
0.19 ± 0.38

17.30
3.89

0.00 ± 2.85
0.14 ± 0.32

19.40
4.04

TWI

Min ±Max
Mean ± SD

Kurtosis
Skewness

4.24 ± 16.55
7.32 ± 1.81

4.31
1.85

4.27 ± 14.38
7.38 ± 1.49

1.27
1.09

4.79 ± 12.99
7.23 ± 1.41

2.46
1.56

5.32 ± 12.77
7.54 ± 1.37

0.81
1.11

5.10 ± 13.50
7.37 ± 1.43

2.39
1.49

Slope

Min ±Max
Mean ± SD

Kurtosis
Skewness

0.5 ± 52.9
17.3 ± 8.4

0.16
0.53

1.5 ± 60.1
13.8 ± 9.2

1.66
1.28

1.9 ± 52.9
18.4 ± 7.7
−0.45
0.47

2.0 ± 28.7
13.3 ± 4.5

0.03
0.38

1.7 ± 35.4
15.6 ± 6.7
−0.57
0.28

VDCN

Min ±Max
Mean ± SD

Kurtosis
Skewness

0.1 ± 133.6
33.8 ± 30.1
−0.003

0.93

0.3 ± 133.7
28.3 ± 31.3

1.27
1.51

0.3 ± 110.3
37.6 ± 29.5
−0.93
0.48

0.3 ± 103.0
35.9 ± 26.7
−0.96
0.40

0.3 ± 116.6
33.9 ± 28.5
−0.24
0.83

3.3. Evaluation of Models

Figure 4 reflects the results from all the models in the various catchments, where
it is notable that the Motete catchments reflected satisfactory results and the Vemvane
unsatisfactory results.

For the M1 catchment (Figure 4a), the RK-CB had a lower R2 (0.67) than the LASSO
and UK models (0.80 and 0.79, respectively); however, it performed well in terms of low
error (NRMSE = 0.130) and alignment with the 1:1 line (ρc = 0.73) compared to that of the
LASSO (NRMSE = 0.129 and ρc = 0.80), and UK (NRMSE = 0.144 and ρc = 0.79).

In the M2 catchment (Figure 4b), the RK-CB had the best performance, resulting in
significantly lower error (NRSME = 0.172), and a good fit along the 1:1 line (ρc = 0.75); how-
ever, the LASSO and UK models can also fit well along the 1:1 line (ρc = 0.70 and ρc = 0.69,
respectively), but had high error (NRMSE = 0.240 and NRMSE = 0.253, respectively).

The M3 catchment (Figure 4c) had lower performance for all models compared to the
M1 and M2 catchments. Even though it had lower statistical performance, the LASSO and
UK models still performed well regarding all indicators.

In the Vemvane (Figure 4d), all the models reflected similar results. The models with
the lowest error were SoLIM-RB (NRMSE = 0.296) and RF (NRMSE = 0.297); however, both
had low concordance value (ρc = 0.00 and ρc = 0.02).
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Figure 4. Linear regressions of inferred and observed SOCs for all models in M1 (a), M2 (b), M3
(c), and Vemvane (d). The statistical indicators used were R2, normalized root mean squared error
(NRMSE), and the concordance coefficient (ρc). The dotted line reflects the 45◦ line that provides a 1:1
ratio for predicted and observed values, whereas the red line illustrates the regression line.

3.4. Total SOC of Catchments

All the models calculated total SOC for each catchment (Figures 5–8). The SoLIM-RB
had the highest mean (26.32 kt) of total SOC for the four catchments, whereas the RF model
predicted the lowest mean (21.83 kt) for the four catchments. The SoLIM-SB and RK-CB
model had close to similar means (22.25 kt and 22.18 kt, respectively), whereas the UK and
LASSO models predicted close to similar means (22.95 kt and 23.08 kt, respectively).

Figure 5 illustrates the comparison for the M1 catchment in order of performance based
on the lowest to highest error, which involves the LASSO (Figure 5a), RK-CB (Figure 5b),
UK (Figure 5c), and RF models (Figure 5d). The total organic carbon of the M1 catchment
determined by these four models were: LASSO = 26.32 kt, RK-CB = 26.17 kt, RF = 24.72 kt,
and UK = 26.25 kt.
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Figure 5. A comparison between the M1 catchment’s (a) LASSO, (b) RK-CB, (c) RF, and (d) UK, in
order of their performance in regard to error (NRMSE).

Figure 6. A comparison between the M2 catchment’s (a) RK-CB, (b) RF, (c) LASSO, and (d) UK, in
order of their performance in regard to error (NRMSE).
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Figure 7. A comparison between the M3 catchment’s (a) LASSO, (b) UK, (c) RK-CB, and (d) RF, in
order of their performance in regard to error (NRMSE).

