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Abstract: Exploring the effect of new-type urbanization (NTU) on urban carbon abatement is of
great practical significance for promoting urban green construction and coping with the challenge
of global climate change. This study used data from 250 cities in China from 2008 to 2020 and
constructed the NTU evaluation indicator system from five dimensions. We used classical panel
regression models to examine the effects of NTU on urban CO2 emissions, and further used spatial
econometric models of SEM, SAR, and SDM to identify the spatial spillover effects of NTU on urban
CO2 emissions. The main results are that China’s NTU and CO2 emissions are generally rising,
and NTU has a significantly negative effect on urban CO2 emissions, with an impact coefficient of
−0.9339; the conclusions still hold after subsequent robustness tests. Heterogeneity analysis reveals
that NTU’s carbon abatement effect is more pronounced in resource-based cities, old industrial areas,
and cities with lower urbanization levels and higher innovation levels. Mechanism analysis shows
that improving urban technological innovation and optimizing resource allocation are important
paths for realizing urban CO2 emission reduction. NTU’s effect on urban CO2 emissions has a
noticeable spatial spillover. Our findings provide policy makers with solid support for driving
high-quality urban development and dual-carbon targets.

Keywords: CO2 emissions; mechanism analysis; new-type urbanization; spatial spillover effect

1. Introduction

Nowadays, global warming is becoming a key issue in international sustainable
development research [1,2]. The Emissions Gap Report 2020 by the UNEP pointed out
that the global temperature could rise by more than 3 ◦C this century, well above the Paris
Agreement’s control temperature goals of limiting global warming to well below 2 ◦C and
pursuing 1.5 ◦C, which would trigger catastrophic climate change [3]. The IPCC also states
that climate-related risks to natural and human systems are higher for global warming
above 1.5 ◦C than at present but lower than at 2 ◦C [4]. Humans’ extensive use of fossil
fuels, which has caused a sharp increase in CO2 emissions, may be the primary cause
of climate change [5]. Cities, where there is a concentration of human economic activity,
are the primary contributors to CO2 emissions. According to studies, up to 70% of CO2
emissions are produced in urban areas [6]. Currently, cities occupy less than 3% of the
global land area but more than 50% of the worldwide population [7]. With large-scale
population clustering in cities, global urbanization will continue to accelerate. Cities are
the most important carriers and governance units for green and low-carbon development.
However, whether new-type urbanization (NTU) can promote urban CO2 reduction still
needs to be determined. Hence, a thorough investigation of the connection between NTU
and CO2 emissions is essential.
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China is undergoing significant changes as the second-largest economy and the largest
emitter of carbon dioxide in the world. Over the past 30 years, there has been a rise in CO2
emissions in China. To combat climate change, China has announced plans to boost its
National Independent Contribution, with CO2 emissions expected to peak in 2030 and an
endeavor to achieve carbon neutrality by 2060 [8]. The above facts indicate that China still
faces a considerable challenge in reducing CO2 emissions. Based on the latest data, China’s
urbanization rate reached 65.2% in 2022, an increase of 47.3% compared to 17.9% in 1978
(data source: China National Bureau of Statistics). In 2021, the urbanization rates in the U.S.
and U.K. reached 82% and 84.2%, respectively, which indicates that China will reach an
urbanization pace comparable to that of developed countries in the future. According to the
United Nations, the global urbanization process will continue to accelerate, and the world’s
urban population is expected to exceed 6.6 billion by about 2050, with an urbanization rate
of 68% [9].

China’s urbanization development path has made an essential contribution to hu-
mans. Rapid urbanization improves external agglomeration effects, significantly promotes
economic development, and raises the quality of life of residents. Despite this progress,
problems and challenges have remained. For example, urbanization has introduced prob-
lems such as the irrational spatial layout of cities and towns, imbalance of market structure,
and the disproportionate layout of industrial structure, leading to the emergence of “urban
diseases” [10]. Low-carbon urbanization has become a new trend in future urban construc-
tion to achieve the “double carbon” target [11]. Thus, debating the driving mechanisms
and paths to realizing “CO2 emission reduction” is critical to ensure the coordination
of NTU and urban green development. It may be an imperative strategy to develop a
comprehensive vision of a “beautiful China” and deal with the problems posed by global
climate change.

Clarifying how NTU affects urban CO2 emissions is theoretically and practically
important to successfully fulfill a “win-win” aim of ecological civilizations as well as
economic growth. Consequently, four major questions are posed in this study: (i) How
can we build a scientific evaluation indicator system of NTU? (ii) How does NTU affect
urban CO2 emissions? (iii) What is the inner mechanism? (iv) Does the spatial spillover
effect exist? These questions are in urgent need of scientific evaluation. A more accurate
analysis of the above questions can help coordinate the goals of NTU and a green, low-
carbon economy.

Consequently, the possible contributions of this research are as follows. First, this study
is based on an essential connotation of NTU: emphasizing people as the core, four mod-
ernizations synchronization, optimal layout, ecological civilization, and cultural heritage,
and constructing an NTU evaluation indicator system with five dimensions of population,
economy, society, space, and ecology to expand and enrich the research scope and content
of NTU. Second, numerous existing studies directly discuss the impact of the urbanization
process on CO2 emissions. However, this study in-depth examines the internal mechanism
of NTU that reduces urban CO2 emissions and uses empirical methods to verify mecha-
nisms including technological innovation and resource allocation optimization. Third, in
terms of policy inspiration, this research conducts an array of heterogeneity analyses, and
also explore NTU’s spatial spillover effects on CO2 emissions, and the findings provide pol-
icy inspiration for promoting green and low-carbon urban development in a sub-regional,
focused, and cross-regional collaboration.

This study’s remaining sections are arranged as follows. Section 2 is a literature review,
followed by a research hypothesis presented in Section 3. Section 4 details the materials
and methods. The results and discussion are given in Sections 5 and 6, respectively, and the
conclusions and policy recommendations are presented in Section 7. The primary research
framework of this study is depicted in Figure 1.



Land 2023, 12, 1047 3 of 25

Land 2023, 12, x FOR PEER REVIEW 3 of 26 
 

and the conclusions and policy recommendations are presented in Section 7. The primary 

research framework of this study is depicted in Figure 1. 

 NTU  in China during 2008-2020

Classical panel economics model Spatial economics model

Technological
innovation 
mechanism

Relieve 
resource 

distortion

Adiacency
matrix

Economic Population

Social SpatialEcological

Direct effect
Transmission 

channels

Geographic
Distance

matrix

Eonomic
Geographic

Distance
matrix

Spatial effect

 Urban CO2 emissions in China during 2008-2020

Introduction

Literature
Review

Conclusion and discussion on the influence of NTU on urban CO2 emissions 

 

Figure 1. Research framework. 

2. Literature Review 

2.1. Construction of Urbanization Evaluation Index System 

The study of NTU has enriched the scientific connotation of urbanization construc-

tion, and a growing number of findings have verified the close links between the evolu-

tionary process of urbanization and economic development [12,13], demographic factors 

[14,15], industrial structure [16], spatial structure layout [17], and the ecological environ-

ment [18,19]. However, there is a big difference between traditional urbanization and 

NTU. Traditional urbanization has many areas for improvement in the development pro-

cess, such as uncoordinated human–land development [20] and prominent deep-seated 

contradictions in the urban–rural dual structure [21]. Additionally, existing research on 

NTU has made great progress, focusing on the essential connotation and development 

characteristics of NTU [22] and the construction of an indicator system [23]. The scientific 

construction of the evaluation indicator system of NTU is conducive to exploring the 

speed and path of its sustainable and healthy development. In the past, most studies fo-

cused on constructing urbanization indicator systems using a single dimension. For ex-

ample, using population size to measure population urbanization is common [24]; some 

scholars also use the level of GDP or disposable income per capita to measure economic 

urbanization [25]. As research advances toward a deeper perspective, scholars have grad-

ually proposed a more scientific and comprehensive indicator system to measure urbani-

zation. Several researchers have tried constructing a multidimensional urbanization indi-

cator system with four aspects: economic, demographic, spatial, and social [6]. 

