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Abstract: Background: We analyze several constraints on the nuclear equation of state (EOS) cur-
rently available from neutron star (NS) observations and laboratory experiments and study the
existence of possible correlations among properties of nuclear matter at saturation density with NS
observables. Methods: We use a set of different models that include several phenomenological EOSs
based on Skyrme and relativistic mean field models as well as microscopic calculations based on
different many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, Quantum Monte
Carlo techniques, and the variational method. Results: We find that almost all the models considered
are compatible with the laboratory constraints of the nuclear matter properties as well as with the
largest NS mass observed up to now, 2.14+0.10

−0.09 M� for the object PSR J0740+6620, and with the upper
limit of the maximum mass of about 2.3–2.5 M� deduced from the analysis of the GW170817 NS
merger event. Conclusion: Our study shows that whereas no correlation exists between the tidal
deformability and the value of the nuclear symmetry energy at saturation for any value of the NS
mass, very weak correlations seem to exist with the derivative of the nuclear symmetry energy and
with the nuclear incompressibility.

Keywords: nuclear matter; neutron star; equation of state; gravitational waves; binary mergers

1. Introduction

A neutron star (NS) is the collapsed core of a massive star (8 − 25M�, with
M� ≈ 2 × 1033 g the mass of the sun), which at the end point of its evolution cannot
be supported by hydrostatic pressure and collapses, producing a supernova explosion. A
huge amount of gravitational energy is released, mainly in the form of neutrino radiation,
and this leads to the complete destruction of the progenitor star. NSs may have masses in
the range M ∼ 1 − 2M� and radii of about 10–15 km. A huge amount of data has been
collected from more than 50 years of NS observations, performed with ground-based and
on-board telescopes covering all bands of the electromagnetic spectrum. In 2017, the obser-
vations witnessed an important breakthrough thanks to the direct detection (GW170817) of
gravitational waves from such an event by the Advanced LIGO and Virgo collaborations
Ref. [1–3]. In fact, it has been found that the observations of NS mergers can potentially
provide strong constraints on the nuclear equation of state (EOS), as discussed in Refs. [4,5].

The EOS of isospin-asymmetric nuclear matter plays a major role not only in the study
of NS structure and composition but also in the evolution of core-collapse supernovae
and binary compact-star mergers [6,7]. Additionally, matter flows generated in heavy ion
collisions (HIC) and the properties of nuclei in their ground state are strongly affected by the
relevant features of the EOS, in particular the symmetry energy and its first derivative and
the compressibility. In principle, it can be expected that in high-energy HICs as well as in
supernova explosions and binary NS mergers, thermal effects are quite important, and thus
they should be correctly included in the EOS. Besides that, the large density reached in
the inner core of a NS can pose several theoretical problems because a complete theory
of nuclear interactions based on QCD cannot be solved yet on the lattice for arbitrarily
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large values of density, temperature and isospin asymmetry, because of the well-known
sign problem. Therefore, one has to rely on theoretical models and methods of the nuclear
many-body theory in order to build the nuclear EOS.

Among possible observables regarding NSs, the mass and radius are the most promis-
ing ones, and they could ideally be used to infer the NS EOS within a certain observational
uncertainty. While the masses of several NSs are known with good precision [8–12], infor-
mation on their radii is less accurate [13,14]. However, simultaneous measurement of both
quantities for several objects is required in order to constrain the EOS of NS matter and
allow robust conclusions. The recent observation of gravitational waves (GWs) emitted
during the merger of two corotating NSs [1–3] has opened the door to new possibilities
of obtaining information on their masses and radii, by means of the measurement of the
tidal deformability [15,16], and us allowed to deduce upper and lower limits on it [2,17].
The tidal deformability measures the linear response of the quadrupole deformation to a
(weak) external gravitational field, and thus could be well constrained by the new data. It is
therefore of interest to examine these quantities and their relations with other observables
in theoretical calculations of the EOS. Moreover, the improved accuracy for the radius
reached in recent observations by NICER (Neutron Star Interior Composition Explorer)
Ref. [18,19], and the future planned missions like eXTP [20], will allow us to statistically
infer NS mass and radius to better accuracy.

