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Abstract: We give a definition of Green’s function of the general boundary value problems for
non-self-adjoint second order differential equation with involution. The sufficient conditions for the
basis property of system of eigenfunctions are established in the terms of the boundary conditions.
Uniform equiconvergence of spectral expansions related to the second-order differential equations
with involution:−y′′(x) + αy′′(−x) + q(x)y(x) = λy(x),−1 < x < 1, with the boundary conditions
y′(−1) + b1y(−1) = 0, y′(1) + b2y(1) = 0, is obtained. As a corollary, it is proved that the eigenfunc-
tions of the perturbed boundary value problems form the basis in L2(−1, 1) for any complex-valued
coefficient q(x) ∈ L1(−1, 1).

Keywords: differential equation; involution; boundary value problem; Green’s function; eigenvalue;
eigenfunction; basis

1. Introduction

In this paper we consider in the Hilbert space L2(−1, 1) a second-order differential
operator L defined by differential expression

lqy = −y′′(x) + αy′′(−x) + q(x)y(x),−1 < x < 1, (1)

with domain D(L) ⊂ L2(−1, 1), where q(x) ∈ L1(−1, 1) is a complex-valued function. The
parameter α satisfies the condition −1 < α < 1. Then, this operator is a semi-bonded
operator. The differential expression (1) contains an involution transformation of the form
Sy = y(−x) for any function y(x) ∈ L2(−1, 1). The graph of each f such f ( f (x)) = x is
symmetric about the line x = t in the (x, t) plane.

We denote by AC[−1, 1] the space of absolute continuous functions on [−1, 1] and
denoted

AC1[−1, 1] =
{

y(x) ∈ C1[−1, 1]|y′(x) ∈ AC[−1, 1]
}

. The functions y(x) ∈ D(L) sat-
isfy the conditions: y(x) belongs to AC1[−1, 1] and

y′(−1) + b1y(−1) = 0, y′(1) + b2y(1) = 0, (2)

where bi are complex constants.
Along with operator L, we also consider an operator L0 defined by differential expression

l0y = −y′′(x) + αy′′(−x) (3)

with domain D(L0) = D(L) ⊂ L2(−1, 1), and an operatorL̂0 defined by expression (3) and
boundary conditions

y′(−1) = 0, y′(1) = 0. (4)

Symmetry 2021, 13, 1972. https://doi.org/10.3390/sym13101972 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1667-3010
https://orcid.org/0000-0003-4709-2777
https://doi.org/10.3390/sym13101972
https://doi.org/10.3390/sym13101972
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13101972
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13101972?type=check_update&version=3


Symmetry 2021, 13, 1972 2 of 9

Uniform equiconvergence of spectral expansions related to the operators L0 and L
given by (3), (1), respectively, is studied.

Differential equations with involution form a special class of linear functional-differential
equations, with their theory having been developed since the middle of the last century.
Among a variety of studies in this direction, one can mention the books [1–3]. The existence
of a solution of the partial differential equation with involution has been studied in [2] by the
separation of variables method. As in the case of classical equations, applying the Fourier
method to partial differential equations with involution leads to the related spectral problems
for differential operators with involution. The study of spectral problems for differential
operators with involution started relatively recently. In [4–7], the spectral problems for
the first-order differential operators with an involution have been studied. In [8] (see also
references therein), Ref. [9], the spectral problems for differential operators with involution
in the lower terms have been considered. The spectral problems related to the second-order
differential operators with involution have been studied in [10–14]. The Green’s function
of the boundary value problems for the first order equations (and a system of equations)
with involution have been derived in [3,15–17]. In [12,13,18], the Green’s functions of the
second-order differential operators with involution have been investigated and theorems
on basicity of eigenfunctions are proved. Theorems on basicity of eigenfunctions of the
second order differential operators with involution [14] have been used to solving inverse
problems in [19–21]. Solvability of problems for partial and ordinary differential equations
with involution is discussed in [22–26].