Figure 8. A comparison between the Vemvane catchment’s SoLIM-RB, RF, RK-CB, and LASSO, in
order of their performance in regard to error (NRMSE).

The best performing models in the M2 catchment were RK-CB (Figure 6a), which
predicted a total SOC of 19.27 kt; RF (Figure 6b) with 18.47 kt; LASSO (Figure 6c) with
21.21 kt; and UK (Figure 6d) with a total SOC of 21.11 kt.
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In the M3, the LASSO (Figure 7a) predicted that the total SOC was 29.18 kt, UK
(Figure 7b) predicted a total of 29.15 kt, RK-CB model (Figure 7c) predicted 27.70 kt, and
the RF model (Figure 7d) predicted it to be 26.67 kt.

In the Vemvane catchment (Figure 8), the models that reflected the lowest error were
the SoLIM-RB, RF, RK-CB, and LASSO models. The SoLIM-RB predicted a total SOC of
18.20 kt, the RF model predicted it to be 17.45 kt, the RK-CB predicted 15.59 kt, and the
LASSO model predicted a total of 15.61 kt. However, it should be noted that even though
the models predicted total SOC in the Vemvane catchment, all models had inaccurate
results during the validation process.

4. Discussion
4.1. Relationship between SOC and Bulk Density

Higher values for depth of a profile and the SOC content will ultimately increase the
total SOCs, whereas lower bulk density and higher rock fraction will decrease the total
SOCs, as evident in studies from [14,39]. When discussing SOC content one can state
that all the catchments can be considered carbon hotspots in a Southern African context.
This is evident where it was found that only 4% of South African soils exceed 2% organic
carbon [40]. Therefore, these soils have high SOCs considering the relatively shallow
profiles encountered. On the other hand, due to the higher amount of SOC content the soils
experience lower bulk densities. Research has reflected that an increase in SOC content
causes a decrease in bulk density [37,39].

4.2. Covariate Importance

Recent research outlined the importance of vegetation indices for predicting SOCs [12,15],
and the vertical distance from the valley bottom where sediment can accumulate [8].
However, covariate selection can be laborious to formalise into clear rules or mathematical
equations because the knowledge is experiential and unsystematised [31]. In this study,
the high MrRTF value for the Vemvane coupled with low EVI values (Table 4) created
a problem for extrapolation. This could have been due to the difference in topography
between the original, calibrated catchment (Tugela), and the Vemvane, where the original
model was calibrated on the summit areas having small ridgetops and shallow profiles.
This is evident in a study by [41], where they extrapolated a model to another area within
the same region and found that a model performs best when there is a strong similarity
between the calibrated area and the extrapolated area. Thus, models that are extrapolated
from an area that is similar to the calibrated area, in their respective covariate values could
perform well in the process.

4.3. Extrapolation Success

The analysis of extrapolated models (Figure 4) reflected that the RK-CB, LASSO, and
UK models performed well during extrapolation except for the Vemvane catchments, where
all the models performed undesirably. Throughout the catchments, the LASSO and UK
models performed similarly with the LASSO performing slightly better regarding the
NRMSE. The SoLIM models did not extrapolate well, with having substandard statistical
performance as shown by the R2, NRMSE, and concordance (ρc).

When comparing [18]’s RK-CB’s results from the Tugela study (R2 = 0.61, NRMSE = 0.204,
and ρc = 0.71) to the mean results of the Motete catchments (R2 = 0.61, NRMSE = 0.184,
and ρc = 0.65), one can observe that the model performed similar during extrapolation,
whereas the results from [18] in the Tugela for UK (R2 = 0.48, NRMSE = 0.235, and ρc = 0.61)
and LASSO (R2 = 0.48, NRMSE = 0.236, and ρc = 0.59) yielded better mean results when
extrapolated to the Motete catchments with UK (R2 = 0.66, NRMSE = 0.200, and ρc = 0.72)
and LASSO (R2 = 0.67, NRMSE = 0.191, and ρc = 0.73). Therefore, in terms of consistency
the RK-CB could be considered the most stable model to use for extrapolation. However,
UK and LASSO can still be effective models to extrapolate.



Land 2023, 12, 520 15 of 18

In the case of the Vemvane, none of the models had satisfactory results, which could
be due to certain relationships between SOCs, and covariates were not clearly defined than
that of the calibrated area. This can influence the performance of a model by affecting the
validity of coefficients [42]. However, in general the fuzzy membership models (SoLIM-RB
and SoLIM-SB) and the tree model (RF) did not adapt well to the extrapolation, which
could be due to the high variance of observed SOCs between and within the catchments.
In contrast, the hybrid models (CB-RK and UK) and the linear regression model (LASSO)
adapted well to the variation of SOCs between catchments and within.