In this work we analyze the available constraints on the nuclear EOS, and compare
with those derived from both phenomenological and ab-initio theoretical models. Possible
correlations among the properties of nuclear matter close to saturation density with related
quantities deduced from NS observations and nuclear physics experiments will be analyzed.
We limit ourselves to the description of NS matter considering only nucleonic degrees of
freedom, thus ignoring the possible appearance of hyperons [21] and a phase transition to
the quark phase [22].

The article is organized as follows. In Section 2 we briefly review the different the-
oretical approaches for the nuclear EOS and illustrate the ones we adopt in the present
study. We then discuss the experimental constraints on the nuclear EOS in Section 3. A brief
overview of different EOSs of betastable matter is given in Section 4, and in Section 5 we dis-
cuss the comparison and correlations between NS EOS, nuclear physics and astrophysical
constraints. Conclusions are drawn in Section 6.

2. Equations of State

The most commonly used theoretical approaches to determine the nuclear EOS can be
classified into phenomenological and microscopic ones. (Non-)relativistic phenomenolog-
ical approaches are based on effective interactions that are built to describe finite nuclei
in their ground state, and therefore predictions at high isospin asymmetries should be
considered with care [23]. In fact, at larger densities no experimental data are available, and
therefore their behaviour can be very different. Skyrme interactions [24,25] and relativistic
mean-field (RMF) models [26] are among the most used ones.

In this work we use a limited sample of Skyrme forces, namely GS and Rs [27],
SLy4 [28] of the Lyon group, the old SV [29], SkI4 [30] of the SkI family, SkMP [31] and
SkO [32]. We also include three EOSs derived within the modern Brussels-Montreal family
of unified models, i.e., BSk22,24,26, which are commonly used in NS calculations [33].
We also consider two types of RMF models, which are based on effective Lagrangian
densities where the interaction between baryons is described in terms of meson ex-
changes. In particular, we adopt models with constant meson-baryon couplings described
by the Lagrangian density of the nonlinear Walecka model (NLWM), and models with
density-dependent couplings [hereafter referred to as density-dependent models (DDM)].
Within the first type, we consider the models GM1 and GM3 [34]. For the DDM, we con-
sider the models DDME1, DDME2 [35] and TW99 [36]. A further phenomenological RMF
EOS, the SFHO EOS [37], has been used for comparison. A larger sample of RMF models,
consistent with the analysis of Ref. [38], has been studied in Refs. [39,40], where the Love
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number and corresponding tidal deformabilities show very good agreement with the recent
data from the GW170817 merger event.

Realistic two- and three-nucleon forces, that describe nucleon scattering data in free
space and the properties of the deuteron, are the essential input for the microscopic
approaches. These interactions are based on meson-exchange theory [41,42], or the recent
chiral perturbation theory [43–46]. The main theoretical challenge is the treatment of the
short-range repulsive core, which characterizes the nucleon-nucleon interaction, and this
makes the difference among the available many-body approaches. The most well-known
are the Brueckner–Hartree–Fock (BHF) [47] and its relativistic version, the Dirac–Brueckner–
Hartree–Fock (DBHF) [48–50] theories, the variational method [51], the self-consistent
Green’s function technique [52,53], the Quantum Monte Carlo techniques [54,55], the chiral
effective field theory [56] and the Vlow k approach [57].

In this paper we adopt several BHF EOSs based on different nucleon-nucleon poten-
tials, namely the Bonn B (BOB) [41,58], the Nijmegen 93 (N93) [42,59], and the Argonne
V18 (V18) [60]. In all those cases, the two-body forces are supplemented by nucleonic three-
body forces (TBF), which are needed in all non-relativistic many-body methods in order to
reproduce correctly the saturation properties of nuclear matter. Since a complete theory of
TBF starting from first principles is not available yet, we adopt either phenomenological
or microscopic models [61–64]. The phenomenological approach is based on the Urbana
model (labelled as UIX) [62,65,66], whereas the microscopic TBF employes the same meson
exchange as in the two-body force, as described in detail in Refs. [64,67]. Within the BHF
framework, we also examine an EOS based on a potential model which includes explicitly
the quark-gluon degrees of freedom, named FSS2 [68,69]. This reproduces correctly the
saturation point of symmetric nuclear matter (SNM) and the binding energy of few-nucleon
systems, and does not need TBF. We use two different EOS versions labelled respectively as
FSS2CC and FSS2GC. Moreover, we compare these BHF EOSs with the often-used results of
the Dirac-BHF method (DBHF) [49], which employs the Bonn A potential, in the following
labelled DBHF(A), and a more recent calculation performed with the Bonn B potential [50],
and labelled DBHF(B). We also compare with the APR EOS [51] based on the variational
method and the V18 potential, and a parametrization of a recent Auxiliary Field Diffusion
Monte Carlo (AFDMC) calculation [70].

