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Abstract: The effective Gogny interactions of the D1 family were established by D. Gogny more
than forty years ago with the aim to describe simultaneously the mean field and the pairing field
corresponding to the nuclear interaction. The most popular Gogny parametrizations, namely D1S,
D1N and D1M, describe accurately the ground-state properties of spherical and deformed finite
nuclei all across the mass table obtained with Hartree–Fock–Bogoliubov (HFB) calculations. However,
these forces produce a rather soft equation of state (EoS) in neutron matter, which leads to predict
maximum masses of neutron stars well below the observed value of two solar masses. To remove
this limitation, we built new Gogny parametrizations by modifying the density dependence of the
symmetry energy predicted by the force in such a way that they can be applied to the neutron star
domain and can also reproduce the properties of finite nuclei as good as their predecessors. These
new parametrizations allow us to obtain stiffer EoS’s based on the Gogny interactions, which predict
maximum masses of neutron stars around two solar masses. Moreover, other global properties of the
star, such as the moment of inertia and the tidal deformability, are in harmony with those obtained
with other well tested EoSs based on the SLy4 Skyrme force or the Barcelona–Catania–Paris–Madrid
(BCPM) energy density functional. Properties of the core-crust transition predicted by these Gogny
EoSs are also analyzed. Using these new Gogny forces, the EoS in the inner crust is obtained with the
Wigner–Seitz approximation in the Variational Wigner–Kirkwood approach along with the Strutinsky
integral method, which allows one to estimate in a perturbative way the proton shell and pairing
corrections. For the outer crust, the EoS is determined basically by the nuclear masses, which are
taken from the experiments, wherever they are available, or by HFB calculations performed with
these new forces if the experimental masses are not known.

Keywords: unified equation of state; Gogny interaction; neutron star; symmetry energy; tidal deformability;
moment of inertia

1. Introduction

The standard Gogny interactions of the D1 family [1] consist of a finite-range part,
which is modeled by two Gaussian form-factors including all the possible spin and isospin
exchange terms, a zero-range density dependent term, which simulates the effect of the
three-body forces, and a spin-orbit force, which is also of zero-range as in the case of
Skyrme forces. Large-scale Hartree–Fock–Bogoliubov (HFB) calculations performed in a
harmonic oscillator basis with the D1S parametrization [2,3] reveal that there is a systematic
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drift in the binding energy of neutron-rich nuclei (see [4] for more details). To overcome this
deficiency, new parametrizations of the Gogny interaction, namely D1N [5] and D1M [6]
were proposed. Unlike the D1S and D1N forces, whose parameters were obtained following
the fitting protocol established in Ref. [1], the parameters of the D1M interaction were
obtained by minimizing the energy rms deviation of 2149 measured nuclear masses of
the AME2003 evaluation [7]. It is worthwhile to mention that, in the calibration of the
D1N and D1M forces, in order to improve the description of neutron-rich nuclei, it was
imposed that these interactions would follow the trend of the microscopic neutron matter
EoS of Friedman and Pandharipande [8]. The D1M force reproduces the experimental
nuclear masses of 2149 nuclei with an energy rms deviation of 798 keV. As an example, we
display in the right panel of Figure 1 the binding energy differences between theoretical,
computed with the D1M force at HFB level [9,10], and experimental binding energies,
taken from the 2012 mass evaluation [11], of 620 even–even spherical and deformed nuclei.
The theoretical binding energies include the HFB contribution and the rotational energy
correction. However, the quadrupole zero point energy correction, which was included
in the original fit, is approximated by a constant shift in the energy. We see that these
differences are scattered around zero and do not show any energy drift for large neutron
numbers. In the left panel of the same Figure, we display the same differences but computed
with the D1S force. In this case the previously mentioned drift of binding energies can be
clearly appreciated.
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Figure 1. Differences between the computed and the experimental binding energies of 620 even–even
nuclei. Theoretical calculations are performed with the Gogny D1S (left panel) and D1M (right panel)
interactions. The experimental values are taken from [11].

However, the use of Gogny interactions in the neutron star (NS) domain does not
work so well. In recent years it has been shown [12,13] that the most successful Gogny
parametrizations, namely D1S, D1N and D1M, fall short in predicting a maximum
NS mass of two solar masses (M�), as required by some well contrasted astronomical
observations [14–17]. A new extension of the Gogny force with a finite–range density–
dependent term has been recently postulated [18]. This interaction, denoted as D2, has
not been used much in finite nuclei calculations due to the complexity introduced by the
finite range of the density–dependent term, but its EoS is able to reproduce the correct
limit for the NS masses [19,20]. The structure of a standard NS composed by neutrons,
protons and leptons (electrons and muons) in charge and in β–equilibrium is driven by
its EoS, which allows the expression of the total pressure P of the system to be written as
a function of the baryonic density ρ. The EoS is the essential input needed to solve the
Tolman–Oppenheimer–Volkov (TOV) equations, whose solution provides the mass–radius
relationship of the NS. Throughout this work we consider that the NS is non-rotating, cold
and locally charge neutral and in absolute thermodynamic equilibrium. This is a reasonable
picture for an NS that was created a long time ago and had enough time to cool down.
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In the uniform core of the star, the total pressure is given by the sum of the baryonic
(Pb) and leptonic (Pl) contributions:

P = Pb + ∑
l

Pl = ρ2 ∂Eb
∂ρ

+ ∑
l

ρ2
l

∂El
∂ρl

, (1)

where l = e, µ. In (1) Eb and El are the baryon and lepton energies per particle and
ρ = ρn + ρp is the total baryon density with ρn and ρp being the neutron and proton
densities, respectively. The lepton densities ρl , owing to the charge equilibrium, are
related to the proton density by ρp = ρe + ρµ, where ρe and ρµ are the electron and muon
densities. Changing from the neutron and proton densities to the total density ρ and to the
isospin asymmetry δ = (ρn − ρp)/ρ, each contribution to the total pressure (1) can also be
written as

Pb = µnρn + µpρp −Hb(ρ, δ)

Pl = µlρl −Hl(ρl), (2)

whereHb andHl are the baryonic (b) and leptonic (l = e, µ) energy densities and µn, µp, µe
and µµ are the neutron, proton, electron and muon chemical potentials, respectively, which
are defined as

µn =
∂Hb
∂ρn

; µp =
∂Hb
∂ρp

; µe =
∂He

∂ρe
; µµ =

∂Hµ

∂ρµ
. (3)

In stable neutron star matter (NSM) the direct Urca processes

n→ p + l + ν̄l and p + l → n + νl (4)

take place simultaneously. Assuming that the neutrinos eventually leave the star, the
β-equilibrium condition leads to

µn − µp = µe = µµ. (5)

The EoSs for NSM in logarithmic scale as a function of the baryonic density com-
puted for some of the Gogny interactions used in this work and obtained previously in
Refs. [12,13] are displayed in Figure 2 together with the EoS provided by the BCPM en-
ergy density functional [21], which we will use here as a benchmark, as well as the EoS
obtained using the SLy4 [22] and BSk22 [23] Skyrme forces. The BCPM EoS, derived in the
framework of the microscopic Brueckner–Bethe–Goldstone theory (see [21] and references
therein), is in very good agreement with the EoS provided by the SLy4 force [22], which
was specifically built for astrophysical calculations. We can also see that the EoS corre-
sponding to the BSk22 Skyrme force obtained by the Brussels–Montreal group and reported
in Ref. [23] (also see Ref. [24]) is stiffer than the EoSs computed with the SLy4 Skyrme
force and the BCPM energy density functional. From this Figure we can see that the EoSs
obtained with the D1N and D1M forces show an increasing trend with growing baryon
density but softer than the behavior exhibited by the BCPM EoS. We can also see that the
EoS for NSM calculated with the D1S force reaches a maximum value at around twice
the normal saturation density and decreases for larger densities. As a consequence of this
anomalous behavior, the TOV equations cannot be solved in the D1S case, which implies
that the D1S interaction is not well suited for astrophysical calculations. The shaded area
in Figure 2 depicts the region in the P-ρ plane consistent with the experimental collective
flow data in Heavy-Ion Collisions (HIC) [25]. From this Figure we can see that none of the
EoSs computed with the standard Gogny interactions are able to clearly pass through the
region constrained by the collective flow in HIC.
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Figure 2. Equation of state (total pressure in logarithmic scale against baryon density) for neutron
star matter computed with the D1M*, D1M, D1N and D1S Gogny interactions, with the BCPM energy
density functional and with the SLy4 and BSk22 Skyrme forces. Constraints coming from collective
flow in heavy-ion collisions are also included [25].