The operator L defined by (1), (2) generalizes Sturm–Liouville operators, which
have been studied fairly completely (see, for example, [27,28]). Spectral properties of
the operator L with non self-adjoint boundary conditions in the form (2) have not been
so well-studied yet, since this case is more complex for investigation. The first results
about the basis property of eigenfunctions of boundary value problems for equation
−y′′(−x) + q(x)y(x) = λy(x),−1 < x < 1, have been obtained in [12,18]. In [29], the basis
property of eigenfunctions of operators (1) with periodic boundary conditions have been
studied.

In this paper, the integral Cauchy method [27] (well-known in the spectral theory
of ordinary differential operators) is modified for the case of differential operators with
involution (1), (2) (and (3), (2)). The method is based on proving the equiconvergence of the
known expansion with the eigenfunction expansion of the considered problem. We obtain
our main results by developing the integral Cauchy method and by using the estimates for
Green’s functions.

The paper is organized as follows. In Section 2, we define the Green’s function of the
general boundary value problems. We give the formula for the Green’s function of the
operator L̂0 defined by (3), (4), and achieve the estimate for the Green’s function. Section 3
is devoted to the estimate of the Green’s function of the operator L0 given by (3), (2). Finally,
we discuss the basicity of eigenfunctions in Section 4.

2. Green’s Function of the Operator L̂0 − λI

Let us introduce the definition of the Green’s function of the general boundary value
problem lqy = λy with boundary conditions

Ui(y) = ai1y′(−1) + ai2y(−1) + ai3y′(1) + ai4y(1) = 0, (i = 1, 2), (5)

where aij are complex constants, λ is a complex spectral parameter. Let the boundary value
problem not have a non-trivial solution. However, there can exist a function Gq(x, t, λ),
such that:

(1) Gq(x, t, λ) is continuous on the rectangle −1 ≤ x, t ≤ 1;
(2) The function Gq(x, t, λ) has the continuous derivative

(
Gq(x, t, λ)

)′
x for x 6= ∓t and

satisfies the conditions:
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(
Gq(x, t, λ)

)′
x

∣∣∣
t=−x−0

−
(
Gq(x, t, λ)

)′
x

∣∣∣
t=−x+0

=
α√

1− α2
,

(
Gq(x, t, λ)

)′
x

∣∣∣
t=x−0

−
(
Gq(x, t, λ)

)′
x

∣∣∣
t=x+0

=
−1√

1− α2
;

(3) The function Gq(x, t, λ) has the derivative
(
Gq(x, t, λ)

)′′
xx, satisfies lqy = λy (except

at x 6= ∓t) and (5).

The function Gq(x, t, λ) is called the Green’s function of the considered boundary
value problem (of the operator L− λI, defined by (1), (5), where I is the identity operator).

If the function Gq(x, t, λ) is the Green’s function of the operator L − λI, then the
function

y(x) =
1∫
−1

Gq(x, t, λ) f (t)dt

gives the solution to the problem

−y′′(x) + αy′′(−x) + q(x)y(x) = λy(x) + f (x), −1 < x < 1,

with boundary conditions (5), for any function f (x) ∈ C[−1, 1] (this statement, existence
and uniqueness of the Green’s function can be proved by standard methods (see [28],
chapter 1).

In order to study the basis property of system of eigenfunctions of the operator L
(defined by (1), (2)), we construct the Green’s function G(x, t, λ) of the problem l0y = λy,

(4). Let us denote by y1(x) = cos α0ρx and y2(x) = sin α1ρx, where
√

λ = ρ, α0 =
√

1
1−α ,

α1 =
√

1
1+α , the linearly independent solutions of the homogeneous equation l0y = λy(x).

Lemma 1. If λ is not an eigenvalue of the operator L̂0 − λI, then the function

y(x) = − α0

2ρ

cos α0ρ

sin α0ρ
cos(α0ρx)

1∫
−1

cos(α0ρt) f (t)dt

− α1

2ρ

sin α1ρ

cos α1ρ
sin(α1ρx)

1∫
−1

sin(α1ρt) f (t)dt + g0(x)

is the solution of non-homogeneous problem l0y = λy(x) + f (x), (4) for any continuous function
f (x), where

g0(x) = 1
2ρ

−x
∫
−1

[α0 cos(α0ρx) sin(α0ρt)− α1 sin(α1ρx) cos(α1ρt)] f (t)dt

+ 1
2ρ

x
∫
−x

[−α0 cos(α0ρt) sin(α0ρx) + α1 sin(α1ρt) cos(α1ρx)] f (t)dt

+ 1
2ρ

1
∫
x
[−α0 cos(α0ρx) sin(α0ρt) + α1 sin(α1ρx) cos(α1ρt)] f (t)dt.