3. Bulk Properties of Nuclear Matter

Around saturation density ρ0 and isospin asymmetry δ ≡ (ρn − ρp)/ρ = 0, being ρn(ρp)
the neutron (proton) density and ρ the total nucleonic density, the nuclear EOS can be
characterized by a set of few isoscalar (E0, K0) and isovector (S0, L, Ksym) parameters,
which can be constrained by nuclear experiments. The parameters are related to the
coefficients of a Taylor expansion of the energy per particle of asymmetric nuclear matter
as a function of density and isospin asymmetry,

E(ρ, δ) = ESNM(ρ) + Esym(ρ)δ2 , (1)

ESNM(ρ) = E0 +
K0

2
x2 , (2)

Esym(ρ) = S0 + Lx +
Ksym

2
x2 , (3)

where x ≡ (ρ − ρ0)/3ρ0, E0 is the energy per particle of symmetric nuclear matter at ρ0,
K0 the incompressibility and S0 ≡ Esym(ρ0) is the symmetry energy coefficient at saturation.
These parameters are defined as
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K0 ≡ 9ρ2
0

d2ESNM

dρ2 (ρ0) , (4)

S0 ≡ 1
2

∂2E
∂δ2 (ρ0, 0) , (5)

L ≡ 3ρ0
dEsym

dρ
(ρ0) , (6)

Ksym ≡ 9ρ2
0

d2Esym

dρ2 (ρ0) . (7)

The values of these parameters at ρ0 for the various considered EOSs are listed in Table 1.

Table 1. Saturation properties and NS observables predicted by the considered EOSs.

Model EOS ρ0 [fm−3] −E0 [MeV] S0 [MeV] L [MeV] K0 [MeV] Mmax [M�] Λ1.2 Λ1.4 Λ1.6

Micro. BOB 0.170 15.4 33.6 70 238 2.50 1366 570 252
V18 0.178 13.9 32.3 67 207 2.36 1082 442 188
N93 0.185 16.1 36.5 77 229 2.25 1234 473 190
UIX 0.171 14.9 33.5 61 171 1.96 848 309 112
APR 0.159 15.9 33.4 51 233 2.20 720 274 110
DBHF(A) 0.181 16.2 34.4 69 218 2.31 1635 681 295
DBHF(B) 0.186 16.2 32.8 67 272 - 830 327 133
FSS2CC 0.157 16.3 31.8 52 219 1.94 814 295 106
FSS2GC 0.170 15.6 31.0 51 185 2.08 697 262 101
AFDMC 0.160 16.0 31.3 60 239 2.21 822 293 109

Skyrme Gs 0.158 15.6 31.2 94 239 2.13 1769 659 253
Rs 0.158 15.1 30.8 86 248 2.12 1652 618 238
SLy4 0.160 16.0 31.8 45 232 2.05 756 287 111
SV 0.155 16.0 33.0 97 305 2.43 2224 914 393
SkI4 0.158 16.2 33.7 106 245 2.17 1203 474 194
SkMP 0.158 15.6 34.3 82 244 2.11 1295 487 188
SkO 0.157 15.8 29.7 70 230 2.01 1252 451 164
BSk22 0.158 16.1 32.0 69 246 2.26 1553 632 268
BSk24 0.158 16.1 30.0 46 246 2.28 1260 523 227
BSk26 0.159 16.1 30.0 38 241 2.17 830 327 133

NLWM SFHO 0.157 16.2 32.8 53 244 2.06 862 334 132
GM1 0.153 16.3 32.5 94 300 2.36 2223 913 393
GM3 0.153 16.4 32.5 90 241 2.02 1688 617 228

DDM DDME1 0.152 16.2 33.1 55 245 2.47 1765 773 355
DDME2 0.152 16.1 32.3 51 251 2.51 1834 806 374
TW99 0.153 16.2 32.8 55 240 2.08 1041 404 162