The baryonic part of the EoS is basically driven by the energy density of highly
asymmetric nuclear matter (ANM)Hb(ρ, δ), where the isospin asymmetry δ takes values
around 0.9. To characterize this energy density, which is close to the pure neutron matter,
it is extremely useful to introduce the symmetry energy, which can be understood as the
energy cost to convert all protons into neutrons in symmetric nuclear matter. The energy
per particle Eb(ρ, δ) =Hb(ρ, δ)/ρ in ANM can be written as a Taylor expansion with respect
to the isospin asymmetry around δ = 0:

Eb(ρ, δ) = Eb(ρ, δ = 0) +
∞

∑
k=1

Esym,2k(ρ)δ
2k, (6)

where we have assumed the charge symmetry of the strong interaction, which implies that
only even powers of δ appear in (6). The first term of the expansion, Eb(ρ, δ = 0) is the
energy per baryon in symmetric nuclear matter and the coefficients of the Taylor expansion
are given by:

Esym,2k =
1

(2k)!
∂2kEb(ρ, δ)

∂δ2k

∣∣∣∣∣
δ=0

. (7)

The symmetry energy coefficient Esym is usually defined as the second-order coefficient
in the expansion (6), i.e., Esym ≡ Esym,2. In many cases the energy per particle in ANM is
well approximated taking only the quadratic term in the expansion (6), that is,

Eb(ρ, δ) = Eb(ρ, δ = 0) + Esym(ρ)δ
2. (8)

Therefore, it is also possible to define the symmetry energy as the difference between
the energy per particle in pure neutron matter and in symmetric nuclear matter,

E′sym = Eb(ρ, δ = 1)− Eb(ρ, δ = 0). (9)

Taking into account (6), it is clear that the definition (9) corresponds to the whole sum
of the coefficients Esym,2k. The difference between both definitions of the symmetry energy
depends on the importance of the contribution of the terms higher than the quadratic
one in the expansion (6). A detailed discussion about the higher-order symmetry energy
contributions in the case of Gogny interactions can be found in Refs. [13,20]. In Figure 3
we display the symmetry energy, defined as Equation (7) with k = 1, as a function of the
baryonic density computed with different Gogny forces available in the literature and
taken from Refs. [12,13]. In the same Figure we also show the symmetry energy constraints
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extracted from the isobaric analog states (IAS) and from IAS combined with neutron
skins [26], the constraints from the electric dipole polarizability αD in 208Pb [27] and from
transport simulations in heavy-ion collisions in Sn isotopes [28].
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Figure 3. Symmetry energy, defined as Equation (7) with k = 1 against the baryon density predicted
by the D1M*, D1M, D1S and D1N Gogny interactions, the BCPM energy density functional and the
SLy4 and BSk22 Skyrme forces. Some constraints coming from isobaric analog states (IAS) (green),
from IAS plus neutron skins (IAS + n.skin) (yellow), electric dipole polarizability αD in 208Pb (αD in
208Pb) (dashed red) and heavy-ion collisions (dashed blue) are also included [26–28].

From Figure 3 we can see that, below the saturation density, the symmetry energy
behaves in a very similar way for all the considered forces taking values around 30 MeV at
saturation. This is due to the fact that in this region the symmetry energy is well constrained
by the nuclear masses to which the parameters of the different effective interactions have
been fitted (see Refs. [29–31] for a review about the range of the symmetry energy obtained
from different constraints). Above the saturation density, the symmetry energy predicted
by the different interactions differ more among them. For example, we can see that the
symmetry energy computed with the D1S and D1N parametrizations reaches maximum
values of 30–40 MeV, and then decrease with increasing density until vanishing around
3–4 times the saturation density, where the isospin instability starts. In the case of the
D1M force the symmetry energy also reaches a maximum value, which remains practically
constant in the whole density range needed to solve the TOV equations. From the same
Figure 3 we also observe that the symmetry energy computed with the BCPM energy
density functional shows a different trend, growing with increasing density. The symmetry
energy computed with the SLy4 and BSk22 Skyrme forces, which provide realistic EoSs,
also shows an increasing trend with growing density, BSk22 being stiffer and SLy4 softer
in the high-density domain above 0.20 fm−3. These results show that the behavior of the
symmetry energy as a function of the density above the saturation is crucial for describing
properly the EoS of neutron-rich matter in the high-density regime, which, in turn, is the
most relevant input for the study of many NS properties.

An important feature of the symmetry energy is its density content calculated at
saturation density. This quantity is usually characterized by the slope of the symmetry
energy L, which is defined as

L = 3ρ0
∂Esym(ρ)

∂ρ

∣∣∣∣
ρ0

. (10)
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The slope parameter is connected with different properties of finite nuclei, as for ex-
ample the neutron skin thickness in heavy nuclei such as 208Pb (see [32–35] and references
therein). The numerical values of the slope parameter L predicted by different models
span a very large range between 10 and 120 MeV, pointing out that this quantity is poorly
constrained by the available experimental data. A compilation of possible L values ex-
tracted from different laboratory experiments and astronomical observations can be found
in Refs. [19,36,37]. From the theoretical side, some recent microscopic calculations have
estimated the slope parameter in the ranges L = 43.8–48.6 MeV [38], L = 20–65 MeV [39]
and L = 45–70 MeV [40]. The values of the slope parameter predicted by the standard
Gogny forces of the D1 family are relatively small, L = 22.43 MeV (D1S), L = 24.83 MeV
(D1M) and L = 33.58 MeV (D1N) [12]. These values, which are clearly smaller than the
value L = 52.96 MeV predicted by the BCPM energy density functional and those of the
SLy4 and BSk22 Skyrme forces, clearly explain the soft behavior of the symmetry energy
displayed in Figure 3 and consequently the softness of the EoS in NS matter predicted by
such forces (see Figure 2). In Figure 4 we display some bounds of the symmetry energy
at saturation Esym(ρ0) and its slope L provided by recent laboratory data, astronomical
observations and ab initio calculations using chiral interactions [30,36,41,42]. We see that
the symmetry energy and its slope predicted by the Gogny forces D1M and D1N lie outside
the constrained region in the Esym(ρ0)-L plane, while the point corresponding to the D1S
interaction is at the lower edge of the region estimated from the measured electric dipole
polarizability in 68Ni, 120Sn and 208Pb [41].
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Figure 4. Slope of the symmetry energy L against the symmetry energy at saturation density for
some Gogny interactions, the BCPM energy density functional and the SLy4 and BSk22 Skyrme
forces. We have included some constraints extracted from the literature [30,36,41,42].

From this discussion it is clear that the standard Gogny interactions of the D1 family
are not well suited for applications in the NS domain. To overcome this situation we
designed some parametrizations of the Gogny type of forces starting from the D1M inter-
action [19,20,43,44] aimed to predict a maximum mass in NS of 2M� without losing its
ability to describe finite nuclei with a quality similar to those found using the D1M force.
The purpose of this paper is to review those new parametrizations and compare them with
previous results. The paper is organized as follows. In the second section we describe
the method used to fit these new Gogny parametrizations, namely D1M* and D1M**. In
the third section we describe how the EoS in the inner and outer crust using the D1M*
interaction is obtained. In the same section the study of the core–crust transition using
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the thermodynamical and dynamical methods is briefly summarized. The fourth section
is devoted to discussing some global NS properties such as the mass–radius relation, the
moment of inertia, its crustal properties and the tidal deformability estimated with the
new Gogny interaction D1M*. We also compare in this section the D1M* results with the
predictions provided by other different models. Finally, our conclusions are presented in
the last section.

2. Gogny Interactions Adapted for Astrophysical Calculations

The standard Gogny interaction of the D1 family consists of a finite range term, which
is modeled by two form factors of Gaussian type and includes all possible spin and isospin
exchange terms, plus a zero-range density-dependent contribution. To describe finite
nuclei, a spin–orbit interaction—which is zero-range like in the case of Skyrme forces—is
also added. With all these ingredients the Gogny interaction reads:

V(r1, r2) = ∑
i=1,2

(
Wi + BiPσ − HiPτ −MiPσPτ

)
e
− r2

µ2
i + t3(1 + x3Pσ)ρα(R)δ(r)

+iWLS(σ1 + σ2){k′ × δ(r)k}, (11)

where r and R are the relative and the center of mass coordinates of the two nucleons, and
µ1 ' 0.5–0.7 fm and µ2 ' 1.2 fm are the ranges of the two Gaussian form factors, which
simulate the short- and long-range components of the force, respectively. The Skyrme-type
t3 and x3 parameters control the density dependent part of the force.

To determine the parameters of the new Gogny interactions, denoted D1M* and
D1M**, we start from the D1M force and modify the parameters of the finite-range part of
the interaction, which are the ones that control the stiffness of the symmetry energy, keeping
the binding energy and charge radius of finite nuclei predicted by these interactions as close
as possible to the values obtained with the original D1M force. This way of proceeding
is similar to the one used with some Skyrme forces and RMF parametrizations, such as
SAMi-J [45], KDE0-J [46] or FSU-TAMU [47,48].