This Lemma 1 can be proved by direct calculations. From Lemma 1, we find the following

Corollary 1. The Green’s function of the operator L̂0 − λI can be represented in the form

_

G(x, t, λ) = − α0

2ρ

cos α0ρ

sin α0ρ
cos(α0ρx) cos(α0ρt) +

α1

2ρ

sin α1ρ

cos α1ρ
sin(α1ρx) sin(α1ρt) + g(x) (6)

where
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g(x) =
1

2ρ


α0 cos(α0ρx) sin(α0ρt)− α1 sin(α1ρx) cos(α1ρt), t ≤ −x,
−α0 cos(α0ρt) sin(α0ρx) + α1 sin(α1ρt) cos(α1ρx),−x ≤ t ≤ x,
−α0 cos(α0ρx) sin(α0ρt) + α1 sin(α1ρx) cos(α1ρt), x ≤ t.

The Green’s function of the operator L̂0 − λI has the following properties:

(1) Ĝ(x, t, λ) is symmetric: Ĝ(x, t, λ) = Ĝ(t, x, λ), for all −1 ≤ x, t ≤ 1;
(2) Ĝ(x, t, λ) is continuous on the rectangle−1 ≤ x, t ≤ 1;
(3) The function Ĝ(x, t, λ) has the continuous derivative Ĝ′x(x, t, λ) for x 6= ∓t, and

satisfies the conditions:

Ĝ′x(x, t, λ)|t=−x−0 − Ĝ′x(x, t, λ)|t=−x+0 =
α√

1− α2
,

Ĝ′x(x, t, λ)|t=x−0 − Ĝ′x(x, t, λ)|t=x+0 =
−1√

1− α2
;

(4) The function Ĝ(x, t, λ) has the derivative Ĝ′′xx(x, t, λ), satisfies l0y = λy except at
x 6= ∓t) and (4).

The operator L̂0 defined by (3), (4) has the eigenvalues

λk1 = (1 + α)

(
k +

1
2

)2
π2, k = 0, 1, 2, . . . , ; λk2 = (1− α)(kπ)2, k = 0, 1, 2, . . . .

The system of eigenfunctions {yk1 = sin
(

k + 1
2

)
πx, yk2 = cos kπx, k = 0, 1, 2, . . . }, of

the operator L̂0 is complete and orthogonal in L2(−1, 1). Denote
ρk1 =

√
(1 + α)

(
k + 1

2

)
π, k = 0, 1, 2, . . . , ρk2 =

√
(1− α)kπ, k = 0, 1, 2, . . . ..

Since ρk+1,1 − ρk1 =
√
(1 + α)π; ρk+1,2 − ρk2 =

√
(1− α)π, we denote by Oξ(ρkj) ={

ρ : |ρ− ρkj| < ξ, k = 0, 1, 2, . . . ; j = 1, 2,
}

a circle of radius ξ = 1
4 min((1− α)π, (1 + α)π).

Then, the circles Ckj, k = 1, 2, . . . ; j = 1, 2, with equations ρ = ξ
2 , ρ = ρkj +

ξ
2 do not intersect

the circles Oξ(ρkj) for large k.
Further, we need an estimate of the Green’s function for operator L̂0 − λI.

Lemma 2. Let ρ /∈ Oξ(ρkl) and |ρ| > 1. Then, the Green’s function Ĝ(x, t, λ) of the operator
L̂0 − λI satisfies the uniformly with respect to −1 ≤ x, t ≤ 1 the following estimate∣∣Ĝ(x, t, λ)

∣∣ ≤ c0(α, ξ)|ρ|−1r(x, t, ρ), (7)

where

r(x, t, ρ) =
(

e−α2|ρ0|(2−|x|−|t|) + e−α2|ρ0|||x|−|t||
)

, α2 = min{α1, α0}, ρ0 = Imρ.