2.2. The Driving Factors Affecting CO2 Emissions  

The drivers of carbon emissions have been an essential aspect of studies at home and 

abroad, and exploring the internal driving factors of CO2 emissions helps formulate CO2 

emission reduction policies and realize sustainable economic and social development. 

Several existing studies have analyzed the effects of many factors on CO2 emissions, such 

Figure 1. Research framework.

2. Literature Review
2.1. Construction of Urbanization Evaluation Index System

The study of NTU has enriched the scientific connotation of urbanization construction,
and a growing number of findings have verified the close links between the evolutionary
process of urbanization and economic development [12,13], demographic factors [14,15], in-
dustrial structure [16], spatial structure layout [17], and the ecological environment [18,19].
However, there is a big difference between traditional urbanization and NTU. Traditional
urbanization has many areas for improvement in the development process, such as un-
coordinated human–land development [20] and prominent deep-seated contradictions
in the urban–rural dual structure [21]. Additionally, existing research on NTU has made
great progress, focusing on the essential connotation and development characteristics of
NTU [22] and the construction of an indicator system [23]. The scientific construction of
the evaluation indicator system of NTU is conducive to exploring the speed and path of its
sustainable and healthy development. In the past, most studies focused on constructing
urbanization indicator systems using a single dimension. For example, using population
size to measure population urbanization is common [24]; some scholars also use the level of
GDP or disposable income per capita to measure economic urbanization [25]. As research
advances toward a deeper perspective, scholars have gradually proposed a more scientific
and comprehensive indicator system to measure urbanization. Several researchers have
tried constructing a multidimensional urbanization indicator system with four aspects:
economic, demographic, spatial, and social [6].

2.2. The Driving Factors Affecting CO2 Emissions

The drivers of carbon emissions have been an essential aspect of studies at home
and abroad, and exploring the internal driving factors of CO2 emissions helps formulate
CO2 emission reduction policies and realize sustainable economic and social development.
Several existing studies have analyzed the effects of many factors on CO2 emissions, such
as economic scale, the structure of industry and energy, population size, household size,
low-carbon technology, investment, export, and income level [26,27]. Studies show that the
economic development level is the primary driver that may affect CO2 emissions [28]; fur-
thermore, technological progress contributes significantly to reducing CO2 emissions [29],
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and the energy consumption structure is the leading factor affecting the difference in
CO2 emissions [30]. Additionally, environmental policies play an important part in CO2
emissions, such as environmental regulations being a fundamental reason for curbing CO2
emissions [31,32]. Furthermore, the STIRPAT model, IPAT model, EKC curve, Kaya constant
equation, and LMDI model were used to evaluate the impact of CO2 emissions [24,33–35].

2.3. How Urbanization Affects CO2 Emissions

Throughout the existing studies, scholars mainly focus on the following areas. The
first is the impact of single-dimensional urbanization on urban carbon emissions. Most
empirically explicate the effect of urbanization on CO2 emissions from the population
urbanization dimensional [36]. Some scholars also use the proportion of urban land to
characterize spatial urbanization and further study its impact on CO2 emissions [37].
Secondly, the connotation of NTU has diverse characteristics, urgently reevaluating the
effects of urbanization on carbon emissions [38]. For example, at present, several studies
have discussed NTU into low-carbon development [39]. Scholars have fully explored the
model, policy logic, and action direction for the transition to low-carbon development
transition of NTU [40,41]. Thirdly, to explore the relationship between urbanization and
environmental pollution. Numerous studies have examined the link between them at
the theoretical or empirical level, verifying that an accelerated NTU process leads to
worsening environmental pollution, although the government’s environmental regulations
can effectively improve the situation in the short term [42]. Another part of researchers
concentrated on how urbanization affects pollutants such as AQI and PM2.5 [43,44]. In
addition, the spatial threshold effect of urbanization on energy efficiency has also been
explored [45].

In conclusion, the current literature has produced a relatively comprehensive discus-
sion on the link between urbanization development and CO2 emissions. However, there
may still be some areas for improvement in three aspects. First, the majority of the existing
research is based on single-dimensional urbanization, such as population, economy, or land,
but ignores a critical dimension of NTU: ecological urbanization. Second, few literature
have examined in depth the internal mechanisms underlying the impact of NTU on CO2
emissions. Therefore, it is difficult to provide more targeted countermeasure suggestions
based on the research results. Third, most existing studies overlook the spatial characteris-
tics of NTU’s effects on CO2 emissions, except for a few papers that mention that urban
CO2 emissions are not purely local pollution [46,47].

3. Research Hypothesis
3.1. The Effect of NTU on Urban CO2 Emissions

NTU directly affects CO2 emissions in four ways. First, population urbanization is
favorable for improving resource efficiency and lowering industrial carbon emissions. The
aggregation of human capital and information brought by NTU is beneficial to improve the
intensive use of resources and cut industrial emissions [48]. Second, spatial urbanization
can contribute to building a low-carbon-oriented territorial spatial organization system.
NTU constructs green space urban planning with a low-carbon orientation, accelerating the
formation of green, low-carbon cycle cities [49]. Third, green development is the essence
of the construction of ecological urbanization. NTU incorporates the ecological dimen-
sion, and “green, intensive, intelligent, and low-carbon” are the essential characteristics.
Finally, promoting “double carbon” is urgent to resolve the significant problems of urban
resources and environmental constraints and force urban infrastructure’s low carbonization.
Therefore, the following research hypothesis is proposed.

H1: NTU can reduce urban CO2 emissions.
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3.2. The Mechanism Analysis of NTU on Urban CO2 Emissions

At present, green technology innovation is an essential path to realizing sustainability
for cities around the world [50]. First, NTU can promote the clustering of innovation factors.
NTU is conducive to improving accessibility within and between cities, significantly reduc-
ing urban transaction costs, and promoting the flow of inter-regional innovation factors.
Secondly, NTU can deepen urban digitalization. NTU takes advantage of the massive
information, data sharing, and high efficiency of computing brought by digitalization to
promote innovation in various fields, especially the use of renewable energy, and then boost
energy efficiency to decarbonize production processes [51]. Accordingly, the following
hypothesis is proposed.

H2: NTU can facilitate urban CO2 emission reduction through the improvement of urban technol-
ogy innovation.

Under the premise of following the law of urbanization development, NTU fully
coordinates the organic unity of land, labor, capital, and technology. First, NTU promotes
urban capital renewal. NTU reduces transportation and inventory costs through agglom-
eration, achieves more efficient resource allocation, and improves the overall synergistic
factor allocation efficiency to reduce carbon emissions [52]. Second, NTU can enhance the
allocation efficiency of labor resources. Specifically, NTU changes the spatial distribution
of labor, optimizing the efficiency of labor market allocation. Third, NTU accelerates the
construction of an open and modernized industrial system. NTU is conducive to forming
the industry chain and supply chain of “resources–products–waste material–new resources–
new products” and has the advantage of intensive and sustainable use. Accordingly, the
following hypothesis is proposed.

H3: NTU can reduce urban CO2 emissions by improving the factor allocation effect.

3.3. The Spatial Spillover Impact of NTU on Urban CO2 Emissions

Then, what is the theoretical logic of the spatial spillover effect of NTU on urban CO2
emissions? It is mainly through the following three processes: the first is the agglomeration
effect. The clustering of urban elements is beneficial for the emergence of an exemplary
zone that is a green, low-carbon, and inclusive modern city [53], which has a sound
demonstrative impact on nearby cities. The second is the diffusion effect. According to the
“center-periphery” theory, the demonstration effect can drive the imitation and learning of
“neighboring areas”, further forming the diffusion effect [54]. Further, the areas that take
the lead in green and low-carbon urban development due to their first-mover advantage
are more likely to be the targets of imitation and learning [55]. The third is the mutual
feedback effect. The degree of openness among cities is expanding through the socio-spatial
interaction mode in which regions, industrial sectors, and residents are linked to production
networks, accelerating the flow of various factors and strengthening the spatial linkage
of commodity markets among different cities. The research framework of the theoretical
hypotheses is given in Figure 2.

