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Abstract: In this study, tree-selection/plantation decision support systems (DSSs) were reviewed
and evaluated against essential objectives in the available literature. We verified whether existing
DSSs leverage multiple data sources and available online resources such as web interfaces. We
compared the existing DSSs, and in this study mainly focused on five main objectives that DSSs
can consider in tree selection, including (a) climate resilience, (b) infrastructure/space optimization,
(c) agroforestry, (d) ecosystem services, and (e) urban sustainability. The climate resilience of tree
species and urban sustainability are relatively rarely taken into account in existing systems, which
can be integrated holistically in future DSS tools. Based on this review, deep neural networks (DNNs)
are recommended to achieve trade-offs between complex objectives such as maximizing ecosystem
services, the climate resilience of tree species, agroforestry conservation, and other benefits.

Keywords: decision support system; climate resilience; ecosystem services; deep neural networks;
sustainability

1. Introduction

The global climate is changing and is predicted to change even faster in the near
future [1]. The importance of planting trees for climate change adaptation and mitigation is
increasing, as forests act as carbon sinks [2,3]. This is particularly true in areas with deserti-
fication and complex environmental problems that require robust processes that allow the
ever-growing human population to benefit from the environment’s ecosystem services [4,5].
Furthermore, in many cases, ecosystem services cannot be easily quantified in monetary
terms, are taken for granted, and often involve moral and ethical principles [6]. The rapid
growth of tree planting and land-use conversion from grassland to forests directly impacts
ecosystem services, resulting in increased regulation and service provision [7]. However,
further planning is needed to ensure that local environmental concerns and cultural values
are internalized and that additional ecosystem services such as timber availability, water
quality, biodiversity enrichment, and carbon sequestration are enabled [8].

However, this type of land-use change does not always lead to an improvement in
ecosystem services, as grassland biomes are often considered to have potential for forest
restoration and planting. Biodiversity and ecosystem services are typically reduced once
these grasslands/savannahs are converted, resulting in significant protective measures to
plantation strategies, and thus separate ecosystem services need to be identified for forest
and grassland biomes [9]. Furthermore, identifying suitable tree species for adaptability is
crucial for future climate scenarios, especially in urban areas, as changing climates lead to
the loss of tree species, which can lead to a reduction in ecosystem services such as Urban
Heat Island (UHI) mitigation, which can pose a challenge to adaptation and mitigation
strategies for human-caused climate change [10].

Using deep neural networks (DNNs), a decision support system (DSS) can be trained
to learn from a large dataset of tree data, including information about tree species, climate,
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soil conditions, and other factors that influence tree growth and survival. This is because
the use of neural networks was proposed three decades ago to solve forest management
problems by integrating forest knowledge with artificial intelligence (AI; [11]). AI greatly
benefits sustainability and the preservation of ecosystem values, as increasing disruptions
in a changing world can only be managed beyond human intelligence [12]. Furthermore,
despite the various DSSs and AI systems used, the appointment of appropriate project
managers is crucial to the execution and subsequent success of a project [8].

Our study examines various DSSs and compares them based on their objectives
and applications. In addition, we provide a literature review focusing on the need for
an ecosystem-services-focused DSS and discuss the potential applications of DNNs for
these systems.

2. Review of Existing DSS Tools for Tree Selection and Plantations
2.1. Review of the Existing Literature

One of the earliest DSSs for tree plantations in forestry was developed at the Uni-
versity of Canterbury: a framework-based system coded in Prolog. The focus was on
knowledge-based decision support by linking to the Forest Management Information Sys-
tem (FMIS) or Geographic Information System (GIS) databases, enabling location-based
access to information about the field microenvironment such as soils, climate, elevation,
and earlier land/crop use and current conditions, along with multiple management options
for optimization [13].