Exp. ∼ 0.14–0.17 ∼ 15–17 28.5–34.9 30–87 220–260 > 2.14+0.10
−0.09 70–580

Ref. [71] [71] [6,72] [73,74] [6,72] [12] [2]

From the measurements of nuclear masses [75] and density distributions [76] the
values E0 = −16 ± 1 MeV and ρ0 = 0.14 − 0.17 fm−3 are obtained, whereas the value of
K0 can be extracted from the analysis of isoscalar giant monopole resonances in heavy
nuclei. For the latter, results suggest K0 = 240 ± 10 MeV [77], or K0 = 248 ± 8 MeV [78],
thus pointing to a rather soft EOS, as confirmed by HIC experiments [79].

Experimental information on the symmetry energy at saturation S0 and its first
derivative L can be obtained from the analysis of giant [80] and pygmy [81,82] dipole
resonances, isospin diffusion measurements [83], isobaric analog states [84], measure-
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ments of the neutron skin thickness in heavy nuclei [85–88] and the meson production in
HICs [89]. However, whereas S0 is more or less well established (≈ 3 MeV), the values of L
(30 MeV < L < 87 MeV), and especially those of Ksym (−400 MeV < Ksym < 100 MeV) are
still quite uncertain and poorly constrained [90,91], and therefore we disregard them in
our analysis.

From Table 1, we notice that all the adopted EOSs in this work agree fairly well with
the empirical values, except the slightly too low E0 and K0 for V18, too large S0 for N93,
and too low K0 for UIX and FSS2GC. We notice that several phenomenological models
predict too large L values, whereas all the microscopic EOSs are largely compatible. This is
clearly displayed in Figure 1, where L is plotted as a function of the symmetry energy
at saturation S0. The shaded areas represent the experimental data currently available.
In particular, we report the constraints inferred from the study of isospin diffusion in
HICs [92] (blue band), electric dipole polarizability [93] (violet band), the neutron-skin
thickness in Sn isotopes [94] (grey region), the finite-range droplet mass (FRDM) model [95]
and the isobaric-analog-state (IAS) phenomenology combined with the skin-width data
(green diagonal region) [96]. Moreover the horizontal (red) band is obtained from a
Bayesian analysis of mass and radius measurements of NSs [97], and the dashed curve
is the unitary gas bound on symmetry energy parameters [90]. Only values of (S0, L) to
the right of the curve are permitted, and therefore all the microscopic and some of the
phenomenological models fulfill these constraints. We observe that there is no area of
the parameter space where all constraints are simultaneously fulfilled, and this is likely
due to the current uncertainties that plague the interpretation of the raw data. It should be
stressed that the constraints on the EOS result from combining the raw data with theoretical
models, and therefore they show some model dependence. On this basis, no theoretical
model can be ruled out.
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Figure 1. The relation between the symmetry energy at saturation density S0 and its slope L. The full
symbols represent the predictions of microscopic approaches (black circles), Skyrme EOSs (green
triangles), NLWM models (red squares) and DDM approaches (blue diamonds), see Table 1 for the
numerical values. The shaded areas represent experimental bands, see text for details.



Symmetry 2021, 13, 400 6 of 16

We report in Figure 2 the symmetry energy Esym as a function of the baryon density.
The results in the left (right) panel are plotted for the microscopic (phenomenological)
EOSs, and are compared with the experimental data displayed by the shaded areas. In
particular, the grey area represents the diffusion data of HICs, the green area includes the
flow data obtained by the FOPI-LAND collaboration [98] on the collective flow, and the
blue area is the experimental region checked by the ASY-EOS collaboration [99]. The full
orange contour shows the results on the isobaric analog states (IAS), obtained in Ref. [96].
We see that most of the EOSs, both microscopic and phenomenological ones, are compatible
with experimental data up to around the saturation density, whereas for larger densities
some EOSs tend to predict smaller values for the symmetry energy that are below the
experimental areas. This is a clear sign of discrepancy, which results in a much larger
difference at larger values of the baryon density, such as the ones characterizing the inner
core of a NS. We stress once again that the inferred constraints are model dependent, since
the data interpretation requires theoretical simulations.
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Figure 2. The symmetry energy vs. the baryon density for all the discussed EOSs. The green, blue and
grey bands represent experimental data from HICs, whereas the orange contour represents the IAS
calculations. See text for details.