H4: NTU has a spatial spillover effect on urban CO2 emissions.
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4. Materials and Methods

This study used the entropy value method to measure the dependent variable’s NTU
level. The OLS was applied to reveal NTU’s mechanism of action and heterogeneity on
CO2 emissions. Additionally, a spatial econometric model was used to examine the spatial
spillover effect brought by NTU on CO2 emissions.

4.1. Model
4.1.1. Model Setting

Referring to Clark and Cummins [56] and Ren et al. [57], this study empirically tested
the relationship between NTU and urban CO2 emissions. The following econometric model
was constructed as listed below in which NTU is set as the core independent variable.

lnCO2it = αi + β1URBit + β2Xit + µi + δt + εit (1)

where subscripts i and t denote city and time, respectively; lnCO2 represents urban CO2
emissions as a logarithm; URB represents NTU; X represents each control variable, and the
following control variables are planned: energy intensity (ENE), financial development
(FIN), economic development (GDP), government intervention (GOV), average temperature
(TEM), precipitation (PRE), average relative humidity (HUM). µi and δt denote individual
and year fixed effects, respectively, and εit represents random disturbance terms.

4.1.2. Spatial Autocorrelation Analysis

Based on the above mechanism analysis, there is a certain degree of spatial correlation
between NTU and CO2 emissions. This study uses spatial autocorrelation methods and
spatial econometric models to explore the spatial effect of NTU between cities and its
impact on CO2 emissions.

First, there is a need to verify if there is spatial autocorrelation between NTU and
urban CO2 emissions. Learning from Cole et al. [58], this study uses the Global Moran’s I
index to examine this spatial autocorrelation of NTU and CO2 emissions. The formula of
the index is as follows:

Moran′s I =
n

∑n
i=1 ∑n

j=1 wij
∗

∑n
i=1 ∑n

j=1 wij

(
xi −

−
x
)(

xj −
−
x
)

∑n
i=1

(
xi −

−
x
)2 (2)
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where xi is the observed value,
−
x is the mean value, and wij denotes the element corre-

sponding to the spatial weight matrix Wi. Given existing investigations, such as Yuan
et al. [59], the spatial spillover effect is not only linked to the geographical distance of cities
and whether they are adjacent, but also may be associated with the economic development
level in different cities. Hence, to assure the reliability of the results, we employ three
spatial weight matrix in this study, namely geographical distance (W1), neighborhood (W2),
and economic distance (W3). They are calculated as shown below.

W1 =

{
1

dij
, i 6= j

0, i = j
(3)

W2 =

{
1, City i and city j are adjacent

0, City i and city j are not adjacent
(4)

W3 =

{
1

|GDPi−GDPj| , i 6= j

0, i = j
(5)

In Equations (3)–(5), dij stands for the distance from city i to city j; GDPi and GDPj
represent the average level of the real GDP of each city during the investigation year.
The range of Moran’s I index is [−1, 1]. When the index < 0, it denotes negative spatial
correlation; when it is equal to 0, it stands for no correlation; otherwise, it denotes positive
spatial correlation.

4.1.3. Spatial Econometric Model

Regarding passing the spatial autocorrelation test, an appropriate spatial econometric
model was selected by referring to the studies [60,61]. The models used in this study are
as follows:

lnCO2it = αi + ρWlnCO2it + β1URBit + β2Xit + µi + δt + εit εit ∼ N
(

0, σ2
it, In

)
(6)

lnCO2it = αi + β1URBit + β2Xit + µi + δt + εit , εit = λWεit + ϕit, ϕit ∼ N
(

0, σ2
it, In

)
(7)

lnCO2it = αi + ρWlnCO2it + β1URBit + β2Xit + β3WURBit + β4WXit + µi+δt + εit, εit ∼ N
(

0, σ2
it, In

)
(8)

Equations (6)–(8) represent the SAR (Spatial Autoregressive Model), SEM (Spatial
Error Model), and SDM (Spatial Durbin Model). i and t denote city and time, respectively;
lnCO2 represents urban CO2 emissions taken as a logarithm; W is the spatial weight matrix
and ρ measures the effect of the spatial lag WlnCO2 on lnCO2; URB represents NTU; X
represents each control variable, the same as above; µi and δt denote individual fixed effects
of individual and year, respectively; εit represents random disturbance terms. In Equation
(8), coefficient β3 of WURB stands for the impact from neighboring cities’ URB; coefficient
β4 of WX stands for the impact from neighboring cities’ control variables.

4.2. Variables
4.2.1. Dependent Variable

The level of CO2 emissions is chosen as the dependent variable in the paper. Moreover,
the data obtained from the CO2 Emissions Accounts and Datasets (CEADs) team are
regarded as China’s CO2 emissions [62] and the total CO2 emissions of 250 cities in China,
except Xinjiang, Tibet, Hong Kong, Macao, and Taiwan, from 2008 to 2020. The research
shows that the use of electricity is up to 40% of the total energy consumption [63], and
the carbon emissions of the power sector also take up a large proportion of the carbon
emissions of fossil energy [64]. Accordingly, to compensate for the missing data on CO2
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emissions in 2020, this paper calculates the proportional coefficient of urban electricity
consumption and CO2 emissions in 2019. The study simulates urban CO2 emissions with
the data on urban electricity consumption in 2020.

4.2.2. Independent Variables

NTU is the independent variable in this paper. With reference to Refs. [6,11,23], ac-
cording to the National New Urbanization Plan (2021–2035) promulgated by China in
2022, the essential characteristics of urbanization are proposed: people-oriented, four mod-
ernizations synchronization, optimal layout, ecological civilization, and cultural heritage.
Following the principles of objectivity, rationality, systematicness, and comprehensiveness
in the selection of indicators and the availability of data, the study constructs the evaluation
index system of NTU containing five dimensions—population, economic, spatial, social,
and ecological urbanization—to reflect the characteristics of the new urbanization more
objectively and comprehensively. Population urbanization mainly reflects the population
size and population density; economic urbanization mainly covers per capita GDP, econ-
omy, and investment scale; social urbanization considers the factors of education, medical
care, Internet, and transportation; spatial urbanization considers construction land and
spatial structure; ecological urbanization comprehensively considers urban environment
and production pollution. Table 1 lists the individual indexes for each dimension. The
weight of each indicator is calculated by the entropy value method to further measure the
level of NTU [65].

Table 1. Indicator system for measuring NTU in China.

Target Dimension Index Direction

New-Type
Urbanization (NTU)

Population urbanization Registered unemployment rate in urban areas -
Population density +

Economic urbanization

Per capita GDP +
Total investment in fixed assets +

Per capita local general public budget revenue +
Per capita disposable income of

urban households +

Social urbanization

Number of students enrolled in higher education
per 10,000 persons +

Number of doctors per 1000 persons +
Number of beds of hospitals per 10,000 persons +

Number of Internet users per 100 persons +
Per capita local general public budget

expenditure for education +

Number of civil vehicles owned +
Number of employees joining urban basic

pension insurance +

Number of employees joining urban basic
medical care system +

Spatial urbanization Green coverage rate of built district +
Area of built district +

Ecological urbanization
Rate of domestic garbage harmless treatment +

Ratio of industrial solid wastes
comprehensively utilized +

4.2.3. Mechanism Variables

(1) Technological innovation (GIN1/GIN2). We adopted the city green innovation
output to measure the innovation level, which mainly includes the quantity of new products
and patents. Following Li and Lu [66], two indicators are used in this study: the quantity
of urban green invention patent applications (GIN1) and urban green patent applications
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(GIN2), adding one and taking the logarithm to characterize them. The green patents
were identified according to the World International Patent Classification (WIPC) using
the USPTO’s Energy Sustainable Technology (EST) cross-reference table. The reason for
using the number of patent applications rather than the patents granted here is that patent
applications take less time and better reflect cities’ current innovation dynamics and
enthusiasm than patents granted.