Further efforts to develop a DSS for tree plantations began in the 2000s using a GIS with
a focus on street and neighborhood tree plantations, while attempting to address manage-
ment aspects such as DSS-based strategies to reduce energy, fuel, and pesticides/fertilizers
for plantation management [14]. In addition, the focus was also expanded to include
aspects such as soil-property-based tree planting, feasibility of the planting area, tree age,
species diversity, shade, and canopy cover [15]. It is also important to conduct an existing
urban tree cover (UTC) analysis prior to tree-planting decisions, using object-oriented
satellite image analysis to identify existing vegetation cover and land-use types [16].

Mitigating a region’s hydrological problems also requires selecting appropriate species,
prioritizing sites for re-vegetation, and simulating different hydro-climatological conditions
annually. These aspects were incorporated into China’s bilingual GUI decision support
tool for re-vegetation programs, ReVegIH, which could also reduce sediment load release
through afforestation modeling [17].

A multilingual programming (C++ and Fortran)-based DSS known as the Motti Sim-
ulator, developed by the Natural Resources Institute Finland (Luke), has also been used
for tree selection based on detailed forest stand dynamics and incorporating tree growth
and yield models [18]. Additionally, simplified open-source and open-code DSSs such as
PT2 (Prairie and Tree Planting Tool) have allowed users to explore and delineate areas of
interest for tree/prairie planting or management using scaled dimensional drawing tools,
and then select seeds/woody plants for the various soils with a drop-down menu. This
also enabled the selection and calculation of financial costs and long-term management
options [19].

Nevertheless, advances in machine learning in recent years have enabled the selection
of tree species taking into account climate variability using MaxEnt to determine the
suitability and resilience of trees in different climate scenarios. A recent example is the
online platform “Which Plant Where” in Australia, which was developed using Python,
Django, and PostgreSQL [20]. In addition, others use tree-selection tools developed by
the United States Department of Agriculture (USDA) such as the Tree Advisor and the
Woody Plant Selection Tool for multi-functional purposes, using MySQL and the Drupal
framework [21]. In addition, a spatio-temporal urban tree DSS was developed using
ensemble CAD and GIS tools. This integrates detailed 3D trees into urban design, allowing
the testing of tree placement, species selection, solar exposure, etc. Valuable elements of
computational botany and lighting engineering technology make this possible [22].
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Although tree-planting decision support systems have addressed tree-selection ecosys-
tem services such as UHI mitigation, only simple filtering techniques with limited variables
that filter the attributes from tree databases have been used [23]. In addition, ensemble
models that use higher-resolution datasets to infer the potential suitability and realized dis-
tribution of tree species through batch generalization are also proposed. This is a boosting
method that uses random forest (RF), gradient-booster trees (GBTs), and generalized linear
models (GLMs), which are further processed by the meta-learner [24].

2.2. Methods

In this section, reviews and analyses of existing DSSs for tree selection and plantations
are reviewed and analyzed using obvious keywords such as ‘DSS’, ‘Decision Support
tool’, ‘Tree selection,’, etc., via a Google Scholar search (Figure 1). Keywords such as
‘ecosystem services’, ‘agroforestry’, ‘urban’, ‘climate’, etc., were also frequently searched
for in the literature texts. We compare different DSSs for tree selection/planting based
on their objectives, their programming language framework and software (Table 1), and
their comparison with the main objectives (Figure 2). Table 1 summarizes DSSs for urban
tree plantations, agroforestry, etc., which show prevailing trends of using R and Python
tools. This comparison is crucial as it highlights the core concept of tree planting, as
the DSS for tree selection/planting is based on a basic structure that includes species,
location, and value. Data sources include research articles from Google Scholar, DSS web
interfaces, and the gray literature; the practical use of DSS web interfaces was crucial in
determining the capabilities and objectives of various DSSs. During the review process,
text comparison revealed important patterns and themes in the literature. The DSS findings
include recommendations with critical objectives and advocate for advanced techniques
such as deep neural networks (DNNs) to improve decision accuracy in tree selection and
planting, thereby providing more informed and insightful guidance.

Figure 1. Flow chart of the purpose of this study highlighting the key concepts and objectives of DSSs.
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Table 1. Comparison of various DSSs developed for tree selection/plantation.

