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Abstract: Diphtheria is a vaccine-preventable disease in which the outbreaks will not occur if a
high enough proportion of individuals in a population are immune. Recent reports reveal that
vaccinated individuals with low coverage levels of immunity may be at risk of subclinical diphtheria
infection. Therefore, the development of an epidemiology model that will predict the optimal vaccine
coverage level needed to prevent the spread of these diseases is crucial. In this paper, a mathematical
model for diphtheria transmission with asymptomatic infection, logistic growth, and vaccination
is formulated and rigorously analyzed to gain insights into its global dynamical features. The
study results show that the disease is eradicated whenever the vaccination coverage is greater than
the optimal vaccination coverage level needed for diphtheria eradication. The reported cases of
diphtheria in Thailand are applied to estimate the appropriate parameters of the model. Sensitivity
analysis reveals the rate of vaccination and the asymptomatic infection are influential factors in
controlling and preventing diphtheria. Numerical simulations are illustrated in the theoretical results
and show that the incubation period of asymptomatic individuals has an impact on the optimal
vaccination coverage level needed for diphtheria eradication.

Keywords: diphtheria; vaccination coverage level; global stability; sensitivity analysis

1. Introduction

Diphtheria is an acute infectious disease of the respiratory system caused by bacteria
and symptoms range from mild to severe. Severe cases can cause paralysis and death [1–3].
Vaccination against infectious diseases has been a commonly used method for controlling
childhood diseases, especially diphtheria, which is one of the targets of vaccination pro-
grams. Despite the availability of highly effective childhood vaccines, diphtheria remains a
public health concern in several countries because the most widely quoted diphtheria mor-
tality rate can reach 5–10%. It may reach higher than 20% in children younger than 5 years
and adults older than 40 years [4,5]. In Thailand, diphtheria is still an important cause
of childhood morbidity and mortality, as reported during 2017–2019, diphtheria cases in-
creased gradually with an incidence of 0.12–0.26 cases per 100,000 population [6]. Notably,
a significant number of the population affected by these disease outbreaks were healthy
adolescents, reflecting the waning protective levels of antibodies to the series of diphtheria
vaccines over time [7].

Immunization induced by diphtheria vaccination has been effective in drastically
decreasing childhood diseases over the last several decades, resulting in healthier children
and, subsequently, adults [8]. Analysis of the incidence data [9] revealed that in countries
with higher case counts, 66% of diphtheria cases are unvaccinated and 63% are less than
15 years of age. In countries with sporadic cases, 32% of diphtheria cases are unvaccinated
and 66% are greater than 15 years of age, consistent with waning vaccine immunity. During
2016–2020, the reported diphtheria cases in Thailand increased gradually (with an incidence
of 0.01–0.03 cases per 100,000 population) and the most commonly reported cases are
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children under 5 years old [6,10–12]. Thus, several studies [13–15] have investigated
barriers to vaccination in populations that have lower than normal vaccine coverage. In
addition, analysis of historical data showed that the causes of a resurgence of diphtheria in
many countries were the low coverage of the diphtheria vaccine among children and the
large gap in immunity among adults. It was also shown that a shift of the disease to older
ages began before mass immunization was introduced [15–19]. Therefore, understanding
the impact of imperfect coverage levels of vaccination on immunization is crucial for
controlling and preventing diphtheria in the community which will be explored in this
paper using a mathematical model.