4. EOS for Betastable Matter

Once the EOSs for symmetric and pure neutron matter are defined, one can calcu-
late the composition and the EOS of cold, neutrino-free, catalyzed matter. For charge-
neutral matter in beta-equilibrium with neutrons, protons, and leptons (e−, µ−), the EOS
is computed in the following standard way [100]. One starts from the energy density
of lepton/baryon matter as a function of the different partial densities ρi of the species
i = n, p, e, µ,

ε(ρn, ρp, ρe, ρµ) = (ρnmn + ρpmp) + (ρn + ρp)E(ρn, ρp) + ε(ρe) + ε(ρµ) , (8)

where mi are the corresponding masses, E(ρn, ρp) is the energy per particle of asymmetric
nuclear matter, and the leptonic contribution is calculated assuming ultrarelativistic and
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relativistic expressions for the energy densities of electrons ε(ρe) and muons ε(ρµ), respec-
tively [100]. We have used the parabolic approximation [101,102] of the energy per particle
of asymmetric nuclear matter in Equation (1), with the symmetry energy calculated simply
as the difference between the energy per particle of pure neutron matter and symmetric
nuclear matter,

Esym(ρ) ≈ E(ρn = ρ, ρp = 0)− E(ρn = ρ/2, ρp = ρ/2) . (9)

From the energy density, Equation (8), the various chemical potentials can be computed,

µi =
∂ε

∂ρi
, (10)

and imposing the beta-equilibrium conditions, µi = biµn − qiµe (bi and qi denoting baryon
number and charge of species i), along with the charge neutrality, ∑i ρiqi = 0, one can find
the equilibrium composition ρi at fixed baryon density ρ, and finally the EOS,

p(ε) = ρ2 d
dρ

ε(ρi(ρ))

dρ
= ρ

dε

dρ
− ε = ρµn − ε . (11)

Once the EOS of betastable matter is known, one can solve the Tolman-Oppenheimer-
Volkoff (TOV) [100] equations which describe the structure of a non-rotating spherically
symmetric star in general relativity

dp
dr

= −G
εm
r2

(
1 +

p
ε

)(
1 +

4πpr3

m

)(
1 − 2Gm

r

)−1
,

dm
dr

= 4πr2ε , (12)

where G is the gravitational constant, p the pressure, ε the energy density and m the mass
enclosed within a sphere of radius r. For each given central density, the integration of
the TOV equations gives the mass and radius of the star corresponding to that density;
this way one can construct an entire family of static configurations. It turns out that the NS
mass has a maximum value as a function of the radius (or central density), above which the
star is unstable against collapse to a black hole. The value of the maximum mass depends
strongly on the nuclear EOS, hence the observation of a mass higher than the maximum
mass allowed by a given EOS simply rules out that EOS.

We notice that the above mentioned theoretical methods cannot describe inhomoge-
neous and clusterized matter, and therefore for the low-density part ρ < ρt ≈ 0.08 fm−3,
one has to adopt the well-known Negele-Vautherin EOS [103] in the medium-density
regime (0.001 fm−3 < ρ < ρt), and the ones by Baym-Pethick-Sutherland [104] and
Feynman-Metropolis-Teller [105] for lower densities ρ < 0.001 fm−3.

5. Constraints on the EOS from Terrestrial Laboratories and Astrophysical Observations

As already mentioned in Section 3, HICs at energies ranging from few tens to several
hundreds MeV per nucleon have been exploited for extracting the gross properties of the
nuclear EOS from the data. In fact, at a large enough energy, the two colliding nuclei
produce flows of matter due to the large compression, resulting in a strong emission
of nucleons and fragments of different sizes. The transverse flow, which is measured,
depends sensitively on the pressure developed in the fireball at the moment of maximum
compression during the collision. Additionally, the subthreshold K+ production in heavy
ion reactions has been demonstrated to probe the fireball density reached during the
collision, with this being the ideal situation for exploring the EOS and its incompressibility.