DSS Name (Provisional) Software/Language/Framework Objective Type Reference

1 Knowledge-based DSS Prolog Forest plantation DSS [13]

2 Prototype Decision
Support System

SMODT; ArcTrees; Treemodules | Visual Basic
Analysis (VBA) Urban tree plantation suitability [15]

3 ReVegIH Decision
Support Tool C#, Visual Basic, C++, .NET Tree species selection with ecohydrological

modelling [17]

4 Prototype Decision
Support System (Randall) ArcView GIS Extension|Avenue Neighborhood greening [14]

5 Decision Support
Tool—Precision Forestry HprAnalys, ArcGIS, Motti stand simulator Tree species selection with stand dynamics [18]

6 Virginia UTC Assessment
Process ERDAS; ISODATA Object-oriented

classification of urban tree canopy analysis [16]

7 Right Place, Right
Tree—Boston R packages—shinydashboard; leaflet; tigris; DT Tree plantation DSS for UHI mitigation [23]

8 Which Plant Where? Python; Django; PostgreSQL Plant selection tool for climate resilience
and sustainability [20]

9 Tree Advisor USDA MySQL; Drupal Woody plant selection tool for
multifunctional objectives [21]

10 Plant-Best R Plant selection tool for slope protection [25]

11
Spatio-Temporal Decision
Support System for Street

Trees

QGIS/ArcGIS; exlevel GrowFX; Autodesk;
AutoCAD; ForestPro Detailed 3D trees for urban design [22]

12
Florida Agroforestry

Decision Support System
(FADSS)

Delphi; SQL Agroforestry planning and tree selection [26]

13 PT2 (Prairie and Tree
Planting Tool)

HTML; CSS; Javascript Prairie and tree planting selection and
financial cost estimation [19]

14 Diversity for Restoration
(D4R) JavaScript, Python, and R. Ecosystem restoration and agroforestry [27]

15 Citree PHP; MariaDB server Tree selection for urban areas in temperate
climate [28]

16 i-tree USDA Java; Javascript; Python
Multi-module suite for urban tree
structures and ecosystem service

evaluation
[29]

17 Unique DSS for
Agroforestry Systems R; HTML Decision support tool for coffee and cocoa

agroforestry systems [30]

Figure 2. A Venn diagram of DSSs (the number represents the number of DSSs that fit into the
categories) and their main goals to show similarities and differences in DSS goals. Details can be
found in Table 2. Numbers in the VENN diagram ellipses represent the number of DSS fitting
the categories.
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Table 2. The DSS reviews and the relevant objectives they address. CR = climate re-
silience, I/SO = infrastructure/space optimization, AF = agroforestry, ES = ecosystem services,
US = urban sustainability.

# DSS CR I/SO AF ES US Ecosystem Services

1 Knowledge-based DSS No No Yes No No -
2 Prototype Decision Support System No Yes No No Yes -
3 ReVegIH Decision Support Tool Yes No Yes No No -

4 Prototype Decision Support System
(Randall) No Yes No No Yes -

5 Decision Support Tool—Precision
Forestry No Yes Yes No No -

6 Virginia UTC Assessment Process No Yes No Yes Yes Air quality; flood mitigation; UHI
mitigation

7 Right Place, Right Tree—Boston No No No Yes Yes UHI mitigation
8 Which Plant Where? Yes Yes No No Yes -
9 Tree Advisor USDA No No Yes Yes No Extensive ecosystem services
10 Plant-Best Yes Yes No Yes No Slope protection (landslide prevention)

11 Spatio-Temporal Decision Support
System for Street Trees No Yes No No Yes -

12 Florida Agroforestry Decision Support
System (FADSS) Yes Yes Yes Yes No Runoff reduction; erosion control;

timber provisioning, etc.