Mathematical models in infectious disease epidemiology have been developed to gain
insights into the transmission dynamics of some diseases which may induce permanent
immunity against the diseases (see for instance and reference therein [20–23]). Earn et al. [24]
presented the classical susceptible-exposed-infectious-removed (SEIR) model for providing a
better understanding of measles complex dynamical transitions. However, it is well known
that immunity induced by the preventive vaccines for some of the aforementioned diseases
may wane over time [25,26]. For instance, Mossong et al. [27] estimated the mean duration
of vaccine-induced protection against measles, in the absence of re-exposure, to be 25 years.
For these reasons, many researchers modified the SEIR model by incorporating vaccination
which has made key contributions to vaccination program design, from introducing the
concept of herd immunity thresholds to predicting changes in post-vaccination epidemi-
ology [28–42]. Moghadas and Gumel [33] presented an SVIR (susceptible-vaccinated-
infected-recovered) epidemic model in order to predict the optimal vaccine coverage for
controlling childhood disease. Wang et al. [34] developed a vaccination model to investigate
the effect of delay in booster dose after primary vaccination on the long-term prevalence
of Heamophilus influenzae serotype b. Ho et al. [37] formulated two deterministic SVIR
models and investigated the effects of vaccination coverage and vaccine efficacy against
different influenza subtypes in Hong Kong during the 2017–2018 winter. Zheng et al. [43]
determined the optimal vaccine administration strategy in refugee camps considering
maximum daily administration and limited total vaccine supply by using SEAIRD compart-
mental models. The purposed model was established to describe the epidemic dynamics
with both single-dose and double-dose vaccine administration for COVID-19. In addition
to the chemical treatment, Song et al. [44] investigated the symmetrical properties, as well
as the stability and symmetry properties, in a variety of model parameters. The sensitivity
analyses are used to suggest the chemotherapy drug-induced tumor mortality rate and
the drug decay rate contribute significantly to the explanation of treatment. These studies
indicate that vaccination coverage and time of booster dose are influential factors for dis-
ease control by vaccination. Although mathematical modeling has been extensively used to
address questions of disease control by vaccination, those models are formulated under the
assumption that the recruitment of the population into the community (assumed to be sus-
ceptible individuals) is a constant rate in the sense that a population grows proportionately
with the population’s current size [29,33,45]. In fact, the population changes all the time but
is not more than the maximum population size that a particular environment can support,
which is called the carrying capacity (K), see more details in [46,47]. In health care services,
every country has a maximal capacity for the treatment of disease [48]. Therefore, it is
reasonable to assume that the recruitment of the population into the community is a logistic
growth rate: rN

(
1− N

K

)
, where r is the birth rate and N is the population size. More recent

studies consider epidemic models with the logistic growth to provide deep insights into the
aforementioned transmission dynamics of diseases and to evaluate control strategies (see,
for instance, [23,35,47,49–53]). Nudee et al. [35] formulated a measles model with logistic
growth and vaccination to study the effect of backward bifurcation on the first and second
doses of the vaccination period of measles. Li et al. [49] introduced the saturated treatment
and logistic growth rate into an SIR epidemic model with bilinear incidence for investi-
gating a relatively long-lasting disease or a disease with a high death rate. Zou et al. [52]
studied COVID-19 suppression dynamics in China by using a phenomenological logistic
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growth model. Wu et al. [53] compared the COVID-19 outbreak in China by using the
generalized logistic growth model. Another important issue of interest, the occurrence of
certain epidemic episodes encouraged either by incomplete protection for vaccination or
by exogenous re-infection may be related to the role that symptomatic and asymptomatic
individuals play in the community transmission of disease and in the development of herd
immunity to prevent the disease, see more detail in [54,55] and reference therein. It is,
therefore, crucial to understand the impact of logistic growth and asymptomatic infection
in controlling and preventing diphtheria by vaccination.

Understanding transient phenomena in potential epidemiological scenarios are also
an important issue of interest. Stability analyses of epidemic models, thus, are essential to
understand the population dynamics that should be stable relative to finite perturbations of
its initial state. The study of global stability is generally a nontrivial problem, but it is nec-
essary to ensure effective control at a steady state, regardless of the initial situation [56]. In
the event of an epidemic, the study of the globally asymptotic properties of epidemiological
models can help design effective control strategies intended to permanently reduce disease
spread, or even break the chain of disease transmission. To analyze the global stability of
epidemic models, the most successful method is the direct Lyapunov method [57]. It is
widely used by many authors (see for examples [22,35,58–63] and the references therein).
However, the global stability of epidemic models with logistic growth, asymptomatic
infection and vaccination has not yet been studied so far.

Based on the above discussions, the aim of this paper is to formulate the diphtheria
model with asymptomatic infection, logistic growth, and vaccination in order to investigate
the effects of the asymptomatic infection and the imperfect coverage of vaccination for
controlling and preventing diphtheria. The paper is organized as follows. In Section 2, the
diphtheria model with asymptomatic infection, logistic growth, and vaccination is formu-
lated and rigorously analyzed in Section 3. The threshold value called the reproductive
number under vaccination of the proposed model is derived by using the Next-Generation
method. By constructing the suitable Lyapunov function and using LaSalle’s invariance
principle, the global stabilities of equilibria of the proposed model are analyzed in order
to determine the threshold vaccination coverage needed for diphtheria elimination. In
Section 4, numerical simulations are reported to determine the appropriate model parame-
ters for the diphtheria-vaccine model and to assess the effect of asymptomatic infection
and imperfect vaccination coverage on disease control and prevention. Finally, discussions
and conclusions are given in Section 5.