(2) Resource allocation (DIS). It uses the degree of resource mismatch to measure the
allocation efficiency of capital and labor factors in cities. Referring to Chen and Hu [67],
we classified resource mismatch into two kinds, i.e., capital mismatch (DISK) and labor
mismatch (DISL):

τki =
1

1 + DISki
; τli =

1
1 + DISLi

(9)

where τki and τli are to be absolute distortion coefficients, referring to Cui et al. [68], using
the factor relative distortion coefficients τ̂ki and τ̂li.

τ̂ki =
Ki/K

Siβki/βk
; τ̂li =

Li/L
Siβli/βl

(10)

where K and L represent the capital and labor factor; Si = yi
Y , which is the proportion

of the output in i to total output; β denotes the elasticity of the factor output. Taking
the capital factor as an example, βk = ∑N

i=1 Siβki, where Ki/K indicates the actual ratio
of capital volume in region i to total capital volume, Siβki/βk indicates that the effective
allocation of capital is the theoretical ratio of capital volume in region i to the total capital
volume, and the ratio of the two can reflect the degree of capital mismatch. If τ̂ki is greater
than 1, it indicates the over-allocation of capital; conversely, if it is less than 1, it means
capital is under-allocated. Similarly, the distortion index of the labor factor can be obtained.
The factor output elasticity βki and βli is estimated using the Solow allowance residual
method. They are assuming a constant payoff to the scale of the production function
Yit = AKβk

it L1−βk
it . Both sides of the logarithm are taken simultaneously, and individual

and time effects are added: ln
(

Yit
Lit

)
= lnA + βkiln(Kit/Lit) + ui + δt + εit. Each city’s GDP

serves as a proxy for output, and the number of employees is represented as labor input;
the fixed capital stock in each region stands for capital input (using the perpetual inventory
method). The depreciation of fixed assets is set at 9.6% [69]. The capital mismatch and
labor mismatch indices are obtained after substitution. To keep the regression direction
consistent, the absolute value of the resource mismatch index is taken, and an immense
value indicates a less-efficient resource allocation.

4.2.4. Control Variables

Controlling the main factors affecting CO2 emissions and reducing errors caused by
omissions is necessary. So, this article refers to the relevant research [6,23], selecting the
following control variables: (1) Energy intensity (ENE): this study uses urban electricity
consumption to convert to standard coal consumption divided by regional GDP; (2) Finan-
cial development (FIN): it adopts deposits balance at the end of the year from financial
institutions divided by regional GDP; (3) Economic development (GDP): this study uses
the logarithm of real GDP per capita in each city to indicate it; (4) Government intervention
(GOV): this study utilizes general financial budget expenditures divided by the general
budget revenue; (5) Average temperature (TEM): the research period’s average yearly tem-
perature for each city; (6) Precipitation (PRE): the research period’s average precipitation
for each city; (7) Average relative humidity (HUM): the research period’s average relative
humidity for each city. The results of the descriptive statistics for the variables are presented
in Table 2.
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Table 2. Descriptive statistics.

Variables Meaning Obs Mean SD P25 Median P75

LnCO2 CO2 emissions 3250 3.2566 0.9267 2.6697 3.3015 3.8725
PCO2 Per capita CO2 emissions 3250 0.1152 0.1724 0.0364 0.0684 0.1265
URB NTU 3250 0.1266 0.1065 0.0681 0.0881 0.1389
ENE Energy intensity 3250 0.1735 0.1674 0.0958 0.1331 0.1934
FIN Financial development 3250 1.3852 0.6932 0.9590 1.2462 1.6208
GDP Economic development 3250 10.5657 0.6834 10.0923 10.5234 11.0220
GOV Government intervention 3250 2.7919 1.7956 1.5675 2.2455 3.3985
TEM Average temperature 3250 14.6843 5.1310 11.3777 15.6651 17.8721
PRE Precipitation 3250 1070.9110 564.2507 599.3931 982.3388 1478.0506

HUM Average relative humidity 3250 69.4842 9.5419 62.9871 72.0671 77.2291
GIN1 Green invention innovation 3250 4.1148 1.8263 2.7726 3.9703 5.2730

GIN2
Green technological

innovation 3250 5.0417 1.7343 3.7842 4.9698 6.1696

DISL Labor mismatch 3250 1.1914 1.4029 0.4110 0.8567 1.4327
DISK Capital mismatch 3250 0.3779 0.3997 0.1480 0.2998 0.4813

4.2.5. Data Source

The data from 250 cities in China are from 2008 to 2020. Due to the severe lack of some
indicators in some places, these are not included areas, such as Macau, Hong Kong, Tibet,
Xinjiang, and Taiwan. The data come from the China Statistical Yearbook, China City Statistical
Yearbook, China Urban Construction Statistical Yearbook, Carbon Emission Accounts & Datasets
(CEADs) (https://ceads.net/) (accessed on 12 April 2023), and Statistical Yearbooks for each
provinces and cities in China. Missing data are filled in by the moving average method. All
value variables are converted with the price index, and the investment-related index is
converted with a fixed asset price index. The GDP data are converted with the GDP flat
reduction index. At the same time, logarithmic processing of relevant variables is required
to make each variable at the same level and reduce the impact of different variances.

4.3. Descriptions of NTU and CO2 Emissions

To portray the evolution of NTU and urban CO2 emissions during 2008–2020, ArcGIS
was used to draw 250 prefecture cities’ NTU and the actual CO2 emissions in 2008 and 2020.

Figure 3 shows the annual CO2 emissions of 2008 and 2020 of 250 sample cities. The
CO2 emissions are significantly higher in the northern cities. In 2008, CO2 emissions from
northeastern cities were mainly in the range of 0–120 Mt, those of central-north cities
were mainly in the range of 20–120 Mt, and those of central-south cities were mainly in
the lower range of 0–40 Mt. In terms of the urban CO2 emission regions in 2020, overall
urban CO2 emissions have always shown a significant increase over the past thirteen years.
CO2 emissions in southeastern cities remained at the 2008 level, but CO2 emissions in
some cities in the northeast have increased, such as Hulunbuir, Bayannur, Ordos, Yulin,
and Changchun. In contrast, some cities in the southeastern region have decreased CO2
emissions, such as Qingyuan, Hangzhou, Jiangmen, and Dongguan. CO2 emissions in
some cities in the central region also declined significantly. Overall, CO2 emissions in cities
in 2020 still show the pattern of northeast > central > southeast.

Figure 4 shows the combined scores of NTU from 250 cities in 2008 and 2020. The
China cities’ level in 2020 increased dramatically compared to 2008. The NTU level in
Shanghai, Chongqing, and Guangzhou was in the high-level range of the country in 2008
and 2020. From Figures 3 and 4, it can be observed that the levels of NTU and CO2
emissions show a specific correlation, with regions with high levels of NTU showing a
lower trend of CO2 emissions. In contrast, regions with lower levels of NTU show a higher
trend of CO2 emissions.

https://ceads.net/
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5. Results
5.1. Benchmark Regression Results

Table 3 provides the estimation results of the baseline model for the effect of NTU
on urban CO2 emissions. Column (1) shows that NTU greatly decreases when no control
variables are added, which indicates that CO2 emissions are reduced as the NTU increases.
Secondly, after adding control variables such as energy intensity and financial development
in Columns (2)–(4), it can be observed that NTU has a significantly negative influence on
urban CO2 emissions, with an impact coefficient of −0.9339, which is remarkable at 1%.
This means that NTU can dramatically decrease CO2 emissions. Thus, the H1 of this study
is initially verified.
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Table 3. Baseline regression results of the effect of NTU on urban CO2 emissions.