13 PT2 (Prairie and Tree Planting Tool) No Yes Yes Yes No Biodiversity (wildlife and pollinator
habitat); water quality

14 Diversity for Restoration (D4R) Yes No Yes Yes No Extensive ecosystem services

15 Citree Yes Yes No Yes Yes Air quality; bird feeding; provisioning
(honey and edibles)

16 i-tree Yes No Yes Yes Yes Air quality; runoff reduction; Carbon
sequestration; Cooling effect, etc.

17 Unique Decision Support Tool for
Cocoa and Coffee No No Yes Yes No

Microclimate
buffering; soil fertility; pest/weed

suppression; provisioning (timber, food
and fuelwood), etc.

Furthermore, in this study, we focus on five main objectives that DSSs can consider
in tree selection, including (a) climate resilience, (b) infrastructure/space optimization,
(c) agroforestry, (d) ecosystem services, and (e) urban sustainability (Figure 2). The goal
of infrastructure/space optimization has been addressed by some DSSs mentioned above
(Table 1), and includes aspects such as tree selection to optimize shading, infrastructure
constraints, tree placement, spatial considerations, etc. [15,19,20,22].

Climate resilience was also addressed in some DSSs, covering aspects such as drought
tolerance, heat resistance, resilience of trees, etc., to extreme events in different climate
change scenarios [20,25–28]. In addition, the main DSSs aimed at agroforestry include DSS
Nos. 9, 12, 13, 14, and 17, which also more or less internalize ecosystem services, since
the relevant literature contains the term ‘ecosystem services’ and a range of ecosystem
services are explicitly mentioned (Table 1). The specific ecosystem services are listed in the
Section 2.2 (Table 2). Many DSSs are specifically focused on urban sustainability related
to tree planting, including DSS Nos. 2, 6, 7, 8, 15 and 16, as these DSSs even emphasized
the word ‘urban’ and subsequently sustainability in urban areas in their published articles
(Table 1). DSSs specifically targeted at forestry were very rare, as DSSs generally referred
to agroforestry, mainly because farmers and planters were key stakeholders rather than
stand-alone forestry applications. However, the stand-alone forestry DSSs also included
DSS Nos. 1 and 5, which also highlighted the term ‘forestry’ in the literature, particularly in
the article abstracts (Table 1). Therefore, the independent forestry objective was not taken
into account in this analysis.
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In addition, the Venn diagram of DSS comparisons reflects how existing DSSs have
combinations and commonalities of objectives, such as infrastructure/space optimization
with urban sustainability, which are described in the Section 2.3.

2.3. Results

Table 1 summarizes the DSSs focusing on urban tree plantations, agroforestry, etc.,
and shows a prevailing trend of using R and Python tools. However, the technologies used
span a wide range and include languages such as C#, C++, .NET, Python, R, and Java, as
well as web development tools such as HTML, CSS, and JavaScript. The emphasis on these
languages suggests a shared recognition within the community of their effectiveness in
tackling data-driven tasks and facilitating interdisciplinary collaboration in environmental
decision making [29,30].

Since DSSs have historically paid the least attention to the goal of climate resilience, it
is important to focus on climate-tolerant planting strategies by increasing the functional
diversity of trees, as this ensures the maintenance of ecosystem services by preventing tree
death [31]. Interestingly, the trade-offs between climate resilience and ecosystem services
are particularly embedded in the concept of climate adaptation, as in this context the focus
on the use of regulating ecosystem services is important [32].

According to the Venn diagram, the commonalities in the system in terms of the
goals they address include infrastructure/space optimization and urban sustainability (n
= 6), followed by ecosystem services and agroforestry (n = 6; Figure 2). This shows that
existing DSS developers in particular have placed emphasis on spatial optimization in
tree selection in urban areas, as well as maximizing ecosystem services in agroforestry
ecosystems. Furthermore, climate resilience and the urban sustainability of trees are
the least considered, while infrastructure/space optimization and ecosystem services are
relatively more considered in many DSS tools (Figure 2). Nevertheless, the existing DSSs
address all issues at different times, but not comprehensively. This is evident from the
analysis (Table 2).