2. Model Formulation

A model of diphtheria is formulated based on the epidemiology of diphtheria and
prevention by vaccines. To this end, the total population at any time t, denoted by
N(t), is divided into six subpopulations, namely, susceptible individuals (S), vaccinated
individuals (V), exposed individuals (E), asymptomatic individuals (A), infected individ-
uals (I) and recovered individuals (R), respectively, so that,

N(t) = S(t) + V(t) + E(t) + A(t) + I(t) + R(t).

It should be emphasized that individuals in the exposed (E) class are those early-
infected individuals that are not able to transmit diphtheria infection to susceptible in-
dividuals. Furthermore, while individuals in the infected (I) class are those that show
symptoms of diphtheria at the end of the incubation period, those in the asymptomatic
(A) class are assumed to show mild or no clinical symptoms of the disease at the end of
the incubation period. However, those in the A class are close to surviving the incubation
period and are shedding the diphtheria virus. Hence, they are infectious (i.e., they are able
to transmit diphtheria infection to susceptible individuals [1]). The recovered (R) class
contains individuals who recover from diphtheria infection. However, recovered individ-
uals do not have natural immunity so they need to receive a booster vaccine. Therefore,
in this study, the vaccinated (V) class contains susceptible individuals who are vaccinated
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according to administering diphtheria including individuals whose recovery. The dynamics
of each sub-population are described in the following. Due to the diphtheria vaccine being
recommended for people of all ages in a community, it is then assumed that the recruitment
rate of people into the population (assumed to be susceptible individuals) is the logistic
growth rate rN

(
1− N

K

)
, where r is the birth rate and K denotes the carrying capacity

(i.e., the maximum size population). It is also assumed that all sub-populations die at the
same natural death rate µ with r > µ. According to reports in [1], diphtheria carriers as
a reservoir are usually asymptomatic individuals and then diphtheria can be transmitted
from both asymptomatic and infected individuals. Thus, the force of infection is defined by

λ =
β(δA + I)

N
,

where β denotes the transmission rate and the modification parameter 0 < δ ≤ 1 accounts
for the assumed reduction in transmissibility of asymptomatic individuals relative to the
infectious population. The susceptible population increases at the logistic growth rate and
due to the waning vaccine at the rate ε, respectively. This population decreases when they
are vaccinated at a per capita rate φ, they infect diphtheria at the rate λ and die at the
natural death rate µ, respectively. Further, the number of vaccinated individuals increases,
when either susceptible individuals have been vaccinated at the rate φ or individuals in
the R class are vaccinated after treatment at the rate θ, respectively. The vaccinated class
decreases when they lose immunity at the rate of vaccine waning ε (that is 1/ε is the duration
of the loss of immunity acquired by preventive vaccine or by infection), and die at the
natural death rate µ, respectively. On the other hand, when susceptible individuals acquire
diphtheria infection by contact with asymptomatic and infected individuals, individuals
in the E class then increase at the rate λ. The parameter σ represents the progression rate
of individuals in the E class to either the I class or the A class at the end of the incubation
period. Thus, the number of exposed individuals decreases when either they develop
clinical symptoms of diphtheria (and move to the I class) at the rate aσ or they do not
show clinical symptoms (and move to the A class) at the rate (1− a)σ, and at the natural
death rate µ, respectively. Hence, 0 ≤ a ≤ 1 is the proportion of symptomatic infectious
individuals at the end of the incubation period. Meanwhile, the number of asymptomatic
individuals decreases at the recovered rate γ and the natural death rate µ, respectively. In
addition, the number of infected individuals decreases at the recovered rate τ, the natural
death rate µ, and the diphtheria mortality rate α, respectively. After asymptomatic and
infected individuals obtain the treatment they will move to recovered classes at the rate γ
and τ, respectively. They also die at a natural death rate µ. Since diphtheria is a disease in
which the patient loses immunity after treatment, the recovered individuals decrease when
patients receive the boosting vaccine and move to the vaccinated class at the rate θ and the
rate at which they die naturally to be µ, respectively. Based on the description above, the
model of diphtheria transmission with logistic growth and vaccination is presented in the
form of the system of non-linear first-order differential equations:

dS
dt

= rN
(

1− N
K

)
− βS(δA + I)