Variable (1) lnCO2 (2) lnCO2 (3) lnCO2 (4) lnCO2

URB −0.7857 *** −0.8047 *** −0.8721 *** −0.9339 ***
(−2.5998) (−2.6528) (−2.8241) (−3.0164)

ENE −0.2894 *** −0.2849 *** −0.3124 ***
(−3.9724) (−3.8620) (−4.1848)

FIN −0.0227 ** −0.0205 ** −0.0177 *
(−2.2708) (−1.9815) (−1.7023)

GDP 0.0402 0.0122
(0.3858) (0.1146)

GOV −0.0063 −0.0066
(−1.1931) (−1.2563)

TEM 0.0155
(1.2162)

PRE −0.0000
(−1.4538)

HUM 0.0055 **
(2.5666)

Constant 3.1196 *** 3.2326 *** 2.8528 *** 2.5792 **
(79.7613) (70.3470) (2.7315) (2.3484)

City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

N 3250 3250 3250 3250
R2 0.2102 0.2160 0.2164 0.2183

Note: lnCO2 represents the logarithmic value of urban carbon emissions, and URB represents NTU. No control
variable is added in Column (1), and other control variables are gradually introduced in Columns (2)–(4). The
fixed effects of city and year are controlled in all regressions. t-values are in parentheses. *, **, and *** denote
significance at 10%, 5%, and 1%, respectively.

Further, we explored the selected control variables’ role in urban CO2 emissions. The
influence coefficient of energy intensity on urban CO2 emissions is −0.3124; it is significant
at a 1% statistical level, indicating that with the improvement of energy efficiency, it will
be more beneficial to accelerate the reduction in urban CO2 emissions. The influence
resulting from financial development is −0.0177, which is significant at a 10% statistical
level, probably because China’s improved financial market and more efficient the capital
allocation will help reduce urban carbon emissions. The influence coefficient of economic
conditions on CO2 emissions is positive but not significant. The coefficient of government
intervention in CO2 emissions is negative but not significant. Although government
interventions such as environmental regulations are conducive to reducing urban CO2
emissions, many aspects could be further improved. For example, in non-state enterprises,
the more government intervention, the less carbon information is disclosed. The coefficient
of the average temperature on CO2 emissions is positive. Due to the rapid development of
Chinese industry, the high-carbon characteristics of energy consumption put tremendous
pressure on greenhouse gas emission reduction. Additionally, the increased CO2 emissions
will also cause a rise in average temperature.

5.2. Robustness Tests
5.2.1. Replacement of Dependent Variable

With the increase in China’s socio-economic volume and technological advancement,
the reduction in CO2 emissions should be reflected in the reduction in per capita CO2
emissions. So, the regression of replacing CO2 emissions in the baseline regression with
per capita CO2 emissions is reported in Column (1) of Table 4. Observing these coefficients,
NTU still plays an inhibitory role in CO2 emissions, and the coefficient of NTU in this
regression is−1.3014, which is significant at 1%. The regression results support the baseline
regression coefficient result, indicating that the results in baseline regression are credible.
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Table 4. Robustness test results.

Variable (1) lnPCO2 (2) lnCO2 (3) lnCO2 (4) lnCO2 (5) lnCO2

URB −1.3014 *** −1.5546 *** −0.9917 *** −0.9878 ***
(−4.1173) (−3.0738) (−3.0286) (−3.2194)

URB2 −0.0372 ***
(−3.6556)

Constant −1.3179 2.6633 ** 6.1265 *** 2.9379 *** 4.4182 ***
(−1.1754) (2.4310) (3.8122) (2.6370) (3.7544)

Control variables Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

N 3250 3237 2326 3198 3250
R2 0.1552 0.2189 0.1857 0.2207 0.2253

Note: Column (1) of this table shows that per capita CO2 emissions are used as a substitute variable for the
robustness test. Column (2) shows the NTU composite index calculated by the principal component method.
Column (3) shows the robustness test after eliminating low-carbon pilot cities. Column (4) in the table shows the
robustness test after excluding first-tier cities. Column (5) in the table shows the robustness after reducing the tail
of continuous variables by 1%. Other information is the same as in Table 3. **, and *** denote significance at 5%,
and 1%, respectively.

5.2.2. Replacement of Independent Variable

In this section, we use the principal component method for dimensionality reduction
analysis and recalculate the total score of NTU. Column (2) in Table 4 reports the regression
results; moreover, it can be found that the influence coefficient of NTU on CO2 emissions is
−0.0372 and is significant at the level of 1%, indicating that NTU can promote a decline in
urban CO2 emissions, which reconfirms the conclusion in the baseline regression.

5.2.3. Elimination of Low-Carbon Pilot Cities

The low-carbon pilot city policy was first released in July 2010 in China, which listed
eight cities and five provinces, including Guangdong, Liaoning, Hubei, etc. The second
batch was identified in November 2012 and the third batch in January 2017. To exclude the
influence of these policies, we removed cities in the pilot policies mentioned above from
this study and then conducted robustness tests. The results of the test reported in Column
(3) of Table 4 show that the influence coefficient of NTU on CO2 emissions is −1.5546,
significant at 1%, further verifying the accuracy of the study’s baseline regression findings.

5.2.4. Excluding First-Tier Cities

NTU across China shows significant regional heterogeneity and imbalance. The first-
tier cities with superior economic strength are Beijing, Shanghai, Guangzhou, and Shenzhen.
The baseline regression model was re-estimated after excluding the above first-tier cities.
The findings in the fourth column of Table 4 show that the influence coefficient of NTU on
carbon dioxide emissions is −0.9917, and the significance is 1%, which further proves that
NTU is helpful to reduce carbon dioxide emissions.

5.2.5. Excluding Extreme Values

In this study, the continuous variables may be subject to errors in surveys and records,
or data anomalies in particular years, making some of the sample data appear as extreme
outliers, and thus causing the regression coefficient results to deviate from the actual values.
Therefore, to exclude the effect of above situation on the baseline regression results, the
first and last 1% of the continuous variables in this study were intercepted and re-regressed
separately. The findings in the last column of Table 4 indicate that the influence coefficient
of NTU on CO2 emissions is −0.9878, which is significant at 1%. This further confirms that
even after excluding possible extreme values, the estimation results are still reliable.
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5.2.6. Instrumental Variable Test

In the baseline regression, the control variables related to CO2 emissions were con-
trolled as much as possible, with the addition of the time and regional fixed effects. How-
ever, there might still be potential omitted variables and other endogeneity problems. Thus,
referring to Chen et al. [70], we adopted the lag period of dependent variable NTU as
the tool variable in this paper. Specifically, on the one hand, one-phase lagging NTU has
no effect on the city’s carbon emissions in this period. On the other hand, the level of
NTU lagging one phase has an incentive effect on the city’s future development, which
satisfies the prerequisites for the use of instrumental variables. Table 5 reports regression
for both stages after using the instrumental variables. The instrumental variable test was
conducted for the first-stage regression, showing that the F-test and LM-test statistics are
greater than 10, which satisfies the requirement of this means. The first-stage regression
coefficients indicate that NTU with a lag of one phase can significantly affect the NTU
of the city. Meanwhile, excluding endogenous factors, the NTU’s influence on the CO2
emissions coefficient is −1.4701, significant at the 5% level, confirming that the baseline
regression results are credible.

Table 5. Robustness test results by instrumental variables.

Variable (1) URB (2) lnCO2

l_URB 0.4839 ***
(27.7453)

URB −1.4701 **
(−2.2103)

Constant −0.1754 ***
(−2.6940)

Cragg–Donald Wald F statistic 769.802
Anderson canon. corr. LM statistic 604.706

Control variables Yes Yes
City FE Yes Yes
Year FE Yes Yes

N 3000 3000
R2 0.3882 0.1645

Note: The lagged NTU was further used as the instrumental variable for robustness tests. Column (1) of the chart
indicates the regression result of independent variable CO2 emissions to instrumental variables, and Column
(2) shows the influence of NTU after alleviating endogenous factors by instrumental variables. Other information
is the same as in Table 3. **, and *** denote significance at 5%, and 1%, respectively.

5.3. Heterogeneity Analysis

The above provides empirical test evidence that NTU can reduce urban CO2 emissions.
However, do CO2 emission reduction effects show different characteristics depending on
the differences in urban resource endowment, urban function, and environmental quality?
In this section, we examine heterogeneity from four perspectives: Resource-Based Cities
(RBC)/Non-Resource-Based Cities (NRBC), Old Industrial Cities (OIC)/Non-Old Industrial
Cities (NOIC), High-Urbanization-Level Cities (HULC)/Low-Urbanization-Level Cities
(LULC), and High-Innovation-Ability Cities (HIAC)/Low-Innovation-Ability Cities (LIAC).