DSSs aimed at urban sustainability often includes the regulation of ecosystem services
such as UHI mitigation (or cooling effect) and air quality. Other regulating ecosystem
services such as water quality, runoff reduction, and pollination were also included. In
addition, some existing DSSs have extensively addressed a wide range of ecosystem
services, for example, DSS Nos. 9, 14, 15, and 17. Provision services are also included, such
as in DSS Nos. 12, 13, 15, 17, etc., which include wood and non-timber forest products.
Some supporting ecosystem services such as soil fertility were also included (Table 2).

3. The Need for an Ecosystem-Services-Focused DSS

It is crucial to understand the ecosystem services received from trees during selection
and planting, as trees provide various regulatory (carbon sequestration, air pollution
reduction) and provisioning services (timber, tree crops). Non-market values sometimes
exceed commercial values and threats, such as forest fires and pests, and this must be
taken into account for resilience [33]. Additionally, models such as the Natural Capital
Protocol can be applied to improve agroforestry decision making and evaluation at the farm
level. They describe the connection between a natural capital, its condition, the resulting
ecosystem services, and the benefits that people derive from these services. Better benefit
representation can also promote the public benefits of agroforestry at the farm level [34].

One of the most important ecosystem services is flood protection, which can be
improved by riparian forests as part of agroforestry (e.g., riparian buffers), providing the
same benefits at almost 30% of the cost compared to an engineered protection structure, as
shown in a study in Germany [35]. Satellite datasets and IDF-based (Intensity, Duration
and Frequency) flood models can provide valuable information about the flooding and
water logging situation in regions experiencing monsoons and persistent floods. The areas
affected by flooding and erosion can be identified using flood depth and flow velocity
forecasts for 25-, 50- and 100-year return periods [36]. Therefore, the selection of tree species
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adapted to this water logging must be assessed based on the literature that evaluates
parameters such as stomatal conductance and net photosynthesis, since some tree species
show a reduction in these two processes after flooding [37]. In addition, trees such as
poplars in riparian zones are very tolerant of flooding because nitrogen metabolism is not
affected by flooding compared to species such as oak and beech, which are sensitive to
successive flooding, and the depth and duration of flooding must also be taken into account
in detail [38].

It is important to understand the dynamics of the UHI effect. There are regional
and zonal differences, including in urban areas, because although trees are effective in
reducing air temperature in areas with high building density, they are ineffective in built-up
areas with low building density, and therefore high-density trees with taller trunks are
recommended for built-up areas [39]. Changes in land use and land cover can influence
local surface temperatures. For example, as previously irrigated croplands and forests
transform into built-up urban areas over time, this can lead to increases in air and land
surface temperatures (LSTs). Conversely, a transition from bare land cover to urban areas
could reduce the average LST for semi-arid regions [40,41]. This highlights the significant
influence of both vegetation and urban development on LSTs at the local scale. The
vegetation has a cooling effect through transpiration, shading, and rainwater retention.

Similarly, urbanized zones contribute more to temperature reduction than regions with
exposed ground or rocky terrain due to their surface properties and materials that promote
convection more effectively [42]. There is a unique approach to UHI mitigation that involves
creating a regional Heat Vulnerability Index (HVI) that incorporates socioeconomic (family
income, age, building density) and environmental data (e.g., LST, vegetation) for decision
making [43], which helps to increase urban tree canopy cover with the most suitable tree
species. To mitigate UHI, urban areas need to be divided into high- and low-density areas
because land use and tree availability are limited in cities.

Furthermore, nature-based solutions (NbSs) to air pollution can be implemented zone-
wise by involving plantations. Air-pollution-tolerant species such as Shorea robusta, Ficus
religiosa, and Mangifera indica have high tolerance to pollutants and high metal accumula-
tion capacity in industrial areas. Dust removal and deposition are excellent in residential
areas in Azadirachta indica, Dalbergia sissoo, and Ficus religiosa [44]. Tools for slope protec-
tion and landslide mitigation include Plant-Best, which was developed in the statistical
programming language R [25].