In Ref. [106] the flow and kaon production analysis was summarized by plotting
the region in the pressure versus density plane. A reasonable EOS should pass through
it, and this is displayed in Figure 3 (left panels) as an orange area for the subthreshold
kaon production [107], and as a grey area for the flow data [98]. Those results point in the
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direction of a soft EOS, i.e., values of the compressibility in the range 180 ≤ K ≤ 250 MeV
at density close to saturation. Those values are compatible with the ones extracted from
the data on monopole oscillations [77]. In the upper (lower) panels of Figure 3 we plot the
results for the microscopic (phenomenological) EOSs. We notice that most of the adopted
EOSs are compatible with laboratory data, but some of them are too repulsive and therefore
incompatible with experiments. In particular, among the considered microscopic EOSs,
UIX, APR, and N93 are well compatible with the data extracted from HICs over the whole
density range, whereas BOB, DBHF, and V18 are only marginally compatible large density
(actually never reached in HICs), and those are characterized by a larger stiffness.

The EOS also rules the dynamics of NS mergers, in particular the final fate of the
merger, a prompt or delayed collapse to a black hole or a single NS, as well as the amount
of ejected matter which undergoes the nucleosynthesis of heavy elements, which strongly
depends on the EOS. During the inspiral phase, the influence of the EOS is evident on
the tidal polarizability, Λ = 2

3 k2β−5, where k2 is the Love number and β = GM/R is the
compactness. An upper limit of Λ < 800 was initially given in the first GW170817 analysis
for a 1.4 M� NS [1], but later on the analysis was improved by assuming that both NSs
have the same EOS, thus giving different limits of Λ = 190+390

−120, which translates into a
measure of radius R = 11.9+1.4

−1.4 km [2]. In this latter analysis, the values of the pressure as
a function of density were extracted, and those are displayed as the blue hatched areas in
Figure 3 (right panels). We notice that in this case the comparison has to be performed for
the betastable case. We observe that almost all microscopic EOSs, except UIX, turn out to
be compatible with the GW170817 data at density ρ > 2ρ0, whereas the nuclear collision
data look more restrictive. Additionally, for the phenomenological case some EOSs turn
out to be marginally compatible with the observational data, as for the flow data in the
symmetric case.

A very important constraint to be fulfilled is the value of the maximum mass for the
different EOSs, which has to be compatible with the observational data. In Figure 4 we
display the mass-radius relations obtained with microscopic and phenomenological EOSs,
shown respectively as solid and broken curves. We observe that most models give values
for the maximum mass larger than 2 M�, except the soft microscopic UIX and FSS2GC,
which therefore are compatible with current observational data [9–11], in particular with
the largest mass observed up to now, 2.14+0.10

−0.09 M� at 68% confidence interval for the
object PSR J0740 + 6620 [12] (dark orange band). For completeness, we also display the
observational limits at 95% confidence interval (light orange band). Analogous limits are
plotted also for the object PSR J0348 + 0432 [11] (grey bands), which are more restrictive at
high confidence level. Apart from these lower limits, some recent theoretical analyses of the
GW170817 event indicate an upper limit on the maximum mass of about 2.33 M� (68%) or
2.5 M� (95%) (displayed by red horizontal lines) [108–111], with which several of both the
microscopic and phenomenological EOSs would be compatible as well. We also display
the Bayesian parameter estimation of the mass and equatorial radius of the millisecond
pulsar PSR J0030 + 0451 [18,19], as recently reported by the NICER mission. The M, R
values inferred from the analysis of the collected data (green and light grey zones) are
1.36+0.15

−0.16 M� and 12.71+1.14
−1.19 km [18], or 1.44+0.15

−0.14 M� and 13.02+1.24
−1.06 km [19].

Let us now turn to the discussion of the tidal deformability and its possible corre-
lations with nuclear matter properties in its ground state. As already anticipated, the
analysis of the GW170817 event [1–3] produced a value of Λ̃ < 730, assuming equal mass
merging. If both NSs have the same EOS, this leads to the constraints 70 < Λ1.4 < 580
and 10.5 < R1.4 < 13.3 km [2] for a 1.4 M� NS. A more stringent lower limit Λ̃ > 400 [17]
on the average tidal deformability was imposed by the high luminosity of the kilonova
AT2017gfo following the NS merger event. This constraint could indicate that R1.4 & 12 km
[112–115], but it has to be taken with great care [116,117].
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Figure 3. Pressure vs. baryon density for the symmetric case (left panels), and the beta-stable case
(right panels). The upper (lower) panels display results for microscopic (phenomenological) EOSs.
Constraints derived from HIC data are displayed in the left panels as orange (KaoS experiment) and
grey (flow data) bands. Limits deduced by the GW170817 event are labelled by blue bands in the
right panels. See text for details.