Therefore, we readjust the eight parameters Wi, Bi, Hi and Mi (i = 1, 2) of the finite-
range part of the Gogny interaction. The ranges of the two Gaussian form factors and
the zero-range part of the force are kept fixed to the original values of D1M. The open
parameters are constrained by imposing in symmetric nuclear matter the same values of the
saturation density, energy per particle, incompressibility modulus and effective mass as the
ones predicted by the original D1M force. It has been claimed in earlier literature that finite
nuclei energies constrain the symmetry energy at a subsaturation density of about 0.1 fm−3

better than at saturation density [32,49]. Hence, we impose that the symmetry energy of the
modified interaction at this particular density also equals the corresponding value provided
by the D1M force. In order to preserve the pairing properties of D1M we also require that,
in the new force the combinations Wi − Bi − Hi + Mi (i = 1,2), which govern the strength
of the pairing interaction, take the same value as in the original D1M force. There is still an
open parameter, which we chose to be B1. This parameter is used to modify the slope of
the symmetry energy at saturation L, which in turn determines the maximum mass of the
neutron star. We adjust this parameter B1 in such a way that the maximum mass computed
with the new parametrizations of the Gogny force are 2M� (D1M*) and 1.91M� (D1M**).
Finally, we perform a fine tuning of the strength t3 of the density-dependent term of the
interaction in order to optimize the description of the masses of finite nuclei. To this end
we compute the energies of 620 spherical and deformed even–even nuclei of the AME2012
database [11] at HFB level using the HFBaxial code [9]. As it is customary with Gogny
forces, we carry out the HFB calculations in a harmonic oscillator basis. The parameters
and size of the basis are chosen as to optimize the binding energies for each value of mass
number A. An approximate second-order gradient is used to solve with confidence the
HFB equations [10]. It has been known for a long time that some Skyrme parametrizations
present numerical instabilities when the finite-nuclei calculations are performed on a mesh
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in a coordinate space, see e.g., [50] and references therein. It has been recently shown
that the Gogny parameter sets may also display finite-size instabilities [51] that lead to
diverging results in the coordinate-space calculations of finite nuclei [51,52]. This is the
case of the D1N and D1M* forces [51,52] and, to a lesser extent, of D1M [52]. Therefore, the
HFB calculations of finite nuclei with the new parameter set D1M* are to be performed in a
harmonic oscillator basis [19,52]. The numerical values of the parameters of the new forces
D1M* and D1M** were reported in Refs. [19,20,43]. For the sake of completeness, we collect
them also here in Table 1, along with the parameters of D1M. In Table 2 we report the
nuclear matter properties predicted by the D1M* and D1M** forces, as well as by the BCPM
energy density functional, which is used in this work as a benchmark for comparison with
the results provided by the new Gogny parametrizations D1M* and D1M**.

From Table 1, we observe that the finite-range parameters Wi, Bi, Hi and Mi of the
modified D1M* and D1M** forces are larger in absolute value than the ones in the original
D1M interaction. However, as can be seen in Table 2, the saturation properties of symmetric
nuclear matter (namely, the saturation density ρ0, the energy per particle E0 at saturation,
the incompressibility K0, and the effective mass m∗/m) and the symmetry energy at a
density 0.1 fm−3, predicted by the D1M** interaction coincide with the values computed
with the D1M force as a consequence of the fitting protocol used to obtain the parameters of
the modified forces. In the case of the D1M* force we also slightly changed the t3 parameter
by an amount of 1 MeV to improve the finite nuclei description with this interaction. As a
consequence of this small change in t3, the symmetric nuclear matter properties involved in
the reparametrization changes slightly compared to the corresponding values predicted by
the D1M force, as can be seen in Table 2. The properties that differ significantly between the
new parametrizations and D1M are the symmetry energy at saturation density (Esym(ρ0))
and, visibly, the density dependence of the symmetry energy, which governs the isovector
part of the interaction. The latter is quantified by the slope parameter L, which varies
from a value L = 24.84 MeV in the original D1M force to L = 43.18 MeV for D1M* and to
L = 33.91 MeV for D1M**, as required to obtain a stiffer EoS in NS matter, which in turn
allows predictions of the maximum mass of 2M� and 1.91M�, respectively.

Table 1. Parameters of the D1M, D1M* and D1M** Gogny forces. The coefficients Wi, Bi, Hi and Mi

are given in MeV, µi in fm and t3 in MeV fm4. The values of the other parameters of the modified
interactions are the same as in the D1M force (namely, x3 = 1, α = 1/3 and WLS = 115.36 MeV fm5).

D1M Wi Bi Hi Mi µi

i = 1 −12,797.57 14,048.85 −15,144.43 11,963.81 0.50
i = 2 490.95 −752.27 675.12 −693.57 1.00

t3 x3 α WLS
1562.22 1 1/3 115.36

D1M* Wi Bi Hi Mi µi

i = 1 −17,242.0144 19,604.4056 −20,699.9856 16,408.3344 0.50
i = 2 675.3860 −982.8150 905.6650 −878.0060 1.00

t3 x3 α WLS
1561.22 1 1/3 115.36

D1M** Wi Bi Hi Mi µi
i = 1 −15,019.7922 16,826.6278 −17,922.2078 14,186.1122 0.50
i = 2 583.1680 −867.5425 790.3925 −785.7880 1.00

t3 x3 α WLS
1562.22 1 1/3 115.36

Let us now briefly discuss the main properties and predictions of these modified
Gogny forces. As can be seen from Figure 3, the symmetry energy as a function of the
baryon density obtained using D1M* shows a different behavior compared to the one
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exhibited by the standard Gogny interactions D1S, D1N and D1M. Above saturation the
symmetry energy computed with D1M* increases with growing density and takes values
close to the ones predicted by the BCPM energy density functional. As a consequence
of this behavior, in the high–density domain the EoS predicted by the D1M* interaction
follows closely the trend of the BCPM EoS, passing nicely through the region of the P− ρ
plane constrained by the experimental data of the heavy-ion collisions as can be seen in
Figure 2. Finally let us point out that the representative points of the D1M* force lie within
the region of the Esym(ρ0)-L plane constrained by the majority of the experimental data, as
is seen in Figure 4. In order to check the ability of the D1M* force to describe finite nuclei,
we plot in Figure 5 the differences between the binding energies of a set of 620 even–even
nuclei computed with this new force and with the original D1M interaction along different
isotopic chains covering the whole nuclear chart. We see that these differences are actually
very small, lying within a window of ±3 MeV for all the computed nuclei. As a general
trend, the binding energy predicted by D1M* is larger than the one provided by D1M for
neutron deficient nuclei of the isotopic chains and the opposite happens for neutron rich
nuclei of the chain.

Table 2. Nuclear matter properties predicted by the D1M*, D1M** and D1M Gogny interactions and
by the BCPM energy density functional.

ρ0 E0 K0 m∗/m Esym(ρ0) Esym(0.1) L
(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

D1M 0.1647 −16.02 224.98 0.746 28.55 23.80 24.83
D1M* 0.1650 −16.06 225.38 0.746 30.25 23.82 43.18
D1M** 0.1647 −16.02 224.98 0.746 29.37 23.80 33.91
BCPM 0.1600 −16.00 213.75 1.000 31.92 24.20 52.96

0 10 20 30 40
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Figure 5. Difference between the binding energies provided by the D1M* and D1M force ∆B (in MeV)
plotted as a function of the shifted neutron number N-N0 for isotopic chains covering the periodic
table. The values of the atomic number Z and neutron reference number N0 are given in each panel.
The vertical scale covers from +3.5 MeV to −3.5 MeV, with long ticks every MeV and short ticks
every half MeV. The horizontal line in each panel at ∆B = 0 is plotted guide the eye.
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3. Neutron Star Crust with Gogny Forces

The outer layer of an NS encircling the homogeneous core is denoted as “crust”. It is
further subdivided into two or three layers depending on its composition. At the surface
of the star, namely the “outer crust”, the matter is distributed in a lattice of neutron-rich
nuclei immersed in an electron gas. After a certain density ∼0.003 fm−3 going towards the
center of the star, neutrons start to drip from the nuclei forming a background neutron gas
but keeping a lattice structure of nuclear clusters. This region is denoted as the NS “inner
crust”. At a density∼0.08 fm−3, also known as the “crust–core transition density”, the inner
crust dissolves into an homogeneous core, sometimes with pasta phases in the transition
region. As these complicated structures incorporate in-medium many-body effects, a full
quantum mechanical treatment of the inner-crust is very difficult and computationally
expensive. Nevertheless, there exist some calculations of the EoS in this region of NSs of
different degrees of sophistication available in the literature (see for example [21,53–55]
for references and a more detailed discussion on this topic). Simplified calculations based
on the Thomas–Fermi (TF) approximation or its extended versions are often employed
to obtain the EoS of the neutron star crust with different interactions (see [21,53–57] and
references quoted therein). Even though global properties like the mass or the radius are
not heavily influenced by the crustal properties of the NS, pulsar glitches, quasi-periodic
oscillations in soft γ-ray repeaters or thermal relaxations in soft X-ray transients are strongly
influenced by the crustal composition of the NS (see for example [54,55,58] and references
quoted therein). The crust also might be one of the possible places where the r-process
nucleosynthesis occurs during the NS–NS or NS–Black Hole merger events [59–61].

We have organized the description of the crust in this section as follows. In the first
subsection we outline the variational Wigner–Kirkwood (VWK) method for describing
finite nuclei. After that we describe the restoration of quantum effects like the shell cor-
rection with the Strutinsky integral method and the residual pairing correction with state
dependent Bardeen–Cooper–Schrieffer (BCS) calculations. In the next subsection we com-
pute with Gogny interactions the structure of the outer crust of a cold, non-accreting star.
These calculations are performed within the so-called Wigner–Seitz (WS) approximation,
which assumes that the space can be described by non-interacting electrically neutral cells,
each one containing a single nuclear cluster embedded in electron (outer crust) or electron
and neutron (inner crust) gases. In the inner crust, we restrict ourselves to spherically
symmetric nuclear clusters disregarding pasta phases for the sake of simplicity. The results
obtained with different Gogny forces are also displayed in the relevant subsections. At the
end, we discuss the crust–core transition obtained with different Gogny interactions.