Many factors influence tree plantation, including the value and placement of trees,
particularly in urban areas. This includes public lands, parks, and roadsides, as well as
private land, i.e., residential properties [45]. Kirkpatrick et al. [46] suggested that small
fruit trees on private property were more aesthetically pleasing and practical. A study
on agroforestry found that the management of forests involves significant uncertainty
regarding future timber prices, tree growth, and the impact of climate-related changes on
tree growth. Because most forest owners prefer to avoid risk and tree growth and timber
prices are unpredictable, the study suggests the following implication: longer rotations
should be compared to recommended guidelines. There may be a greater preference for
mixed stands than deterministic calculations suggest; the concentration of timber revenues
should be less focused on the final harvest, as currently recommended. The consistent
retention of multiple timber assortments in the inventory is advantageous, which indicates
that more uneven stand structures should be pursued [47].

Therefore, the suitability process must include mixed stands and not just monoculture
recommendations. However, this may not be the case for all tree species as agarwood
monoculture plantations could also be favorable in terms of growth, as they are endan-
gered [48]. Nevertheless, plantation agriculture in tropical countries must be managed
on the basis of polyculture systems and not monocultures since the ecosystem services
provided by the former are much better, as they include the improvement of biodiversity,
pollination, and biological pest control even in the context of small-scale silviculture [49].
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Hirsch et al. [50] found species-specific tolerance to drought and traffic pollution in urban
areas, suggesting the use of certain tree species along roads and in residential areas.

DSSs such as the FADSS (Florida Agroforestry DSS) dealt with economic and en-
vironmental services and used GIS databases that contained important datasets on tree
attributes, infrastructure, climate, soil, and cropping, including critical levels such as key
agroforestry management practices [26]. It is also important to include soil datasets on
soil pH, sand content, etc., for tree species distribution models (SDMs) as soil variables
are strong predictors of habitat suitability [51]. Soil datasets are often neglected in many
SDMs, so these datasets should be some of the core variables in decision support systems.
Finally, recent developments in tree selection DSSs include the Diversity for Restoration
(D4R) tool, which allows users to make multiple selections from a menu for restoration
objectives, ecosystem services, seeding zones, climate, and other environmental data on
decision-making for individual and combined tree species selection [27].

Therefore, by incorporating rich ecosystem services, DSS tools are enriched with
more data-driven and knowledge-driven capabilities, introducing complexities in these
systems that can then be addressed and improved through the implementation of DNNs,
as explained in the following section.

4. Proposed Use of DNN in DSS for Tree Selection/Plantation

In order to improve decision making in urban forestry for sustainable and livable
cities, AI has been increasingly used as part of smart technology in recent years [52].
However, only half of the studies using AI manage to take into account aspects such as the
limitations of methods, including robustness and lack of precision in some datasets, the
combined use of discrete and continuous data variables, overfitting, collinearity, etc. [53].
The application of AI in forestry can be improved by incorporating the XAI (Explainable
Artificial Intelligence), LTNL (Learning To Not Learn), and FUL (Feature Unlearning)
methods which allow the qualitative and quantitative comparison of model accuracy and
explanations through the use of predefined annotation matrices, i.e., expert knowledge
that can improve these deep learning models. Therefore, the combination of XAI, FUL, and
expert knowledge can improve the understanding of how the model works, instead of only
obtaining simple model results [54].