The possibility of finding correlations between properties of nuclear matter and NS
observables has been recently explored [118,119]. In the following we further explore this
issue, using the set of microscopic and phenomenological EOSs listed in Table 1. In Figure 5
we show the tidal deformability of a 1.2 (upper panels), 1.4 (central panels) and 1.6 (lower
panels) solar-mass NS as a function of the symmetry energy at saturation S0 (left panels),
its first derivative L (central panels) and K0 (right panels). The light- and dark-shaded
bands in the central panels represent the limits inferred from the observational data of the
GW170817 event [2] together with the experimental limits reported in Table 1. The degree
of correlation is quantified by the correlation factor

r(x, y) =
1

n − 1
∑x ∑y(x − x̄)(y − ȳ)

σxσy
, (13)

with n being the number of data pairs, x̄ and ȳ being the mean values of x and y, and σx
and σy being their standard deviations. We obtain the following values
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Figure 4. Mass-radius relations predicted by the different EOSs listed in Table 1. The observed
masses of the millisecond pulsar PSR J0740 + 6620 [12] and of J0384-0432 [11] are also shown, as well
as constraints inferred from the analysis of the GW170817 event and observations reported by the
NICER mission [18,19]. See text for details.

r([S0, L, K0], Λ1.2) = [0.006, 0.635, 0.709] , (14)

r([S0, L, K0], Λ1.4) = [0.206, 0.551, 0.702] , (15)

r([S0, L, K0], Λ1.6) = [0.145, 0.459, 0.682] . (16)

As can be seen the correlation factor is rather small in the case of S0 for the three
values of the tidal deformability, indicating that no correlation at all exists between Λ and
S0 for any value of the NS mass. Instead, a very weak correlation of Λ seems to exist with
L and a slightly stronger, although still weak, exists with K0. We observe that in the case of
Λ1.4 all but two (SFHO and TW99) of the NLWM and DDME models are incompatible with
the observational constraint [2]. On the contrary, most of the Skyrme models lie within
the shaded bands, except for a few cases. Regarding the microscopic models, they are
almost all in agreement with the GW observations and experimental constraints on S0 and
L, although only four are compatible with the constraints on K0.
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Figure 5. See Table 1 for the numerical values. displayed as a function of S0, L and K0 for the various
EOSs. See Table 1 for the numerical values.

6. Conclusions

In this work, we have analyzed several constraints on the nuclear EOS currently
available from NS observations and laboratory experiments. For this purpose, we have
used a set of different models that include several phenomenological EOSs based on
Skyrme and relativistic mean field models as well as microscopic calculations based on the
(Dirac–) Brueckner–Hartree–Fock theories, the variational method and Quantum Monte
Carlo techniques. To select the most compatible EOSs among the ones considered in this
work, we have employed in particular the experimental constraints on several proper-
ties of nuclear matter at saturation density derived from different experiments as well
as observational constraints on the mass, radius and tidal deformability imposed by re-
cent measurements of the masses of millisecond pulsars [12], the data of the NICER
mission [18,19] and the GW170817 NS merger event [1–3]. We have found that almost all
considered models are compatible with the laboratory constraints of the nuclear-matter
properties as well as with the largest masses observed up to now, 2.14+0.10

−0.09 M� for the
object PSR J0740 + 6620 [12], and with the upper limit of the maximum mass of about
2.3–2.5 M� [108–111] deduced from the analysis of the GW170817 event. Our study of
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possible correlations among properties of nuclear matter at saturation density with NS
observables, particularly with the tidal deformability, has shown that no correlation exists
between Λ and S0 for any value of the NS mass, but weak correlations of Λ do exist with L
and with K0.

We would like to finish by noticing that while the isoscalar part of the nuclear EOS is
rather well constrained by the major experimental, observational and theoretical advances,
the isovector one is less well known mainly due to our still limited knowledge of the
nuclear force and, particularly, of its in-medium modifications and its spin and isospin
dependence. Future NS observations, such as the precise simultaneous measurement
of the mass and radius of a single NS, together with laboratory experiments planned in
next-generation radioactive ion beam facilities, are fundamental to provide more stringent
constraints on the nuclear EOS, and are very much awaited for.
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