5.3.1. Heterogeneous Effects across RBC and NRBC

According to Li et al. [71], 250 cities were divided into 91 RBC and 159 NRBC in this
paper. As described in Columns (1) and (2) of Table 6, NTU suppresses CO2 emissions
for both cities. Specifically, the influence coefficient of NTU on CO2 emissions of RBC is
−2.3502, and it is significant at 5%. The coefficient of NTU on CO2 emissions of NRBC is
−0.9687, and it is significant at 1%. Compared with NRBC, NTU has a stronger effect on
RBC. This is mainly because, first, the differences in natural resource endowments lead
to differences in their development approaches and urban industrial structures. Second,
resource-based industries often do not require high-quality workforces, thus hindering
technological innovation. In contrast, the NTU strategy promotes and improves workforce
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quality, integrating the advantages of resources and improving production efficiency and
quality, ultimately reducing CO2 emission intensity in RBC. Third, compared to RBC, the
economy in NRBC develops rapidly and higher requirements are needed for environmental
quality; moreover, the implementation of NTU policies has increased public awareness and
participation in environmental monitoring.

Table 6. Results of heterogeneity analysis.

Variable RBC NRBC OIC NOIC

(1) lnCO2 (2) lnCO2 (3) lnCO2 (4) lnCO2

URB −2.3502 ** −0.9687 *** −3.1873 *** −1.1942 ***
(−2.3370) (−2.9851) (−3.3210) (−3.5090)

Constant 9.4545 *** −2.0336 7.0211 *** 0.1255
(4.6829) (−1.4500) (4.5702) (0.0818)

N 1183 2067 1066 2184
R2 0.1785 0.2629 0.1558 0.2781

HULC LULC HIAC LIAC

(5) lnCO2 (6) lnCO2 (7) lnCO2 (8) lnCO2

URB −0.6359 ** −1.9467 ** −0.6065 ** −0.9871
(−2.0228) (−2.4189) (−2.0891) (−1.5696)

Constant 3.7359 * 3.0734 ** −2.6789 4.4875 ***
(1.9018) (2.2502) (−1.4056) (3.3691)

N 923 2327 689 2561
R2 0.3350 0.2081 0.3274 0.2145

Control variables Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Note: The first two columns disclose the impact coefficients of NTU on CO2 emissions in two types of cities (RBC
and NRBC). Columns (3) and (4) show the impact of NTU on CO2 emissions in two types of cities (NOC and
NOIC). Columns (5) and (6) show the impact of NTU on CO2 emissions in two kinds of cities (HULC and LULC).
The last two columns show the results in two kinds of cities (HIAC and LIAC). Other information is the same as
in Table 3. *, **, and *** denote significance at 10%, 5%, and 1%, respectively.

5.3.2. Heterogeneous Effect across OIC and NOIC

The National Plan for the Adjustment and Transformation of Old Industrial Bases
(2013–2022) was formulated in 2013, identifying 120 OIC covering 27 provinces. Accord-
ingly, this section groups a sample of 250 cities into 82 OIC and 168 NOIC to examine
heterogeneity due to the different functional positioning of cities. Columns (3) and (4)
of Table 6 show the effect of NTU on urban CO2 emissions after distinguishing whether
they are OIC. The influence coefficient of NTU on CO2 emissions in OIC is −3.1873 and
significant at 1%. The coefficient of CO2 emissions from NTU in NOIC is −1.1942, which is
significant at 1%. However, it has a stronger suppressive effect on CO2 emissions in OIC.
The first possible reason for this is that with NTU development, the function of cities to
absorb important resources is strengthened, which promotes transformation and upgrading
in OIC, thus reducing CO2 emissions. Second, NTU also proposes higher requirements
for the development of OIC, which promotes the OIC to continuously carry out green
technology innovation and industrial structure upgrading, thus reducing CO2 emissions.
Finally, because the industrial structure of NOIC is “lighter” and their CO2 emissions are
not high, the suppression of CO2 emissions from NTU in NOIC is limited.

5.3.3. Heterogeneous Effect across Urbanization Levels

In this part, HULC and LULC cities in the swatch are divided considering the av-
erage levels of NTU in the sample cities from 2008 to 2020. The regression results in
Columns (5) and (6) of Table 6 demonstrate that the influence coefficient of NTU on CO2
emissions in LULC is −1.9467, which is significant at 5%. The coefficient of NTU to CO2
emissions of HULC is −0.6359, and it is significant at 5%. Compared with HULC, NTU has
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a stronger effect on LULC. This phenomenon may be because LULC are not yet at a high
level of development and receive greater support from national policies compared to cities
at a HULC, providing favorable conditions for LULC, while government financial resources
continue to be concentrated in LULC. On the contrary, cities with high urbanization levels
have strong pollution management capacities and lower CO2 emission levels due to their
more developed economies and well-constructed infrastructure, so NTU has no noticeable
curbing effect on the CO2 emissions of such cities.

5.3.4. Heterogeneous Effect across Innovation Levels

This section classifies the sample cities under investigation into HIAC and LIAC based
on the average level of INN in the sample cities from 2008 to 2020. The results in the
last two columns of Table 6 reveal that for HIAC, the inhibitory effect of NTU on CO2
emissions is significantly higher than for LIAC. Specifically, the influence coefficient of
NTU on CO2 emissions in HIAC is −0.6065, and it is significant at 5%. In contrast, the
regression coefficient of NTU is negative but not significant for LIAC. This study suggests
that there are possible reasons for this phenomenon: first, NTU can help HIAC pool high-
end enterprises, increase capital investment in R&D, and optimize the production process
of low-carbon cities, thus reducing CO2 emissions; second, in the context of HIAC, NTU
can gather innovative talents for urban development, promote knowledge acquisition
and diffusion, improve urban economic efficiency, and accelerate green and low-carbon
development. Third, traditional high-pollution and high-emission enterprises in LIAC
have less incentive to transform their industrial structures into advanced and rationalized
ones. Thus, NTU has limited CO2 emission reduction effects in LIAC.

5.4. Mechanism Analysis

Given the previous theoretical hypotheses, this study suggests that NTU may affect
CO2 emissions through technological innovation and the mitigation of resource mismatches.
Therefore, the mechanism needs to be verified empirically. The findings are reported in
Table 7. Column (1) of the table shows that the influence coefficient of NTU on GIN1
is 1.6469, significant at 5%. The second column of the table shows that the influence
coefficient on GIN2 is 1.1526, which is significant at 5%. Moreover, urban innovation can
accelerate the green transformation of cities and the upgrading of low-carbon process
technologies by improving energy efficiency. Further, this study verifies that NTU can
promote the optimization of resource allocation. The mismatch of urban capital and labor
factor resources is indicated in the last two columns, with regression coefficients of −0.9735
and−0.2766, significant at least at the level of 10%, which reveals that NTU can significantly
improve the cities’ resource allocation. Improving the efficiency of resource allocation is
a “win-win” measure to achieve economic development and environmental protection
simultaneously to enhance the net efficiency of green production and ultimately reduce
CO2 emissions. At this point, H2 and H3 are verified.

5.5. The Spatial Spillover Effects of NTU on Urban CO2 Emissions
5.5.1. Spatial Correlation Test

After examining the mechanism analysis, NTU’s possible spatial spillover effect on
urban carbon emissions was further analyzed by a spatial econometric mode. When
applying the spatial econometric model, it is vital to first examine whether NTU and
urban CO2 emissions are spatially correlated in space. Scholars often test this relationship
between cities by using Moran’s I index. Table 8 reports the Global Moran’s I index of NTU
and urban CO2 emissions, revealing that the NTU and CO2 emissions index for all years
is notably positive, demonstrating an obvious positive spatial correlation between NTU
and CO2.
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Table 7. Test results for the mechanism analysis.