3.1. Variational Wigner-Kirkwood Method in Finite Nuclei

Semiclassical estimates of the binding energy of nuclei throughout the whole nuclear
chart have been used since the Bethe–Weizsäcker mass formula was proposed [62,63].
The smooth part of the energy can be estimated by considering a Fermi gas-like system
of nucleons with different choice of interactions. Further, one can treat quantum shell
corrections perturbatively on top of it, using the techniques established by Strutinsky [64].
The residual pairing energy can also be calculated perturbatively using the shell structure
corresponding to the average mean-field. The smooth part of the binding energy, i.e.,
neglecting quantal effects, of a set of non-interacting fermions in an external potential, can
easily be obtained using the Wigner–Kirkwood (WK) h̄-expansion of the single particle
partition function [65–69]. An important feature of this expansion is that the variational
solution of the minimization of WK energy at each h̄-order is simply the WK expansion
of the density at the same order. This method of solving a variational equation by sorting
order-by-order the h̄-expansion is called the VWK theory, which is discussed in detail in
Refs. [68,70,71]. A primary feature of this method is that one needs to calculate one less
order in the density expansion to accurately calculate the energy in the next order. For
example, a VWK prediction on the energy containing h̄2-order contribution only needs the
information on the h̄0-order densities, i.e., the bare TF densities.
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To calculate the smooth part of the energy with the VWK method using the Gogny
interaction (11), we use in this work the extended TF density matrix [72], which allows us
to obtain the kinetic and exchange energy densities up to h̄2 order as a functional of the
particle densities of each type of nucleons [53,73]. Therefore we write the VWK energy as

EVWK =
∫
HdR =

∫
(H0 +H2)dR

=
∫
(Hkin,0 +Hdir +Hexch,0 +Hzr +HCoul)dR

+
∫
(Hkin,2 +Hexch,2 +HSO)dR, (12)

where we have decomposed the energy into TF (subindex 0) and h̄2 (subindex 2) terms. For
a detailed derivation of the energy density in (12), the reader is referred to Refs. [53,73].

To find the density profiles, which in turn will allow one to determine the VWK energy,
one should solve first the variational TF equations for each type of particles with respect to
the TF densities ρq(q = n, p),

δ

δρq

[
EVWK,0 − µq

∫
ρq(R)dR

]
= 0, (13)

where µq are the chemical potentials that ensure the right number of nucleons of each type.
Using the solutions of Equation (13) in Equation (12), one can calculate the semiclassical
energy up to h̄2-order in the VWK approach.

Instead of solving the set of Equation (13), we perform a restricted variational calcula-
tion by minimizing the TF part of the VWK energy Equation (12) using a trial density of
the Fermi type for each type of particles,

ρq(r) =
ρ0,q

1 + exp
(

r−Cq
aq

) , (14)

where the radius Cq and the diffuseness parameter aq of each trial density are the variational
parameters and the strengths ρ0,q are fixed by normalizing the neutron and proton numbers.
Finally, using these trial densities the h̄2 part of the VWK energy in Equation (12) is added
perturbatively. This restricted minimization of the energy with parametrized neutron
and proton densities has been applied successfully in many semiclassical calculations of
the energy of finite nuclei using Skyrme interactions [69], the differences with the full
variational calculation being very small [74].

3.2. Shell and Pairing Effects

Once the average smooth part of the energy is determined, we add perturbatively the
quantum shell energy that is obtained using the so-called Strutinsky integral method [75,76].
In this approximation, the shell correction is estimated as the difference between the quan-
tal energy and its semiclassical counterpart of a set of nucleons moving under the action of
an external single-particle Hartree–Fock Hamiltonian (see Refs. [53,73] for more details)
generated by the parametrized neutron and proton densities (14). The corresponding
Schrödinger equations read,

hqφi,q =

{
−∇ h̄2

2m̃∗q(r)
∇+ Ũq(r)− iW̃q(r)(∇× σ)

}
φi = ε̃i,qφi,q. (15)

It should be noticed that the local particle ρ̃q, kinetic energy τ̃q and spin J̃q densities,
which are used to calculate the effective mass m̃∗q , the mean-field Ũq and the spin-orbit
potential W̃q appearing in Equation (15), are obtained semi-classically by the restricted
variational approach described above.
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After the single-particle energies ε̃i,q are obtained by solving Equation (15), the shell
correction energy for each type of particles is given by

Eshell
q = ∑

i
ε̃i,q −

∫ [ h̄2

2m̃∗q
τ̃q + ρ̃qŨq + J̃q · W̃q

]
dR. (16)

These single-particle energies ε̃i,q can be further used to calculate perturbatively the
residual neutron and proton pairing energy through a BCS pairing calculation as,

Epair
q = −1

4 ∑
k,q

∆2
k,q

Ek,q
, (17)

where Ek,q and ∆k,q are the quasiparticle energy and the gap in the state k of the type of
particles q, respectively. The quasi-particle energy in the state k reads

Ek,q =
√
(ε̃k,q − µq)2 + ∆2

k,q , (18)

which in addition to the state-dependent gap ∆k,q also depends on the eigenvalue ε̃k,q of
(15) corresponding to the state k and on the chemical potential µq, which is determined by
the particle number condition given by

Nq = ∑
k

ñ2
k,q , (19)

where the occupation number ñ2
k,q of the state k is given by,

ñ2
k,q =

1
2

[
1−

ε̃k,q − µq

Ek,q

]
. (20)

For each type of particles the state-dependent gap in a given state i is obtained as the
solution of the so-called gap equation

∆i,q = −∑
k

vpair
iī,kk̄

∆k,q

2Eq,k
. (21)

Here, the single particle indices denote the usual quantum numbers, i ≡ nlj and
k ≡ n′l′ j′ for each type of particle. We emphasize that the pairing interaction vpair used in
(21) is also determined from the same finite range Gogny interaction (11). The sums over k
in Equations (17), (19) and (21) run over bound and quasi-bound states. These quasi-bound
states of positive energy are retained by the centrifugal (neutrons) or centrifugal plus
Coulomb (protons) barriers [77].

Finally, the total binding energy of a nucleus is given by the sum of the smooth part
of the energy computed at VWK level (12) plus the quantal shell correction (16) and the
pairing energy (17) calculated perturbatively, i.e.,

EB = EVWK + ∑
q

[
Eshell

q + Epair
q

]
. (22)

This method of obtaining the binding energy, which we call VWKSP, was applied for
∼160 even-even nuclei across the whole nuclear chart using three different Gogny forces
of D1 type, including D1M* [53]. For D1M*, the relative deviation from the experimental
values or the ones obtained with HFB method were found to be within 1%, with only a
few exceptions.
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3.3. Outer Crust

As we have mentioned before, the external region of the NS crust consists of a lattice
of fully ionized atomic nuclei embedded in a free electron gas. In the outer layers of the
outer crust, the nuclei are the ones which are also observed in terrestrial experiments.
However, near the inner crust neutron-rich nuclei whose masses have not been measured
experimentally start to appear. To determine the composition and EoS of the outer crust, the
essential ingredient is the mass table, which is provided by the experimental masses, when
they are known, supplemented by the predictions from theoretical models for the unknown
masses. In the present calculation of the outer crust we use the experimental masses from
the AME2016 atomic mass evaluation [78] and the recently measured masses of the 75−79Cu
isotopes [79]. When the relevant masses are unknown experimentally, we compute them
at HFB level [9] using the D1M and D1M* Gogny interactions. D1M was also used in the
calculations of the outer crust of Ref. [80], together with the experimental masses known at
that moment (our results with D1M may differ a little from those of Ref. [80] for the layers
of the outer crust where new experimental masses available in [78,79] were unmeasured
when [80] was published).

The energy of the outer crust at a given density ρav is computed within the WS
approximation, where the energy of each cell containing a nucleus with Z protons and A
nucleons has primarily three contributions [81]

E(A, Z, ρav) = ENuc + Ee + Elat, (23)

where, ENuc, Ee and Elat are the nuclear, electronic and lattice contribution to the energy,
respectively. The number density of the outer crust ρav is determined by the volume V of
the cell as ρav = A/V. The nuclear contribution essentially comes from the mass as

ENuc = M(A, Z) = (A− Z)mn + Zmp − EB(A, Z). (24)

Here, mn and mp are the rest masses of the neutron and the proton, respectively. For
masses of nuclei which are not measured experimentally, we use the HFB predictions [9]
computed with the D1M* interaction. The electronic contribution Ee is determined by the
electronic energy densityHe for a degenerate relativistic free Fermi gas as

Ee = HeV, (25)

where

He =
kFe

8π2

(
2k2

Fe
+ m2

e

)√
k2

Fe
+ m2

e −
m4

e
8π2 ln

 kFe +
√

k2
Fe
+ m2

e

me

, (26)

with me as the rest mass of electron and kFe the electron Fermi momentum, which is given
by kFe = (3π2ne)1/3. In (26) ne = (Z/A)ρav is the electron number density. The lattice
contribution to the energy is given by

Elat = −C
Z2

A1/3 kFav , (27)

where kFav = (3π2ρav)1/3 is the average Fermi momentum connected with the elec-
tron Fermi momentum as kFav = (A/Z)1/3kFe due to charge equilibrium. The constant
C = 0.00340665 for the bcc lattice is taken from Ref. [82].

At zero temperature, the pressure exerted by the outer crust comes completely from
the electrons and the lattice while the nuclei produce no pressure. Therefore,

P = −
(

∂E
∂V

)
A,Z

= Pe + Plat = ne

√
k2

Fe
+ m2

e −He −
ρav

3
C

Z2

A4/3 kFav . (28)
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To obtain the optimal configuration in a WS cell, we proceed as follows. For a given
pressure, at zero temperature, the Gibbs free energy G per nucleon is minimized for
different nuclei in the nuclear chart,

g =
G
A

=
E(A, Z, ρav)

A
+

P
ρav

=
M(A, Z)

A
+

Z
A

√
k2

Fe
+ m2

e −
4
3

C
Z2

A4/3 kFav . (29)

It is worth mentioning here that recently a new analytical method to evaluate the
internal composition of the outer crust has been presented in Ref. [83].