N
− (µ + φ)S + εV,

dV
dt

= φS + θR− (µ + ε)V,

dE
dt

=
βS(δA + I)

N
− (µ + σ)E, (1)

dA
dt

= (1− a)σE− (µ + γ)A,

dI
dt

= aσE− (µ + α + τ)I,

dR
dt

= γA + τ I − (µ + θ)R.
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The proposed model (1) is called the diphtheria-vaccine model. The diphtheria-vaccine
model monitors human populations, all the state variables and parameters used are non-
negative. The descriptions and the values of model parameters are given in Table 1.

Table 1. Description and parameter values of the diphtheria-vaccine model.

Parameter Definition Value Reference

β Transmission rate 18.5 data fit

a Proportion of infectious population,
0 < a ≤ 1 0.55 [64]

δ Modification parameter, 0 < δ ≤ 1 0.7 [64]

φ Rate of vaccination 0.0406 [10]

r Birth rate 0.0101 [65]

σ

Rate of progression from the
exposed class to either the

asymptomatic class or the infected
class

6 [1]

µ Natural death rate 0.0011 [66]

α Diphtheria mortality rate 0.05 [1]

ε Rate of waning vaccine 0.0083 [1]

θ
Rate of progression from the

recovered class to 0.6667 [1]
the vaccinated class

γ
Recovered rate of asymptomatic

individuals 2.1429 [1]

τ
Recovered rate of infected

individuals 2.1429 [1]

K Carrying capacity 10, 000 -

3. Analysis of the Diphtheria-Vaccine Model

In this section, the diphtheria-vaccine model is analyzed for the existence and stability
of its associated equilibria. This analysis allows us to determine the threshold vaccination
coverage level needed for disease eradication.

3.1. Basic Properties

We claim the following lemma.

Lemma 1. The closed set

D =

{
(S, V, E, A, I, R) ∈ R6

+|S + V + E + A + I + R ≤ K(r− µ)

r

}
, (2)

is positively-invariant and attracting for the diphtheria-vaccine model (1).

Proof. Adding the equations in the system (1) yields

dN
dt

= rN
(

1− N
K

)
− αI − µN.

Since

dN
dt
≤ rN

(
1− N

K

)
− µN,
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it follows that dN
dt < 0 if N(t) > K(r−µ)

r . Thus, by standard comparison theorem [67], it can
be shown that

N(t) ≤ K(r− µ)

r +
(

K(r−µ)
N(0) − r

)
e−(r−µ)t

.

If N(0) ≤ K(r−µ)
r , then N(t) ≤ K(r−µ)

r . Thus, D is positively-invariant set under the flow

described by the system (1). Further, if N(t) > K(r−µ)
r , then either the solution enters D in

finite time, or N approaches K(r−µ)
r . Hence, D is attracting (i.e., all solutions in R6

+ eventually
enter D). Therefore, it is sufficient to consider the dynamics of the model (1) in D.

Hence, the model (1) is epidemiologically and mathematically well-posed in D [68].
Therefore, it is sufficient to study the dynamics of the model (1) in D.

3.2. Disease Free Equilibrium and Reproductive Number

In the absence of infection (E = 0, A = 0, I = 0), the diphtheria-vaccine model has a
disease-free equilibrium denoted by P0 and given by

P0 = (S0, V0, E0, A0, I0, R0) =

(
(r− µ)(µ + ε)K

r(µ + φ + ε)
,
(r− µ)φK

r(µ + φ + ε)
, 0, 0, 0, 0

)
. (3)

According to the next generation method [69], the model (1) is rewritten as

dx
dt

= F − V , (4)

where x = (E, A, I, R, S, V), V = V− − V+,

F =



βS(δA+I)
N
0
0
0
0
0


, V− =



(µ + σ)E
(µ + γ)A

(µ + α + τ)I
(µ + θ)R

βS(δA+I)
N + (µ + φ)S
(µ + ε)V


and V+ =



0
(1− a)σE

aσE
γA + τ I

rN(1− N
K ) + εV

φS + θR

,

respectively. Clearly, x0 = (0, 0, 0, 0, S0, V0) is a disease-free equilibrium of (4) which is
identical to a disease-free equilibrium of the model (1). Moreover, it can be shown that the
system (4) satisfies the assumptions (A1)–(A5) in [69,70]. After partitioning the derivatives
DF (x0) and DV(x0), we obtain two matrices F and V, where