Proof. Let us examine three cases: t ≥ x, −x ≤ t ≤ x and t ≤ −x separately. In the first
case, when t ≥ x, the relation (7) can be rewritten in the form

Ĝ(x, t, λ) =
α0

4iρ

{
e−iα0ρ

eiα0ρ − e−iα0ρ

[
eiα0ρ(x+t) + eiα0ρ(t−x)

]
+

+
eiα0ρ

eiα0ρ − e−iα0ρ

[
eiα0ρ(x−t) + eiα0ρ(−x−t)

]}
+

+
α1

4iρ

{
−eiα1ρ

eiα1ρ + e−iα1ρ

[
eiα1ρ(x+t) − eiα1ρ(t−x)

]
+

eiα1ρ

eiα1ρ + e−iα1ρ

[
eiα1ρ(x−t) − eiα1ρ(−x−t)

]}
.

For sufficiently large |ρ|, we find the following estimate
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∣∣Ĝ(x, t, λ)
∣∣ ≤ α0

4|ρ|

{
eα0ρ0

|e−α0ρ0−eα0ρ0 |

[
e−α0ρ0(x+t) + e−α0ρ0(t−x)

]
+

+ e−α0ρ0

|e−α0ρ0−eα0ρ0 |

[
e−α0ρ0(x−t) + e−α0ρ0(−x−t)

]}
+

+ α1
4|ρ|

{
eα1ρ0

e−α1ρ0+eα1ρ0

[
e−α1ρ0(x+t) + e−α1ρ0(t−x)

]
+

+ e−α1ρ0

e−α1ρ0+eα1ρ0

[
e−α1ρ0(x−t) + e−α1ρ0(−x−t)

]}
.

(8)

Let ρ0 > 0 and γ be arbitrary positive number (depends only on α). For sufficiently
large ρ0 > 0, we find the relations

eγρ0

|e−γρ0−eγρ0 |
∼ 1, e−γρ0

|e−γρ0−eγρ0 |
∼ e−2γρ0 . (9)

Applying inequalities (9) to (8), we find∣∣Ĝ(x, t, λ)
∣∣ ≤ α0

4|ρ|

[
e−α0ρ0(2−x−t) + e−α0ρ0(t−x)

]
+

α1

4|ρ|

[
e−α1ρ0(2−x−t) + e−α1ρ0(t−x)

]
.

Hence,∣∣Ĝ(x, t, λ)
∣∣ ≤ M1

|ρ|

(
e−α2|ρ0|(2−x−t) + e−α2|ρ0|(t−x)

)
, α2 = min{α0, α1}.

In a similar manner, we can show that∣∣Ĝ(x, t, λ)
∣∣ ≤ M1

|ρ|

(
eα2|ρ0|(2−x−t) + eα2|ρ0|(t−x)

)
, α2 = min{α0, α1}.

for ρ0 < 0. Thus, for t ≥ x > 0 the Green’s function satisfies the estimate (7). The
completion of the proof is a result of simple computations (see [29]). Lemma 2 is proved.

3. Green’s Function of the Operator L0 − λI

As we have done earlier (Lemma 2), we obtain the Green’s function of the operator
L0 − λI

G(x, t, λ) = 1
∆(ρ)

{[
−α2

1α0ρ cos α1ρ cos α0ρ + b1−b2
2 α0α1 cos α1ρ sin α0ρ +

+ b2−b1
2 α2

0 sin α1ρ cos α0ρ + b1b2
ρ α0 sin α1ρ sin α0ρ

]
cos α0ρt cos α0ρx+

+
[
α2

1α0ρ sin α0ρ sin α1ρ− b1b2
ρ α1 cos α0ρ cos α1ρ + b1−b2

2 α0α1 cos α1ρ sin α0ρ+

+ b1−b2
2 α2

1 sin α1ρ cos α0ρ
]

sin α1ρt sin α1ρx+

+ b1+b2
2 α2

1 sin α1ρt cos α0ρx + b1+b2
2 α2

0 cos α0ρt sin α1ρx
}
+ g(x),

(10)

where

∆(ρ) = 2α0α1ρ2 sin α0ρ cos α1ρ−
− ρα0(b2−b1)

4

(
eiρ(α0+α1) − eiρ(α0−α1) − eiρ(α1−α0) + eiρ(−α0−α1)