Variable GIN1 GIN2 DISL DISK

URB 1.6469 ** 1.1526 ** −0.9735 *** −0.2766 *
(2.4040) (2.1501) (−2.6316) (−1.8050)

Constant −27.3507 *** 1.7216 *** −1.5794 0.1656 *
(−11.2550) (3.6089) (−1.2036) (1.8177)

Control variables Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

N 3250 3250 3250 3250
R2 0.7857 0.8540 0.0785 0.1453

Note: Column (1) of the chart confirms the influence of NTU on GIN1. The second column shows the coefficient
of NTU on GIN2. Column (3) of this table shows the influence of NTU on DISl. The last column of the chart shows
NTU’s influence on DISk. Other information is shown in Table 3. *, **, and *** denote significance at 10%, 5%, and
1%, respectively.

Table 8. Global Moran’s I index of NTU and urban CO2 emissions from 2008 to 2020.

Year

NTU

W1 W2 W3

I p-Value I p-Value I p-Value

2008 0.046 0.000 0.234 0.000 0.415 0.000
2009 0.044 0.000 0.226 0.000 0.414 0.000
2010 0.043 0.000 0.225 0.000 0.402 0.000
2011 0.045 0.000 0.235 0.000 0.430 0.000
2012 0.046 0.000 0.237 0.000 0.429 0.000
2013 0.053 0.000 0.277 0.000 0.434 0.000
2014 0.047 0.000 0.237 0.000 0.434 0.000
2015 0.044 0.000 0.232 0.000 0.424 0.000
2016 0.043 0.000 0.224 0.000 0.423 0.000
2017 0.043 0.000 0.225 0.000 0.417 0.000
2018 0.038 0.000 0.201 0.000 0.415 0.000
2019 0.042 0.000 0.220 0.000 0.412 0.000
2020 0.045 0.000 0.239 0.000 0.415 0.000

Year

Urban lnCO2 Emissions

W1 W2 W3

I p-Value I p-Value I p-Value

2008 0.066 0.000 0.271 0.000 0.410 0.000
2009 0.061 0.000 0.256 0.000 0.403 0.000
2010 0.063 0.000 0.275 0.000 0.399 0.000
2011 0.060 0.000 0.267 0.000 0.391 0.000
2012 0.061 0.000 0.268 0.000 0.385 0.000
2013 0.060 0.000 0.258 0.000 0.371 0.000
2014 0.064 0.000 0.272 0.000 0.379 0.000
2015 0.067 0.000 0.284 0.000 0.384 0.000
2016 0.071 0.000 0.294 0.000 0.363 0.000
2017 0.071 0.000 0.300 0.000 0.360 0.000
2018 0.067 0.000 0.278 0.000 0.326 0.000
2019 0.068 0.000 0.280 0.000 0.332 0.000
2020 0.068 0.000 0.280 0.000 0.332 0.000

Moran’s I index scatterplot was used to observe the spatial relation between NTU and
CO2. Figure 5 shows that most of the urban samples in 2008 and 2020 are in quadrants 1
and 3, and a small number of observed values are in quadrants 2 and 4. The results indicate
that the spatial distribution between NTU and urban CO2 emissions presents a “high-high”
and “low-low” agglomeration condition. They present apparent spatial dependence and
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agglomeration characteristics. However, the point imbalance in the two quadrants indicates
that NTU and CO2 emissions are unevenly distributed in space.
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5.5.2. Statistical Testing of Model Selection

The spatial autocorrelation test shows that there is a significant spatial correlation
between the two in all years. Therefore, the spatial factors are incorporated into the model
to analyze in depth the impact of NTU on CO2 emissions through a spatial econometric
model. The SDM test and estimation results are listed in Table 9.

Table 9. Test results of model selection.

Tests Statistic p-Value

LM(lag)test 43.851 0.0000
Robust LM(lag)test 7.624 0.0060

LM(error)test 48.639 0.0000
Robust LM(error)test 12.412 0.0000
SDM Hausman test 12.480 0.0857

LR_spatial_lag 70.690 0.0000
LR_spatial_error 71.030 0.0000

From the results of the model test, the LM test and robust LM test of the non-spatial
panel model significantly reject the original hypothesis, indicating that spatial panel model
considering the spatial effect is more suitable for this study. To select the spatial econometric
model, the LR test for spatial lag and the LR test for spatial error were performed on the
basis of the geographic distance weight matrix (W1). The coefficients in Column (2) of
Table 9, which have estimated values of 70.69 and 71.03, respectively, and are significant at
the 1% level, indicating that the SDM cannot be downgraded to SAR or SEM. So, it can be
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applied to this study. In this study, three models—SAR, SEM, and SDM—were chosen to
simultaneously identify the spatial spillover effects of NTU on CO2 emissions.

5.5.3. Estimated Results Analysis of the Spatial Econometric Model

The findings for the spatial spillover impact of NTU on urban CO2 emissions under
the W1 matrix are displayed in Table 10. Looking at the spatial autoregressive coefficients,
urban CO2 emissions have a conspicuous spatial spillover effect.

Table 10. Estimation results of the spatial econometric model.

Variable
SEM SAR SDM

(1) lnCO2 (2) lnCO2 (3) lnCO2

URB −0.8051 *** −0.8750 *** −0.7130 **
(−2.7126) (−2.9725) (−2.4036)

λ 0.6317 ***
(7.2975)

ρ 0.6250 *** 0.5642 ***
(7.2288) (5.8644)

Direct:URB −0.8703 *** −0.8059 ***
(−2.8600) (−2.6309)

Indirect:URB −1.6318 −29.4660 **
(−1.6235) (−2.3730)

Total:URB −2.5022 ** −30.2718 **
(−2.0766) (−2.4305)

Control variables Yes Yes Yes
City FE Yes Yes Yes
Year FE Yes Yes Yes

N 3250 3250 3250
R2 0.0031 0.0791 0.0153

Note: Columns (1)–(3) of the table show the coefficient results under SEM, SAR, and SDM. Direct, Indirect,
and Total denote the effects of NTU on CO2 emissions, respectively. Other information is shown in Table 3. **,
and *** denote significance at 5%, and 1%, respectively.

The spatial autoregressive coefficient of the double fixed effects model is 0.5642,
passing the 1% significance test, demonstrating a remarkable spatial correlation of urban
CO2 emissions, which further verifies that the spatial econometric model is more accurate.
NTU significantly reduces urban CO2 emissions according to the models of SEM, SAR,
and SDM. Moreover, they are significant at 5% at least, further confirming the previous
baseline regression. Specifically, the influence coefficients of NTU on urban CO2 emissions
are −0.8051, −0.8750, and −0.7130 under the three models. Learning from the regression
coefficients in the third column of Table 10, the direct and indirect influences of NTU on
urban CO2 emissions are −0.8059 and −29.4660, respectively. The total effect coefficient is
−30.2718, significant at 5%. In summary, the above results suggest that NTU has a spatial
spillover effect on urban carbon emissions. So, H4 is verified.

The reason for this phenomenon may be that, on the one hand, as the NTU level
increases, the degree of informatization increases correspondingly and improvement of
various types of infrastructure construction, which facilitates the overflow of knowledge,
technology, and information from neighboring regions. Meanwhile, residents’ environ-
mental protection and conscious emission reduction actions can be effectively promoted,
creating a good demonstration effect. Further, the fiscal decentralization system and the
promotion system of officials are essential driving forces that the government can use to
promote the NTU process. Accordingly, the cooperative mechanism of pollution and carbon
reduction among neighboring cities will be continuously improved, and CO2 emission
regulation and environmental standards will be enhanced.

This study further verifies the spatial spillover effect of NTU on CO2 emissions by
setting the spatial weight matrix W2 and W3. The last two columns of Table 11 report the
Spatial Durbin Model (SDM) test results using W2 and W3.
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Table 11. Replacing the matrix for the robustness test.