In addition, the use of CNNs (convolutional neural networks) is increasing signif-
icantly with a large number of applications in agriculture/agroforestry DSSs generally
based on frameworks such as Keras, Tensorflow, Tensorflow-Keras, PyTorch, Tensorflow-PyTorch,
and Deeplearning 4j [55]. In addition, the applications of DNNs for intelligent geographic
data analysis in DSSs in agriculture have shown promising results, especially when Back-
Propagation Neural Network (BPNN)-based prediction models are used to predict agricul-
tural indicator values [56,57]. In addition, DNN-based species distribution models show
better results than traditional models, including DNNs built using bootstraps to improve
the prediction performance of species distribution. These can be built in the Python environ-
ment using the Scikit-learn package with bootstrapping aggregation (bagging) performed
in the R statistics package boot to train the DNN [58]. Regardless, CNN-based SDMs offer
broader advantages, including better learning of non-linear environmental descriptors,
compelling distribution predictions of environmental descriptors, and the use of high-
dimensional data, enabling an improved collection of information about environmental
landscapes structured on tensors, rather than local values of environmental factors [59].
Likewise, the ecosystem service component of a tree plantation DSS can be better under-
stood and improved through these tensors [60], i.e., different functions of multiple vectors
(as ecosystem services include multiple services and complex relationships, such as be-
tween the existing environment and land use) can be considered in one vector. Ecosystem
services can be viewed as multi-linear functions of the vector [61].

As explained in the Section 2.3, a trend of DSS frameworks over the years is towards
the use of scripting and data analysis languages such as R and Python (Table 1). This trend
now also brings with it the possibility of using deep neural networks to solve complexities
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and improve automation processes, as DNNs can be developed with R [62] and Python
much more extensively [63–66].

TensorFlow uses the term “Tensor” to denote the primary data structure used in deep
learning algorithms. This “Tensor” represents a multi-dimensional array of numerical
values [67]. In addition, deep neural networks have been widely used in recent years.
This rise in popularity of deep learning models is due to TensorFlow, an open-source
deep learning framework, as this framework offers users the ability to rely on pre-defined,
network-trained deep learning classification (and regression) models while enabling the
customizable training of their personalized or custom datasets [68].

The TensorFlow Deep Neural Network (TF-DNN) is used in the Python environment
as the primary model of this study because TF-DNN has been applied in GIS studies that
have shown higher spatial prediction accuracy than other techniques such as random forest
(RF), support vector machines (SVMs), and logistic regression (LR) [69]. The TF-DNN
can be applied with semi-supervised learning with a multivariate multilayer perceptron
with training datasets, where the soil, climate, and landscape environmental layers can
be used to determine the land suitability of the plant species in the study, with the results
providing continuously better decision-making potential when validated through K-fold
cross-validation [70].

For the proper implementation of the TF-DNN, it is important to use multiple libraries,
including TensorFlow, Keras, NumPy, and Matplotlib. Keras is used as a backend to build and
implement the TF-DNN algorithm, while TensorFlow acts as a numerical computing library.
The Numpy library is useful for many mathematical functions that operate on arrays, and
Matplotlib is similarly used to visualize statistical outputs [71].

Therefore, the use of DNNs is crucial for improving the precision and effectiveness of
DSSs and contributes to sustainable and informed tree selection and plantation strategies
in both urban and regional environments.

5. Conclusions

This study not only highlights existing DSSs developed for the purpose of tree selection
and plantation, but also highlights the evolving trends and goals that DSSs address. It
outlines various goals that are commonly addressed in the existing literature and notes
the lack of a comprehensive DSS that takes into account all of these goals as well as future
challenges such as climate resilience and sustainable urban spaces.

Based on this review, it is important to focus on increasing the selection of climate-
resilient trees in DSSs, along with urban sustainability requirements, to maximize ecosystem
services in urban environments. Given the evolving trend of using scripting and data analy-
sis languages such as R and Python, incorporating DNNs can also improve decision making
when considering multiple ecosystem services and the benefits of agroforestry, especially
when the goal is better predictive modeling capabilities in the context of tree plantation.

In addition, the main objectives set out in this review must be addressed simulta-
neously and taken into account and included in the reviewed DSSs. The application of
DNNs in future DSS tools will enable the internalization of these challenging goals, espe-
cially when it comes to finding a balance between complex trade-offs such as maximizing
ecosystem services, the climate resilience of tree species, and maintaining the benefits of
agroforestry. This study will provide future DSS developers with an important comparison
to address some of the objectives not previously considered in DSSs. The future implemen-
tation of DNNs will improve decision making under challenging climate change conditions
and the resilience of ecosystem services.
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