)
+

+ ρα1(b1−b2)
4

(
eiρ(α0+α1) + eiρ(α0−α1) + eiρ(α1−α0) + eiρ(−α0−α1)

)
+

+ b1b2
2i

(
eiρ(α0+α1) − eiρ(α0−α1) + eiρ(α1−α0) − eiρ(−α0−α1)

)
is the characteristic determinant of the operator L0. If b1 = b2 = 0, we find the Green’s
function of L̂0. The zeros of function ∆(ρ) are the eigenvalues of L0. For large |ρ| the zeros
of ∆(ρ) are close to

ρk1 =
√
(1 + α)

(
k +

1
2

)
π, k = 0, 1, 2, . . . ; ρk2 =

√
(1− α)kπ, k = 0, 1, 2, . . . .
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Each zero of ∆(ρ) belongs to a certain set Oξ(ρkj) =
{

ρ : |ρ− ρkj| < ξ, k = 0, 1, 2, . . . ; j = 1, 2
}

.
The function ∆(ρ) can be written in the form

∆(ρ) = 2α0α1ρ2 sin α0ρ cos α1ρ + O
(
|ρ|e|ρ0|(α0+α1)

)
for ρ /∈ Oξ(ρkj), and

1
∆(ρ)

=
1

2α0α1ρ2 sin α0ρ cos α1ρ
+ O

(
e−|ρ0|(α0+α1)

|ρ|3

)
.

Thus, if ρ /∈ Oξ(ρkj) for large |ρ|, from (10) it follows that

G(x, t, λ) = Ĝ(x, t, λ) + O
(

e−|ρ0|(α0+α1)||x|−|t||

|ρ|2

)
+ O

(
e−|ρ0|(α0+α1)(2−|x|−|t|)

|ρ|2

)
, (11)

where Ĝ(x, t, λ) is the Green’s function of the operator L̂0 − λI. Thus, we have proved
validity of following lemma.

Lemma 3. Suppose all assumptions of Lemma 2 hold true. Then, for Green’s function G(x, t, λ) of
L0 − λI, the inequality (7) holds true.

4. Basis Property of Eigenfunctons

Denote by

ŝm( f ) = − 1
2πi

∫̂
Cmj

(
1∫
−1

Ĝ(x, t, λ) f (t)dt

)
dλ, sm( f ) = − 1

2πi
∫̂

Cmj

(
1∫
−1

G(x, t, λ) f (t)dt

)
dλ

the partial sums of eigenfunction expansions for the operators L̂0 and L0, respectively,

where Ĉmj is a circles with equations Ĉm1 : |λ| =
(

ρm1 +
1
2

)2
, Ĉm2 : |λ| =

(
ρm2 +

1
2

)2

in the λ-plane, ∀ f (x) ∈ L1(−1, 1). These representations hold true in the case when all
eigenvalues of the operator L̂0 and L0 are simple. Note that all eigenvalues of the operator

L̂0 are simple if
√

1+α
1−α 6= p1,

√
1−α
1+α 6= p2 for any integers p1, p2 .

We say that the sequence sm( f ) equiconverges with ŝm( f ) on the interval −1 ≤ x ≤ 1
if sm − ŝm → 0 uniformly on this interval as m→ ∞.

Theorem 1. Let all eigenvalues of operators L0, L̂0 are simple. Then, for any function f (x) ∈
L1(−1, 1) the sequence sm( f ) equiconverges with ŝm( f ) on the interval −1 ≤ x ≤ 1.

Proof. To prove Theorem 1, we consider the difference

sm − ŝm = − 1
2πi

∫̂
Cmj

(
1∫
−1

[
G(x, t, λ)− Ĝ(x, t, λ)

]
f (t)dt

)
dλ =

= − 1
2πi

∫
Cmj

(
1∫
−1

[
G(x, t, λ)− Ĝ(x, t, λ)

]
f (t)dt

)
2ρdρ,

where Cmj are the circles with equations ρ = ξ
2 , ρ = ρmj +

ξ
2 . By virtue of (11) there exists a

constant M1, such that

|sm − ŝm| ≤ M1
2π

∫
Cmj

(
1∫
−1

r(x, t)| f (t)|dt

)∣∣∣ dρ
ρ

∣∣∣.
The proof of

∫
Cmj

(
1∫
−1

r(x, t)| f (t)|dt

)∣∣∣ dρ
ρ

∣∣∣→ 0 (uniformly in x ∈ [−1, 1] as m→ ∞) is

analogous to that given for inequality (26) in [29]. The proof of the theorem is complete.