Variable
W1 W2 W3

(1) lnCO2 (2) lnCO2 (3) lnCO2

URB −0.7130 ** −0.3221 −0.3600
(−2.4036) (−1.1026) (−1.1749)

ρ 0.5642 *** 0.2382 *** 0.1565 ***
(5.8644) (9.9748) (6.7025)

Direct:URB −0.8059 *** −0.5268 * −0.4424
(−2.6309) (−1.7535) (−1.4232)

Indirect:URB −29.4660 ** −4.6118 *** −3.0288 ***
(−2.3730) (−7.2269) (−4.4181)

Total:URB −30.2718 ** −5.1386 *** −3.4712 ***
(−2.4305) (−7.0382) (−4.8537)

Control variables Yes Yes Yes
City FE Yes Yes Yes
Year FE Yes Yes Yes

N 3250 3250 3250
R2 0.0153 0.0160 0.0696

Note: Columns (1)–(3) of the table show the coefficient results under W1, W2, and W3, respectively, with Direct,
Indirect, and Total representing the same as in Table 10. Other information is shown in Table 3. *, **, and ***
denote significance at 5%, and 1%, respectively.

Observing the spatial autoregressive coefficients, we can determine that the spatial
autoregressive coefficients of the dual fixed effects model are 0.2382 and 0.1565 under W2
and W3, respectively, and they are positive at the significance level of 1%, which means
urban CO2 emissions do correlate spatially. Further decomposition of the NTU’s effects on
CO2 emissions into direct, indirect, and total effects can be achieved by using the partial
differentiation method of spatial regression. It can be clearly observed that the direct
effect of NTU on CO2 emissions is inhibition, while under the W2 matrix, the coefficient is
−0.5268. The direct effect is not significant under the W3 matrix; under the W2 matrix, the
indirect effect coefficient of NTU is −4.6118, while under the W3 matrix, it is −3.0288. In
both W2 or W3, the total effect is significantly negative at 1%, with coefficients of −5.1386
and −3.4712, respectively, which demonstrates that the spatial spillover effect of NTU on
CO2 emissions has a strong correlation between spatial geography and economic distance.

6. Discussion

This study is based on the essential connotation of NTU. With the entropy method,
we constructed an NTU evaluation indicator system from five dimensions, i.e., population,
economy, society, space, and ecology, innovatively expanding the perspective of NTU to
the dimension of ecological urbanization. On this basis, this paper investigated how NTU
affects urban CO2 emissions and the specific path of its impact. Furthermore, the spatial
spillover effect of NTU on CO2 emissions was examined. The findings show that NTU can
significantly reduce urban carbon emissions. By comparative analysis, some studies have
found that NTU can increase urban CO2 emissions [72,73], while others have suggested
that there is a nonlinear correlation between them [23,74]. Scholars have reached different
conclusions, which may be due to several factors. On the one hand, it demonstrates the
intricate connection between CO2 emissions and urbanization construction. On the other
hand, various scholars are constrained by the limitations of scientific and technological
conditions and subjective understanding. Different insights give us a more profound expe-
rience of this scientific issue. This study’s findings help facilitate a low-carbon transition
for China’s NTU. They can also strongly support global green development, especially for
developing countries undergoing rapid urbanization.

Most existing studies ignore the ecological dimension of NTU. Alternatively, the
model, policy logic, and path choices of the low-carbon development transition of NTU
have been fully explored. However, less literature has conducted an in-depth analysis of
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how NTU affects CO2 emissions. So, based on the previous findings, it is not easy to give
more targeted countermeasure suggestions. Furthermore, an NTU evaluation index was
established in this paper from a multidimensional perspective, using the entropy method
to estimate the NTU level in 250 cities in China, expanding and enriching the research
content of NTU. Through verification of the two paths of “technological innovation” and
“optimizing resource allocation”, the internal mechanism of NTU’s effect on CO2 emissions
will be more thoroughly examined. In addition, this study also found that in resource-based
cities, old industrial areas, and cities with lower urbanization and higher innovation levels,
NTU has a much greater impact on reducing CO2 emissions. NTU can reduce local and
neighboring cities’ CO2 emissions, which provides policy inspiration to enhance urban
green development in a coordinated manner across regions and within critical areas.

Even though this study clarifies the link between NTU and urban carbon emissions,
there are a few limitations. First, research perspectives could be more diverse. Based on
the China Carbon Accounting Database (CEADs) and obtaining CO2 emissions data for
250 cities in China, a macro perspective analyzes how NTU affects urban CO2 emissions.
In future research, the research sample will be expanded to further explore the impact of
NTU on urban CO2 emissions in a worldwide context, broadening the research in this area,
e.g., by targeting important international organizations, countries at different stages of
development, developing and developed countries, etc. In addition, it needs to be analyzed
from a micro perspective, examining how NTU affects urban CO2 emissions for enterprises,
individuals, or households. Second, because the paths through which NTU affects urban
carbon emissions are diverse, many factors affect urban development. The extensive
changes in social structures and lifestyles triggered by NTU could impact consumption
habits and energy consumption structures, and will entail changes in fiscal inputs. This
study only empirically verifies that two paths reduce carbon emissions, and there may be
other specific paths. Potential factors influencing urbanization will be identified in future
research. We will explore the impact of major public emergencies such as COVID-19 on the
development of economic and social activities, and thus on urban carbon emissions from
both macro and micro perspectives, which may change our previous understanding. Third,
NTU is a dynamic and challenging process. Urbanization is a critical path to modernization,
and promoting organic coordination among subsystems should also be a focus of future
academic research.

7. Conclusions

We examined the influence of NTU on urban CO2 emissions in 250 Chinese cities
from 2008 to 2020 in this study, leading us to draw five conclusions: (1) The level of
NTU in China is generally increasing, and the volume of CO2 emissions has increased
slightly. NTU shows trends of being high in the south and low in the north, while the
spatial distribution of CO2 emissions is the opposite. (2) The baseline regression found
that NTU can significantly reduce urban CO2 emissions. This conclusion still holds after a
series of robustness tests by changing the dependent variable to CO2 emission intensity,
excluding the low-carbon pilot area, replacing the dependent variable, excluding first-tier
cities, and excluding extreme values. (3) The mechanism analysis shows that NTU can
reduce CO2 emissions by improving urban technology innovation and the efficiency of
urban resource allocation. (4) NTU’s ability to reduce carbon emissions varies by geography.
Specifically, the emission reduction function of NTU is more significant for old industrial
cities and resource-based cities; meanwhile, NTU plays a prominent role in declining
carbon emissions in areas with lower urbanization levels and cities with high innovation
levels. (5) Using spatial correlation tests, it was found that NTU and CO2 emissions locally
have a strong positive geographical spillover impact. NTU can reduce CO2 emissions of
native cities and adjacent cities.

The research conclusions have essential reference significance for sustainable de-
velopment, which can help the government formulate reasonable and efficient regional
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planning and policy and thus support the high-level development of NTU. The policy
recommendations resulting from this research are outlined as follows.

First, NTU development policies ought to be formulated according to local conditions.
NTU should depend on the city’s resource endowment, the strength of government environ-
mental supervision, and innovation and development capacity; it is important to effectively
promote ecological urbanization in non-resource-based cities, improve urban innovation
and development in backward areas, and strengthen the local government’s environmental
supervision. At the same time, a differentiated policies should be formulated according
to the characteristics of each city, and consider the positive externalities of the low-carbon
effect of NTU.

Second, encouraging urban development in terms of technological innovation and
resource optimization is crucial. The local government ought to accelerate the modification
of the urban industrial structure and extensively promote clean technology development.
Meanwhile, more effective utilization and planning of urban capital, labor, and land
resources are required. To boost the economic impacts of urban agglomeration and scale,
increasing the utilization efficiency of high-quality urban resources is essential.

Third, it is crucial to strengthen regional joint prevention and control and collaborative
governance. In the context of “double carbon”, it is essential to establish a cooperation
mechanism to form an emission reduction system as soon as possible. Governments should
take actions to strengthen the joint environmental enforcement mechanism between regions,
build a unified CO2 emission detection platform, and implement regional CO2 emissions
information sharing and joint early warning.
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