In Figure 6 we plot the composition of the outer crust in terms of the proton number
Z and the neutron number N at different average densities ρav, obtained with the nuclear
masses measured experimentally (from AME2016 [78] and from [79] for 75−79Cu) assisted
by theoretical HFB calculations [9] using the D1M and D1M* interactions, where the
experimental values are not available. For comparison, we also display in the Figure the
composition predicted by the BCPM energy density functional [21]. At very low densities
(up to ρav ∼ 10−6 fm−3), the primary contribution comes from Ni and Fe isotopes with
neutron numbers N = 30, 34 and 36. After that the contribution comes from Kr, Se, Ge
and Zn isotopes up to ρav ∼ 5× 10−5 fm−3, with N = 50. All three interactions in Figure 6
have the same predictions up to this point because the information primarily comes from
the experimental masses. The differences start to appear beyond this density. The elements
beyond ρav ∼ 5× 10−5 fm−3 are primarily Ru, Mo, Zr, Sr, Kr or Se isotopes. At these higher
densities relevant for the outer crust, the optimal configuration of the WS cell comes from
N = 82. In the region of the outer crust where the nuclear masses are unknown, the D1M*
force predicts the nuclei 78Ni, 128Ru, 122Zr and 120Se, while the calculations performed
with the Skyrme interactions BSk19-BSk21 in Ref. [80] and BSk22 and BSk24-BSk26 in
Ref. [23] show a somewhat richer composition, as can be seen in Tables I-III of Ref. [80] and
Tables 3–6 of Ref. [23], respectively. The composition of the outer crust critically depends on
the nuclear masses, which can be slightly different when computed with different models
and extrapolated to the region of unknown masses.

3.4. Inner Crust

We resort to the spherical WS approximation for describing the inner crust of NSs.
We consider a density range between 0.0004 fm−3 and 0.08 fm−3 for the inner crust. For
the present calculation, we have not considered pasta structures such as cylindrical rods,
planar slabs, cylindrical tubes or spherical bubbles, which might be present in between the
inner crust and the core of the star. These non-spherical structures may modify the optimal
composition of the bottom layers of the inner crust but they do not change the core–crust
transition density nor the EoS of the crust in a significant way (see [21] for details). At a
given average density of the inner crust, we look for the optimal values of N and Z that
satisfy the β-equilibrium condition

µn = µp + µe, (30)

where µ designates the chemical potential of the corresponding particles in the subindex.
Once N and Z are fixed, the size of the WS box is determined. The electrons are treated as a
free relativistic Fermi gas, with a constant density throughout the WS box. In practice, we
proceed as follows. First, we fix the average density and an integer proton number Z and
vary the neutron number N, which in general is not integer, until the β-equilibrium condi-
tion (30) is reached. Next, keeping the average density fixed, we repeated the procedure
for a wide range of Z values searching for the optimal configuration, which corresponds to
the WS cell of minimal energy.
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Figure 6. Neutron numbers N and proton numbers Z for the outer crust of NSs with the experimental
masses from the AME2016 [78] tabulation plus the recently measured masses of 75−79Cu [79] aided
by theoretical HFB calculations when experimental values are not available, using the D1M and
D1M* Gogny forces and the BCPM energy density functional.

For a given N and Z, we calculate the energy of the WS box with the VWKSP method
as explained before for finite nuclei in Section 3.1. We have taken a different form of the
density profile for the inner crust unlike the finite nuclei, adapted from Refs. [23,76] as

ρq(r) = ρB,q +
ρ0,q

1 + exp
{(

Cq−RWS
r−RWS

)2
− 1
}

exp
(

r−Cq
aq

) . (31)

The first term in the right hand side is well suited to obtain a background density at
certain average densities of the inner crust. The first exponential in the denominator of
the second term is a damping factor tuned by the size of the WS cell (RWS), which makes
sure that the density reaches the background value (or zero) at the edge of the box. It
is worthwhile mentioning here that we added the quantum shell and pairing energies
only for protons by the reasons pointed out in [84]. A systematic comparison between
the predictions of the extended TF plus Strutinsky integral method including pairing
correlations and the fully quantal HFB results demonstrates that the perturbative treatment
of shell effects and pairing correlations on top of a self-consistent semiclassical calculation
provides a very accurate description of the structure of the NS inner crust [85].

In Figure 7 we plot the binding energy per nucleon (E/A) subtracted by the bare
nucleon mass mN for 13 different average densities ρav in the inner crust, which are
indicated in the different panels. For comparison, we provide for each average density ρav
the energy obtained in each of the four steps of the calculation of the energy in a WS cell
of the inner crust. The orange line with circles denotes the energy containing only the TF
contribution, the blue line with squares additionally contains the h̄2 contributions. The
green line with triangles and the red line with diamonds successively take into account
the contribution from the shell correction and the pairing energy, respectively. One can
clearly observe that once the shell correction is added, the evolution of E/A−mN produces
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some local minima. Further addition of the pairing energy (red) somewhat smoothens this
feature out. For all average densities but ρav = 0.0789 fm−3 the global minimum appears
at Z = 40. At ρav = 0.0789 fm−3 it shifts to Z = 92. At ρav = 0.0004 fm−3 one can observe
shell closures at Z = 20, 28, 40, 50, etc., which are similar to ones found in finite nuclei.
With the increase in the average density some of these shell closures like Z = 28 and 50 are
washed away (see the panel with ρav = 0.07 fm−3). A systematic study of the inner crust
composition performed using the extended TF approach including pairing correlations
with a large set of Skyrme forces has been very recently reported [86]. It is shown that the
proton content of the WS cells is correlated to the soft or stiff character of the slope of the
pure neutron matter EoS for low average densities below 0.05 fm−3. In this region the D1M
and D1M* interactions predict a relatively stiff neutron matter EoS, which favors Z = 40 in
the minimal energy configuration (see Figure 7 and Table II of [53]) in agreement with the
conclusions drawn in [86].
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Figure 7. Binding energy per nucleon excluding the bare nucleon mass as a function of proton
numbers at different average densities ρav of the inner crust calculated with D1M* Gogny interaction.

In Figure 8 we show the neutron (red solid line) and proton (blue dashed line) density
profiles inside the WS cell at different ρav in the inner crust calculated with the D1M*
interaction. With the increase in the ρav, the size of the WS cell shrinks significantly and
the cells contain more dense neutron gas. With an increase in the density the diffuseness,
particularly for protons, increases significantly. However, the central proton density of the
cells increase with decrease in ρav.
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Figure 8. Neutron and proton density distribution inside the Wigner–Seitz cells obtained with
variational Wigner–Kirkwood method at different average densities ρav obtained with D1M* Gogny
interaction.

3.5. Core–Crust Transition

From our calculation in the inner crust we observe that the transition from the crust
to the core takes place at an average density around ∼0.08 fm−3. To find the core–crust
transition density within a given model requires, in principle, the computation of the
complete EoS of the inner crust, which is not a simple task, as we have seen along this
section. However, the search of the crust–core transition density can be considerably
simplified by performing the calculation from the core side. In this case one searches for
the violation of the stability conditions of the homogeneous core under small amplitude
oscillations, which indicate the appearance of nuclear clusters and therefore the transition
to the inner crust. There are different ways to determine the core–crust transition from
the core side, namely the thermodynamical method (Vther), the dynamical method (Vdyn),
random phase approximation and the Vlasov equation method (see Refs. [13,20,87] for
more details and further references).

In the thermodynamical method the stability of the NS core is discussed in terms
of bulk properties only, where the mechanical and chemical stability conditions set the
boundaries of the homogeneous core:

−
(

∂P
∂v

)
µnp

> 0, −
(

∂µnp

∂q

)
v
> 0, (32)

where P is the total pressure of neutron star matter (1)–(2), µnp is the difference between the
neutron and proton chemical potentials, v = 1/ρ is the inverse of the baryon density and q
is the charge per baryon. In the low density regime of interest for the core–crust transition
the chemical stability is always fulfilled and the mechanical stability condition can be recast
through the so-called thermodynamical potential Vther(ρ) [13,20]. The thermodynamical
potential is a function of the baryon density only and the transition density corresponds to
the value of ρ for which Vther(ρ) changes sign (see [13] and references therein).
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The dynamical method, introduced in Ref. [81], assumes that the nuclear energy
density can be expressed as the sum of a bulk homogeneous part and an inhomogeneous
contribution, which depends on the gradient of the neutron and proton densities as well
as on the direct part of the Coulomb potential. The Skyrme forces fit this scheme [88].
However, for finite-range interactions, such as the Gogny forces, the calculation is more
involved. Quite often the energy density functional for finite-range forces can be approxi-
mated very accurately by a local form using the extended TF density matrix [72] instead
of the full HF density matrix. Within this scheme, the energy density can be written as a
homogeneous term, provided by the Slater density matrix (h̄0 term), plus an additional
h̄2 contribution written in terms of the gradients of the neutron and proton densities and
of the inverse of the momentum and position dependent effective masses [87]. This inho-
mogeneous contribution also contains the gradient expansion of the direct nuclear and
Coulomb potentials (see [20,87] for more details). Thus,

E = E0 +
1
2 ∑

i,j

∫ dk
(2π)3

δ2E
δni(k)δn∗j (k)

δni(k)δn∗j (k), (33)

where E0 is the unperturbed density and ni(k) are the momentum distributions (inverse
Fourier transform of the density perturbation) for each type of particles. The second
variation of the energy defines the so-called curvature matrix, which is the sum of three
different terms. The first is the bulk contribution, which defines the stability of uniform NS
matter and corresponds to the equilibrium condition in the thermodynamical method. The
second term collects the gradient contributions in the energy density functional and is a
function of the momentum k. For zero-range Skyrme forces it is a quadratic function [88],
but it is a more involved function in the case of finite-range interactions [20,87]. The last
contribution is due to the direct Coulomb interactions between protons and electrons. The
stability condition requires the curvature matrix to be convex. This allows one to write
a dynamical potential Vdyn(ρ, k), which is now momentum- and density-dependent. To
compute the transition density one first minimizes for each value of the density ρ the
dynamical potential respect to k. Next, as in the case of the thermodynamical method,
one determines the transition density as the value of the density for which Vdyn(ρ, k(ρ))
vanishes (see Refs. [20,87] for a detailed description of the dynamical method). Table 3
collects the main core–crust transition properties, namely density, pressure and isospin
asymmetry, derived with the thermodynamical and dynamical methods using the D1M,
D1M* and D1M** Gogny forces as well as with the BCPM energy density functional, which
is used here as a benchmark.