From Theorem 1 derives the following result.
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Corollary 2. Suppose all assumptions of Theorem 1 hold true. Then, the system of eigenfunctions
of the operator L0 forms the basis in L2(−1, 1).

Here the following result holds.

Corollary 3. Suppose all assumptions of Theorem 1 hold true and b1, b2 in (2) are real numbers.
Then, the system of eigenfunctions of the operator L0 is orthonormal basis in L2(−1, 1).

To prove this assertion it suffices to show that the operator L0 is self-adjoint in
L2(−1, 1).

Now we consider the operator L. Let denote by Gq(x, t, λ) the Green’s function of the
operator L− λI, where I is the identity operator. Denote by

Sm( f ) = − 1
2πi

1∫
−1

 ∫
Cmj

Gq(x, t, λ)2ρdρ

 f (t)dt

the partial sums of eigenfunction expansions for the operator L, ∀ f (x) ∈ L1(−1, 1).

Theorem 2. Let all eigenvalues of operators L and L0 are simple. Then, for any function ∀ f (x) ∈
L1(−1, 1) the sequence Sm( f ) equiconverges with sm( f ) on the interval −1 ≤ x ≤ 1.

The proof is analogous to that given for Theorem 1 in [29]. From Theorem 1 follows
the following:

Corollary 4. Suppose all assumptions of Theorem 1 hold true. Then, the system of eigenfunctions
of the operator L forms the basis in L2(−1, 1).

Now let us turn to the self-adjoint operator L.

Corollary 5. Suppose all assumptions of Theorem 1 hold true. If the coefficient q(x) ∈ L1(−1, 1)
in (1) is the real-valued function and b1, b2 in (2) are real numbers, then the system of eigenfunctions
of the operator L forms orthonormal basis in L2(−1, 1).

Example 1. Consider the spectral problem

−y′′(x) + αy′′(−x) + cy(x) = λy(x),−1 < x < 1,

with boundary conditions (2), where c is a constant,
√

1+α
1−α 6= p1,

√
1−α
1+α 6= p2 for any integers

p1, p2 . It is easy to see that the system of eigenfunctions of spectral problem is simultaneously the
system of eigenfunctions for the operator L0 defined by (3), (2). Using Corollary 2 (Corollary 4), we
conclude that the system of eigenfunctions of spectral problem forms the basis in L2(−1, 1).

5. Conclusions

Summarizing the investigation carried out, we note that the Green’s function of the
second order differential operators (3), (4) with involution has been constructed. The
estimates of the Green’s functions of operators (3), (4), and (3), (2) have been established.
The equiconvergence theorems (Theorem 1, Theorem 2) for operators (3), (2), (1), and (2)
have been proven. As a corollary, results on the basicity of eigenfunctions to the problems
under consideration have been proven. These theorems might be useful in the theory
of solvability of mixed problems for partial differential equations with involution. For
example:
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Problem 1. Find a sufficiently smooth function u(x, t), satisfying the conditions:

ut(x, t) = uxx(x, t)− αuxx(−x, t)− q(x)u(x, t) ; −1 < x < 1, t > 0;

u(0, x) = ϕ(x), ux(−1, t) + b1u(−1, t) = 0, ux(1, t) + b2u(1, t) = 0.

Problem 2. Find a sufficiently smooth function u(x, t), satisfying the conditions:

∂2u(x, t)
∂t2 =

∂2u(x, t)
∂x2 − α

∂2u(−x, t)
∂x2 − q(x)u(x, t), −1 < x < 1, t > 0,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

ux(−1, t) + b1u(−1, t) = 0, ux(1, t) + b2u(1, t) = 0.

The described problems are the subject of further work and we are going to consider
them in our next articles. In the future, we also plan to investigate the inverse spectral
problems.
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