F =

 0 βδ(µ+ε)
µ+φ+ε

β(µ+ε)
µ+φ+ε

0 0 0
0 0 0

 and V =

 µ + σ 0 0
−(1− a)σ µ + γ 0
−aσ 0 µ + α + τ

,

respectively. Let RV = ρ(FV−1), where ρ is the spectral radius of the next generation
matrix FV−1, we have

RV =
βσ(µ + ε)(a(µ + γ) + δ(1− a)(µ + α + τ))

(µ + σ)(µ + γ)(µ + α + τ)(µ + φ + ε)
. (5)

According to Theorem 2 in [69,70], the following theorem is established.

Theorem 1. The disease-free equilibrium P0 of the diphtheria-vaccine model (1) is locally asymp-
totically stable ifRV < 1, and unstable ifRV > 1.
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The result in Theorem 1 indicates that the threshold value RV is the reproductive
number under vaccination of the diphtheria-vaccine model (1). It represents the average
number of secondary cases caused by one primary case introduced into a population in
which a proportion has been vaccinated [71]. In the context of epidemiological modeling
(see [72]), ifRV < 1, then the disease-free equilibrium is locally asymptotically stable in the
sense that the total number of infected individuals in the population can be reduced to zero
if the initial sizes of the sub-populations of the model are in the basin of attraction of P0.
This means that a small influx of infected individuals into the community will not generate
a large number of infected individuals ifRV < 1 (but will not do so ifRV > 1). To ensure
that the eradication of diphtheria outbreak when RV < 1 does not depend on the initial
size of six state variables of the diphtheria-vaccine model, the following is established.

Theorem 2. The disease-free equilibrium P0 of the diphtheria-vaccine model (1) is globally asymp-
totically stable in D wheneverRV ≤ 1.

Proof. Consider the yapunov function

F = σ(ãδd1 + ad3)E + δd1d2 A + d2d3 I, (6)

where ã = 1− a, d1 = µ + α + τ, d2 = µ + σ and d3 = µ + γ, respectively. Its derivative
along the solutions to the system (1) is

dF (t)
dt

= d1d2d3(δA + I)
(

σ(ãδd1 + ad3)βS
d1d2d3N

− 1
)

,

≤ d1d2d3(δA + I)
(

σ(ãδd1 + ad3)βd4

d1d2d3(d4 + φ)
− 1
)

,

= d1d2d3(δA + I)(RV − 1).

where d4 = µ + ε. Clearly,
dF (t)

dt
≤ 0 whenever RV ≤ 1. Furthermore,

dF (t)
dt

= 0 only

if A = I = 0. The largest compact invariant set in
{
(S, V, E, A, I, R) ∈ D | dF (t)

dt
= 0

}
is

the singleton
{
P0}. Therefore, by Lasalle’s Invariance Principle [73], every solution of the

system (1) with initial conditions in D, approaches to P0 as t → ∞. This completes the
proof.

3.3. Endemic Equilibrium and Local Stability

In the presence of infection (E 6= 0, A 6= 0, I 6= 0), the endemic equilibrium of
the diphtheria-vaccine model (1) is explored as follows. At a steady state, let P∗ =
(S∗, V∗, E∗, A∗, I∗, R∗) be any positive endemic equilibrium of the system (1), let

λ∗ =
β(δA∗ + I∗)

N∗
(7)

be the forces of infection and N∗ is the total population size at the endemic steady state
(that is N∗ = S∗ + V∗ + E∗ + A∗ + I∗ + R∗ and N∗ 6= 0), respectively. Further, setting all
derivatives in the system (1) to zero and solving for all state variables in terms of λ∗ at
steady state, gives

V∗ =
(

φ +
σθQ1λ∗

k3k4k5k6

)
S∗

k2
, E∗ =

λ∗S∗

k3
, A∗ =

ãσλ∗S∗

k3k4
, I∗ =

aσλ∗S∗

k3k5
, R∗ =

σQ1λ∗S∗

k3k4k5k6
(8)

and

S∗(a1S∗ − a0) = 0, (9)
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where k1 = µ + φ, k2 = µ + ε, k3 = µ + σ, k4 = µ + γ, k5 = µ + α + τ, k6 = µ + θ,
k7 = µ + ε + φ, r̃ = r− µ and ã = 1− a, respectively, with

a0 = (Q3λ∗ + r̃k3k4k5k6k7)k2k3k4k5k6K,

a1 = (((k6 + ε)σQ1 + k2k6(σ Q2 + k4k5))λ
∗ + k3k4k5k6k7)

2r,

Q1 = aτk4 + ãγk5, Q2 = ak4 + ãk5,

Q3 = ((k6 + ε)r + εθ)σQ1 + (k2k4k5k6 + σk2k6Q2)r− k2k3k4k5k6 > 0.