It is known from earlier literature that the core–crust transition density, estimated in
the thermodynamical approach, using Skyrme and Relativistic Mean Field (RMF) models,
shows a decreasing trend with an increasing value of the slope of the symmetry energy
(see [13,87] and references therein). In Refs. [13,87] we have computed the core–crust
transition density predicted by finite-range interactions using the thermodynamical and
dynamical methods. We find that our results are in harmony with earlier calculations
obtained with the Skyrme interactions and RMF parametrizations. This can be seen in
Figure 9, where we plot the transition density (left panels) and the transition pressure (right
panels) obtained using the thermodynamical (upper panels) and the dynamical (lower
panels) methods. We have obtained the transition properties for a large set of Skyrme
forces and also for most of Gogny interactions available in the literature. These sets of
interactions cover a large range of values of the slope of the symmetry energy L going from
around 15 MeV up to 130 MeV. We see that the values of both the transition density and the
transition pressure have larger values when they are obtained using the thermodynamical
method instead of the dynamical method. The reason behind this is, as we have mentioned,
that the dynamical method takes into account the surface and Coulomb contributions
that tend to stabilize more the liquid core. Comparing between the transition density and
pressure we observe different behaviors. On the one hand the values of the density of the



Symmetry 2021, 13, 1613 19 of 31

core–crust transition follow a rather linear decreasing trend with respect to the slope of the
symmetry energy L for both Skyrme and Gogny forces. On the other hand, the correlation
between the transition pressure and L is less obvious, being more visible for Skyrme forces
than for the Gogny ones. For example, we can see from Table 3 the decreasing trend of
the transition density with the increasing value of L of the different models considered
in this Table (see Table 2 in this respect), while the transition pressure is roughly similar
computed with the D1M, D1M* and D1M** forces and differs from the prediction of the
BCPM energy density functional.
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Figure 9. Transition density (left panels) and transition pressure (right panels) against the slope of the
symmetry energy computed for some Skyrme and Gogny interactions. The upper panels correspond
to the values obtained using the thermodynamical method whereas the lower panels display the
results extracted using the dynamical method.

Table 3. Core–crust transition density ρt, pressure Pt and and isospin asymmetry δt predicted by the
D1M, D1M* and D1M** Gogny forces and the BCPM energy density functional.

ρt Pt δt
(fm−3) (MeVfm−3)

D1M
Vther 0.1027 0.3390 0.9241
Vdyn 0.0949 0.2839 0.9257

D1M*
Vther 0.0909 0.3301 0.9275
Vdyn 0.0838 0.2702 0.9300

D1M**
Vther 0.0960 0.3368 0.9257
Vdyn 0.0886 0.2786 0.9279

BCPM
Vther 0.0889 0.5137 0.9339
Vdyn 0.0816 0.4132 0.9382

4. Global Properties of Neutron Stars Predicted by Gogny Forces

The unified EoS is obtained from the consistent calculation of the core and the crust,
as we have shown in the previous sections. We provide the unified EoSs and the associated
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stellar matter composition obtained for D1M and D1M* in the Supplementary Material. In
addition, for the sake of clarity we display in the left panel of Figure 10 the unified EoS
in logarithmic scale computed with these interactions as well as with the BCPM energy
density functional. From this panel we see that practically no differences can be observed
in the outer crust. In the inner crust the EoSs provided by the different Gogny forces
are similar and show some differences with the BCPM predictions. However, in the core
region the differences between the original D1M and modified D1M* Gogny forces are
more prominent.
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Figure 10. Left: Unified EoS computed with the the D1M and D1M* Gogny force and with the
BCPM energy density functional. Right: Particle fractions and the proton fraction corresponding
to the onset of the direct Urca (DU) process (see text for details) as functions of the nucleonic
density from the D1M and D1M* interactions.
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The unified EoS is obtained from the consistent calculation of the core and the
crust, as we have shown in the previous sections. We provide the unified EoSs and the
associated stellar matter composition obtained for D1M and D1M* in the supplementary
material. In addition, for the sake of clarity we display in the left panel of Figure
10 the unified EoS in logarithmic scale computed with these interactions as well as
with the BCPM energy density functional. From this panel we see that practically no
differences can be observed in the outer crust. In the inner crust the EoSs provided
by the different Gogny forces are similar and show some differences with the BCPM
predictions. However, in the core region the differences between the original D1M
and modified D1M∗ Gogny forces are more prominent. In the right panel of Figure
10 we compare the predictions of the D1M and D1M* EoSs for the particle populations
in the beta-equilibrated npeµ matter of the NS core. The impact of the stiffer symmetry
energy of the D1M* interaction with respect to D1M, as reflected by the total EoS
displayed in the left panel of the figure, can be clearly appreciated in the right panel.
D1M* predicts a persistent population of protons and leptons in the core of the star with
increasing nucleon density. In stark contrast, in the results calculated with D1M we see
that matter becomes soon deprotonized and deleptonized when the density increases.
This is because in D1M it is much less costly to convert protons into neutrons due to the
softer symmetry energy of this interaction. Actually, according to D1M the stellar core
would be composed practically of only neutrons after a density ρ ≈ 0.65 fm−3 (≈4ρ0), as
can be seen from the D1M particle fractions in Figure 10. Notice also that D1M* predicts
a growing population of muons with higher density, whereas in D1M the appearance of
muons is nominal. According to recent studies in the literature, the presence of muons
in NSs may play a significant role in addressing several new physics questions about
the interactions and the astrophysical effects of muonphilic dark matter particles, see

Figure 10. Left: Unified EoS computed with the the D1M and D1M* Gogny force and with the BCPM
energy density functional. Right: Particle fractions and the proton fraction corresponding to the
onset of the direct Urca (DU) process (see text for details) as functions of the nucleonic density from
the D1M and D1M* interactions.

In the right panel of Figure 10 we compare the predictions of the D1M and D1M* EoSs
for the particle populations in the beta-equilibrated npeµ matter of the NS core. The impact
of the stiffer symmetry energy of the D1M* interaction with respect to D1M, as reflected
by the total EoS displayed in the left panel of the Figure, can be clearly seen in the right
panel. D1M* predicts a persistent population of protons and leptons in the core of the star
with increasing nucleon density. In stark contrast, in the results calculated with D1M we
see that matter becomes soon deprotonized and deleptonized when the density increases.
This is because in D1M it is much less costly to convert protons into neutrons due to the
softer symmetry energy of this interaction. Actually, according to D1M the stellar core
would be composed practically of only neutrons after a density ρ ≈ 0.65 fm−3 (≈4ρ0), as
can be seen from the D1M particle fractions in Figure 10. Notice also that D1M* predicts
a growing population of muons with higher density, whereas in D1M the appearance of
muons is nominal. According to recent studies in the literature, the presence of muons
in NSs may play a significant role in addressing several new physics questions about
the interactions and the astrophysical effects of muonphilic dark matter particles, see
Ref. [89] and references therein. The proton fraction inside the beta-equilibrated matter also
determines whether a proto-neutron star will go through the direct Urca process or not. In
npeµ matter this is attributed to the condition that the proton fraction satisfies ρp/ρ > xDU ,
where xDU is defined as [90]

xDU =

1 +

{
1 +

(
ρe

ρp

)1/3
}3
−1

. (34)

In Figure 10, we plotted this quantity as a function of density, denoted by “DU” (black
lines). The density point at which the proton fraction (red) surpasses the quantity xDU
indicates the onset of direct Urca. One can see that only D1M* fulfills this condition, though
at fairly large densities (ρ > 0.93 fm−3). This behavior can be directly attributed to the
stiffer symmetry energy for D1M* at suprasaturation densities compared to D1M.
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Once the full EoS is obtained, one can look for different global properties of NSs. In
this review we will concentrate on three relevant aspects, namely the mass-radius relation
in an NS, which provides a detailed information about the structure of the star, the moment
of inertia of the NS, and in particular its fraction enclosed by the crust, which may be
important for the description of pulsar glitches. Finally, the last aspect to be discussed
is the tidal deformability in binary systems of NS. This quantity can be accessed by the
detection of gravitational waves (GW), coming for example from the merger of a NS binary
as in the GW170817 event recorded recently.