There are three main factors that could influence the accuracy of extrapolated models.
First, a model can have weak predictive capabilities when extrapolated can be a mismatch
of the model structure and/or model coefficients [42]. In the case of this study, the more
accurate predictions could be due to the effective use of the coefficients assigned to the
model equations, where the model can adjust the predictions when encountering higher or
lower values in the ancillary data prior to the extrapolation process. Another reason for
the failure of extrapolated models could be if there is a lack of spatial correlation between
the calibrated area and extrapolated area it can result in decreased predictive accuracy [16].
Last, prediction uncertainty was added because the SOCs was determined for the whole
profile of a sampling site and not in predefined depths, it thus added uncertainty due to the
depth varying among profiles from different sampling locations that result in a substantial
difference between stock values. The majority of soil carbon studies are restricted to the
upper 15 cm to 30 cm of soil due to the difficult nature of sampling and classification of the
soil profiles [43].

4.4. Comparison of Maps and Trends

All four of the well performing M1 models (Figure 5) reflect to some extent the
same trend, where higher SOCs is found in and around the valley bottom with a gentle
slope. It is also where denser vegetative cover and the zone for accumulation can be
found [15,39]. As with M1, the M2 catchment (Figure 7) also reflected that lower SOCs is
mostly concentrated around the edge of the area, at higher vertical distance from the valley
bottom, close to steep slopes. It was interesting to note that there were some areas with
high SOCs values encounter at height, which were found to be seep wetlands that managed
to flourish against a relatively steep slope. These wetlands are often located on top of
mountains, and against steep slopes with colluvial soil, that is transported downslope by
one-way water flow [44]. The EVI did manage to pick up these wetlands due to the dense
vegetative cover in the form of normal short grass with hardly any bare patches. In the M3
catchment (Figure 7), there were also some seep wetlands encountered, where the LASSO
(Figure 7a) and UK (Figure 7b) models managed to account for these areas. The RK-CB
model (Figure 7c) managed to account to some extent the possibility of high SOCs values
at increasing vertical distance, whereas the RF model (Figure 7d) struggled to accurately
map the catchment. Although these models differ in the finer detail, they all managed to
keep a trend for the SOCs distribution.

The Vemvane catchment (Figure 8) can be considered the ‘odd one out’ in this study,
based on the poor results from extrapolation. The poor results could be due to the lack of
similarity to the Tugela catchment, as [41] pointed out that similarity or areas can affect
a model’s performance when extrapolated. The catchment overall had the lowest SOC
content (4.17%) with relatively high rock fraction and shallow profiles, which resulted in
the lowest mean SOCs of all. An added factor that could have contributed to the models’
results were that some of the profiles found at high vertical distance to the channel network
had good depth. This was contradictory to the profiles encounter in the other catchments,
which caused higher observed SOCs where the model predicted low. On the other hand,
degradation differences of the Vemvane and Tugela can be ruled out as the cause for poor
extrapolation results, because [45] found that both the Vemvane and Tugela experiences
the same level of degradation.
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The Maloti-Drakensberg region has proved to be a carbon hotspot worthy of further re-
search and stakeholder involvement. In terms of carbon credits there is a good opportunity
for mines to become involved in rehabilitating the degraded wetlands. It could not only be
a financial gain for them, but also a win for the alpine wetlands and the ecosystem services
they offer. However, the right model should be selected when mapping the alpine region,
as evident by the difference of predicted total SOC each mapping method yields. For
instance, the difference in the M1 catchment between the model with the highest prediction
(SoLIM-RB) and lowest (SoLIM-SB) is 7.90 kt, whereas the M2 catchment’s difference is
3.88 kt between the SoLIM-RB (highest) and RF (lowest). Similarly, M3 had a difference of
5.56 kt difference the SoLIM-RB (highest) and RF (lowest) models. These differences can
make a significant difference when calculating carbon credits or sequestration capabilities.

5. Conclusions

In regard to finding a model that can be used to map the greater Maloti-Drakensberg
region, the Vemvane catchment presented a problem for extrapolating the most successful
model (RK-CB), even though the Motete models exceeded expectations. Thus, the complex-
ity of the Maloti-Drakensberg terrain can create uncertainty, especially when the terrain
and vegetation attributes differ among catchments. This can cause SOCs distribution to
follow different trends depending on the state of a catchment. Therefore, if the one would
consider mapping a large area by training models with a single catchment, that catchment
should be a good representative of the general trend observed in the region. With this
study, one can learn that close proximity does not equal good similarity.
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