4.1. The Tolman–Oppenheimer–Volkov Equations

In order to study the mass-radius relation of NSs, one has to solve the TOV equa-
tions [54,91], which need as an input the full EoS along all of the star. The TOV equations
take into account within the general relativity framework the hydrostatic equilibrium in
the star between the pressure given by the gravitational field and the pressure coming from
the baryons and leptons inside the star. The TOV equations are given by

dP(r)
dr

=
G

r2c2 [ε(r) + P(r)]
[
m(r) + 4πr3P(r)

][
1− 2Gm(r)

rc2

]−1

(35)

dm(r)
dr

= 4πr2ε(r), (36)

where ε(r), P(r) and m(r) are, respectively, the energy density (including free nucleon
mass), pressure and mass at each radius r inside the NS. Starting with a central energy
density ε(0), a central pressure P(0) and a central mass m(0) = 0, one integrates out-
wards the differential equations until reaching the NS surface, where the pressure is zero,
P(R) = 0. At the same time, the location of the surface of the star determines its total
radius R and its total mass M = m(R).

In Figure 11 we plot the mass–radius (MR) relation for the D1M and D1M* Gogny
interactions, as well as for the BCPM energy density functional. We stress that all three
EoSs used in the calculations are unified EoSs, where the outer crust, the inner crust and
the core have been obtained using the same interaction. In the same plot we include
constraints coming from different sources. First, we include constraints for the maximum
mass obtained from the observation of the highly massive NSs [14,15]. The green vertical
constraint comes from cooling tails of type-I X-ray bursts in three low-mass X-ray binaries
and a Bayesian analysis [92], and the blue vertical constraint is from five quiescent low-
mass X-ray binaries and five photospheric radius expansion X-ray bursters after a Bayesian
analysis [93]. The pink–red rectangular constraint at the front is from a Bayesian analysis
with the data from the GW170817 detection of gravitational waves from a binary NS
merger [94]. Finally, we inserted the constraints coming from the very recent NICER
observations for the mass and radius of the pulsars PSR J0030+0451 and PSR J0740+6620
with one-sigma deviation [95,96]. As mentioned in previous sections, we observe that
the D1M interaction predicts the NS maximum mass of only 1.74M�. Moreover, the MR
relation obtained from D1M falls outside all considered constraints. If we look at the MR
relation obtained using the EoS given by the D1M* interaction, we see that it reaches a
maximum NS mass of around 2M�, similarly to the one given by the BCPM energy density
functional, which we included here as a benchmark. The MR relations given by both
D1M* and BCPM lie inside most of the constraints for the mass and radius included in the
same Figure.

We plot in Figure 12 the mass (left panel) and radius (central panel) enclosed in the
NS crust. The values of the crustal mass for the BCPM energy density functional are larger
than the ones obtained using Gogny interactions, but are close to the ones computed with
D1M* once one approaches the NS maximum mass values. On the other hand, the crustal
masses obtained using the D1M interaction are lower than the ones obtained with D1M*.
For the crustal radius, or thickness of the crust, we see that the values predicted by D1M*
are very similar to the results one achieves for BCPM, at least above 1.4M�, while the
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crustal radius computed with D1M is smaller than that for the D1M* interaction or for the
BCPM energy density functional.
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Figure 11. Mass-radius relation obtained using the D1M* and the D1M Gogny forces and the
BCPM energy density functional. Constraints from the measurements of M ≈ 2M� (yellow and
grey) [14,15], from cooling tails of type-I X-ray bursts in three low-mass X-ray binaries and a Bayesian
analysis (green) [92], from five quiescent low-mass X-ray binaries and five photospheric radius
expansion X-ray bursters after a Bayesian analysis (blue) [93] and from a Bayesian analysis with the
data from the GW170817 detection of gravitational waves from a binary NS merger (red) [94] are
shown. Finally, the very recent constraints coming from the NICER mission are also included [95,96].
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Figure 12. Crustal mass (left), crustal radius (center), and crustal fraction of the moment of inertia
(∆Icrust/I) (right) obtained with the D1M*, D1M and BCPM interactions.
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4.2. Moment of Inertia

The moment of inertia of slowly-rotating NSs can be computed from the static mass
distribution and the gravitational potentials that one finds when solving the TOV equa-
tions [97]. If one studies the slow-rotation limit, the moment of inertia is given by [81,97,98]

I ≡ J
Ω

=
8π

3

∫ R

0
r4e−ν(r) ω̄(r)

Ω
(ε(r) + P(r))√
1− 2Gm(r)/rc2

dr, (37)

where G is the gravitational constant and c the speed of light and one has assumed
spherical symmetry. In Equation (37), J is the angular momentum, Ω is the stellar rotational
frequency, ν(r) and ω̄ are radially dependent metric functions and m(r), ε(r) and P(r) are,
respectively, the NS mass, energy density and total pressure enclosed in a radius r. The
metric function ν(r) satisfies [98]

ν(r) =
1
2

ln
(

1− 2GM
Rc2

)
− G

c2

∫ R

r

(M(x) + 4πx3P(x)
x2(1− 2GM(x)/xc2)

dx, (38)

and the angular velocity of the fluid measured in a local reference frame is given by the
relative frequency ω̄(r) ≡ Ω−ω(r), where ω(r) is the frequency that appears because of
the slow rotation of the star. On the other hand, the relative frequency ω̃(r) ≡ ω̄(r)/Ω can
be obtained by solving the differential equation [98]

d
dr

(
r4 j(r)

dω̃(r)
dr

)
+ 4r3 dj(r)

dr
ω̃(r) = 0, (39)

with

j(r) =
{

eν(r)
√

1− 2Gm(r)/rc2 if r ≤ R
1 if r > R

. (40)

The relative frequency ω̃(r) obtained as a solution of (39) and (40) has to fulfill the
following boundary conditions

ω̃′(0) = 0 and ω̃(R) +
R
3

ω̃′(R) = 1. (41)

Notice that in the slow-rotation regime the solution of the moment of inertia does not
depend on the stellar frequency Ω. Starting from an arbitrary value of ω̃(0), one integrates
Equation (39) up to the surface. Usually, it will be necessary to re-scale the function ω̃(r)
and its derivative with an appropriate constant in order to fulfill (41). One can test the
accuracy of the final result by checking the condition [98]

ω̃′(R) =
6GI
R4c2 . (42)

The ratio between the fraction of the moment of inertia ∆Icrust and the total moment
of inertia I is intrinsically connected to pulsar glitches and to the location of the core–crust
transition [31,54,99,100]. We plot in the right panel of Figure 12 the ratio between ∆Icrust/I
against the total NS mass for the D1M and D1M* interactions and the BCPM energy density
functional. Similarly to what happens for the crustal mass and crustal radius, the crustal
fraction of the moment of inertia is larger when obtained using the BCPM EoS. On the other
hand, the values that one obtains with D1M* fall between the ones of BCPM and the ones
given by D1M, which provides the lower values of ∆Icrust/I from these three interactions.
As can be seen in the rightmost panel of Figure 12, the values obtained using the D1M*
interaction lie between the results predicted by the BCPM and D1M EoSs. Notice that this
later provides the lower values of the ratio ∆Icrust/I among all the interactions used in
this calculation. To account for the size of the pulsar glitches, the pinning model requires
that some amount of angular momentum is carried out by the crust, which can be recast
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as a constraint on the crustal fraction of the moment of inertia. For example, to explain
Vela and another source of glitches, first estimates suggested that ∆Icrust/I > 1.4% [101],
although more recent estimates, which take into account the neutron entrainment in the
crust, increases the minimal crustal fraction up to 7% in order to explain the glitching
phenomena [102,103]. When the Gogny forces D1M and D1M* are used to evaluate the
moment of inertia, the first constraint is fulfilled for NS with masses smaller than 1.4 and
1.7M�, respectively, while the second constraint is only fulfilled by very small NS masses,
as can be seen in the rightmost panel of Figure 12. If the calculation of the moment of inertia
is performed using the BCPM energy density functional instead of the D1M and D1M*
forces, the behavior is similar, although the glitching sources have slightly larger masses.

The left panel of Figure 13 encloses the total moment of inertia against the total NS
mass for the same interactions as the previous Figure. The values of the moment of inertia
obtained with D1M* and BCPM are very similar from low masses up to 1.5M�, from where
the moment of inertia computed with D1M* is slightly larger than that for BCPM. For
these two interactions, the maximum values of the moment of inertia are 1.95× 1045 g cm2

and 1.88× 1045 g cm2, respectively, which are reached a little bit before the maximum
mass configuration. Contrary to these two interactions, the D1M Gogny force gives much
smaller values for I, reaching maximum values of only 1.30× 1045 g cm2. It is expected
that binary pulsar observations can provide new information about the moment of inertia
and, therefore, put additional constraints on the EoS of NS [100]. The moment of inertia
of the primary component of the pulsar PSR-J0737-3039, which has a mass of 1.338M�,
has been estimated by Landry and Kumar in the range I = 1.15+0.38

−0.24 × 1045 g cm2 [104].
From the left panel of Figure 13 it can be seen that this constraint is fulfilled by the moment
of inertia computed using the EoSs based on the D1M and D1M* forces and the BCPM
energy density functional (see Ref. [20] for more details). Finally, let us mention that the
dimensionless quantity I/MR2 is found to scale with the NS compactness χ = GM/Rc2

and to be almost independent of the mass and radius of the NS [99,100,105]. We checked
that this is the situation when the moment of inertia is computed using the D1M and D1M*
and the BCPM energy density functional on the one hand, and also that the universal
relation I/MR2 vs. χ lies within the region estimated by Lattimer and Schutz [100] and
Breu and Rezolla [105] when studied with the same interactions.

4.3. Tidal Deformability

The detection of GW coming from mergers of binary NS systems, and of NS–Black
Hole systems, will open new possibilities to study the EoS of highly asymmetric nuclear
matter, which one uses to describe the interior of NSs. If we focus on binary NS systems,
each of its components induces a gravitational tidal field on its companion. This phe-
nomenon leads to a mass-quadrupole deformation on each member of the binary. To linear
order, the tidal deformability Λ describes this tidal deformation of each star in the system,
and it is defined as the ratio between the induced quadrupole moment and the external
tidal field [106,107].

For each of the stars in the binary, the tidal deformability is given by [106–108]

Λ =
2
3

k2

(
Rc2

GM

)5

, (43)

where k2 is the dimensionless tidal Love number, R is the NS radius, M its total mass. As
previously stated in this paper, the solution of the TOV equations provides the values of
the mass and radius of a NS, while the Love number k2 is obtained as
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k2 =
8χ5

5
(1− 2χ)2[2 + 2χ(y− 1)− y]×

{
2χ[6− 3y + 3χ(5y− 8)]

+ 4χ3
[
13− 11y + χ(3y− 2) + 2χ2(1 + y)

]
+ 3(1− 2χ)2[2− y + 2χ(y− 1)]ln(1− 2χ)

}−1
, (44)

where χ is the compactness of the star and

y =
Rβ(R)
H(R)

. (45)

In Equations (44) and (45), β(R) and H(R) are given by the solution of the following
set of coupled differential equations [107,108]:

dH(r)
dr

= β(r) (46)

dβ(r)
dr

=
2G
c2

(
1− 2Gm(r)

rc2

)−1

H(r)

{
− 2π

[
5ε + 9p +

dε

dp
(ε + p)

]
+

3c2

r2G

+
2G
c2

(
1− 2Gm(r)

rc2

)−1(m(r)
r2 + 4πrp

)2
}

+
2β(r)

r

(
1− 2Gm(r)

rc2

)−1{
−1 +

Gm(r)
rc2 +

2πr2G
c2 (ε− p)

}
, (47)

where m(r) is the mass enclosed inside a radius r, and ε and p are the corresponding energy
density and pressure. One solves Equations (46) and (47) along with the TOV equations by
integrating outwards, with the boundary conditions H(r) = a0r2 and β(r) = 2a0r as r → 0.
The constant a0 is arbitrary, as it cancels out in the expression for the Love number [108].
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Figure 13. Left: Total moment of inertia against the total mass of neutron stars computed using the
D1M* and D1M Gogny forces and the BCPM energy density functional. The constraint proposed
in [104] is also displayed. Right: Mass weighted tidal deformability (for symmetric binaries) against
the chirp mass of binary neutron star systems obtained using the same interactions as in the left
panel. The constraint for Λ̃ coming from the GW170817 event is also included [109,110].
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When studying the full NS binary system, the mass-weighted tidal deformability
Λ̃ takes into account the contribution from the tidal effects to the phase evolution of the
gravitational wave spectrum of the inspiraling NS binary, and it is defined as

Λ̃ =
16
13

(M1 + 12M2)M4
1Λ1 + (M2 + 12M1)M4

2Λ2

(M1 + M2)5 , (48)

where Λ1 and Λ2 are the tidal deformabilities of each NS conforming the system and M1
and M2 are their corresponding masses. Notice that the definition (48) fulfills Λ̃ = Λ1 = Λ2
when M1 = M2.

The LIGO and Virgo Collaboration have already detected some GW signals coming
from the merger of two NSs [109,110], which allow constraining of the mass-weighted tidal
deformability Λ̃ and the chirp mass of the systemM, which is given by

M =
(M1M2)

3/5

(M1 + M2)1/5 . (49)

In this paper we will use the constraints coming from the GW170817 detection [109,110],
as it is at the moment the one that further constrains Λ̃ andM, at values of Λ̃ = 300+420

−230,
M = 1.186+0.001

−0.001M�. Additional constraints for the single NS masses are also given as
M1 ∈ (1.36, 1.60)M� and M2 ∈ (1.16, 1.36)M�.

We plot in the right panel of Figure 13 the mass-weighted tidal deformability against
the chirp mass obtained using the D1M* and D1M Gogny forces and the BCPM energy
density functional. The mass-weighted tidal deformability Λ̃ predicted by the BCPM and
D1M* EoSs have very similar values, lying well inside the constraint of the GW170817
detection, which is plotted in green in the same Figure. On the other hand, the values
obtained with the D1M Gogny interaction are lower than the ones obtained with D1M*
and BCPM, even though they also lie inside the GW constraints, but near the lower limit.
Finally, let us mention that in Ref. [111] an analysis of the GW170817 constraints has been
performed using both Gogny forces and momentum-dependent interactions (MDI). One of
the conclusions of this study has been that the successful Gogny and MDI interactions that
are compatible with GW170817 restrict the radius of a canonical NS of 1.4M� to within the
range of 9.4 km ≤ R1.4 ≤ 13.1 km [111].

5. Conclusions

In this review article we revised and summarized the most relevant aspects of our
investigations about the application of effective forces of Gogny type to the NS scenario that
have been previously reported in a series of papers. The Gogny interactions were proposed
more than forty years ago with the purpose to describe simultaneously the mean field and
the pairing field, which usually are disconnected in almost all of the mean field models
available in the literature. Although the standard parametrizations of the Gogny force,
such as D1S, D1N and D1M, reproduce rather accurately the nuclear masses as well as
pairing and deformation properties of finite nuclei, these interactions fail when applied to
the NS domain. The basic reason for that is the too soft symmetry energy predicted by these
forces at high baryon densities, which are unable to produce heavy enough stellar masses.
To cure this limitation, we proposed a reparametrization of the Gogny D1M force in such a
way that preserves the accurate description of finite nuclei, the isovector properties of the
interaction, in particular the slope of the symmetry energy are modified to obtain a stiffer
EoS able to predict maximal NS masses of about 2M�, in agreement with well-contrasted
astronomical observations. Our renormalization procedure has been applied using the
D1M force as starting point, because the D1S and D1N interactions are too far from the
2M� target. In this way we have built up two new Gogny parametrizations, denoted as
D1M* and D1M**, which predict maximal masses of NS of 2M� and 1.91M�, respectively.

Apart from the description of the core of NSs, we also used these new Gogny forces
to build up the EoS of the crust of NSs aimed to obtain a unified EoS from the surface
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to the center of the star. The outermost region of a NS, called outer crust, consists of a
lattice of atomic nuclei, which are more neutron rich as the depth increases, embedded in a
free electron gas. The basic ingredient to determine the EoS in this region are the nuclear
masses, which are taken from the experiment or obtained from a HFB calculation with
the same Gogny force when the masses are unknown. After a density around 0.003 fm−3,
neutrons cannot be retained by the nuclei and above this density, the matter is arranged still
as a lattice structure but now permeated by free neutron and electron gases. The treatment
of this region is complicated owing to the presence of the neutron gas. To describe this
scenario, called inner crust, we use the Wigner–Seitz approximation and compute the rep-
resentative nucleus inside each cell using the semiclassical Variational Wigner–Kirkwood
approximation, which includes h̄2 corrections added perturbatively. Moreover, the quantal
shell corrections and the pairing correlations for protons are also added perturbatively,
using the so-called Strutinsky integral method and the BCS approximation, respectively. At
a density roughly around one-half the saturation density the inner crust structure dissolves
in a homogeneous core. The precise value of the crust–core transition density is strongly
model dependent. To determine the transition point is not an easy task when looking from
the crust, as it requires an accurate description of the inner crust. However, it is easier to
determine the transition point from the core side searching for the density for which the
homogeneous core is unstable against the cluster formation. The simplest approach is the
so-called thermodynamical method that only considers the stability of the homogeneous
core. A more precise approximation is provided by the dynamical method, which on top of
the stability of the homogeneous core, also considers finite-size effects. We have shown that
the dynamical method predicts transition densities and pressures in rather good agreement
with the estimate obtained from the crust side.

Once the full EoS based on the modified D1M* Gogny force was obtained, we used it
to predict different NS properties. In addition to the mass–radius relation, we analyzed
the behavior of the moment of inertia and the tidal deformability of the star, which can
be related to information extracted from observations in some binary pulsars and from
the GW170817 event. We also analyzed some global crustal properties such as the mass
and radius of the crust, as well as the crustal fraction of the moment of inertia, which
can be relevant for the description of the glitches. We find that these global properties
obtained with the Gogny-based EoS are in good agreement with the predictions of other
well contrasted EoS as the ones based on the SLy4 Skyrme force [22] or the microscopic
BCPM energy density functional [21], which is used as a benchmark in this work. Although
a detailed study of some other nuclear structure phenomena, such as the description of
odd nuclei, fission phenomena or giant resonances computed with the new D1M* and
D1M** Gogny forces is still pending, we conclude that these new interactions are promising
alternatives to describe simultaneously finite nuclei and neutron stars providing results in
harmony with the experimental data and astronomical observations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/sym13091613/s1. This supplementary material consists of the D1M and D1M* EoS from the
outer crust to the core, files D1M_complete_EOS.dat and D1MSTAR_complete_EOS.dat, respectively,
as well as a README.txt with details about how the these EoS files are written.
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