Clearly, S∗ = 0 is the solution of (9), which corresponds to N∗ = 0. Consequently, the
positive endemic equilibrium (P∗) does not exist in this case. Since we consider only the
positive solution, it follows from (9) that

S∗ =
a0

a1
. (10)

Substituting (8) and (10) into (7) gives the quadratic equation in term of λ∗:

λ∗(b1λ∗ − b0) = 0, (11)

where b0 = k3k4k5k6k7(RV − 1), b1 = σk2k6Q2 + σ(k6 + ε)Q1 + k2k4k5k6, respectively. The
endemic equilibrium P∗ of the model (1) is obtained by solving (11) for positive λ∗ and
then substituting λ∗ into (8) and (10). The solutions of (11) are λ∗ = 0 and λ∗ = b0

b1
. Clearly,

λ∗ = 0 corresponds to disease-free equilibrium P0. Further, b1 is always positive. While
b0 > 0 whenRV > 1, b0 < 0 whenRV < 1, and b0 = 0 whenRV = 1, respectively. Since
we are only interested in the possible positive equilibrium of the model (1), only the case
λ∗ ≥ 0 is considered. It is found that λ∗ > 0 ifRV > 1. ForRV < 1, then λ∗ < 0 (which is
biologically meaningless). The endemic equilibrium does not exist in this case. It should be
noted that whenRV = 1, λ∗ = 0 corresponds to disease-free equilibrium P0. These results
are summarized below.

Theorem 3. The diphtheria-vaccine model (1) has a unique endemic equilibrium P∗ if RV > 1,
and no P∗ ifRV ≤ 1.

The local stability of P∗ is claimed and its proof is given in Appendix A.

Theorem 4. The endemic equilibrium P∗ of the diphtheria-vaccine model (1) is locally asymptoti-
cally stable wheneverRV > 1 and is close to 1.

3.4. Global Stability Analysis

Global stability analysis confirms that the rates of long-term disease dynamics con-
verge correctly to an equilibrium state irrespective of the initial sizes of the state variables.
To this end, the direct Lyapunov method and LaSalle’s invariance principle, which is a crite-
rion for the asymptotic stability of an autonomous dynamical system [35,45], are applied to
analyze the long-term dynamical behavior of endemic equilibrium of the diphtheria-vaccine
model wheneverRV > 1. The following theorem is claimed.

Theorem 5. The endemic equilibrium P∗ of diphtheria-vaccine model (1) exists and is globally
asymptotically wheneverRV > 1.
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Proof. Consider the following Lyapunov function

L(t) =

(
S− S∗ − S∗ ln

S
S∗

)
+

(
V −V∗ −V∗ ln

V
V∗

)
+

(
E− E∗ − E∗ ln

E
E∗

)
+GA

(
A− A∗ − A∗ ln

A
A∗

)
+ GI

(
I − I∗ − I∗ ln

I
I∗

)
,

where GA =
rβS∗δA∗

K(r− µ)(1− a)E∗
and GI =

rβS∗ I∗

K(r− µ)aE∗
, respectively.

The Lyapunov derivative computed along solutions of the system (1) is given by

dL(t)
dt

=

(
1− S∗

S

)(
rN
(

1− N
K

)
− βS(δA + I)

N
− (µ + φ)S + εV

)
+

(
1− V∗

V

)
(φS + θR− (µ + ε)V) +

(
1− E∗

E

)(
βS(δA + I)

N
− (µ + σ)E

)
+GA

(
1− A∗

A

)
((1− a)σE− (µ + γ)A) + GI

(
1− I∗

I

)
(aσE− (µ + α + τ)I).

From (2), we have

dL(t)
dt

≤
(

1− S∗

S

)(
Kµ(r− µ)

r
− rβS(δA + I)

K(r− µ)
− (µ + φ)S + εV

)
+

(
1− V∗

V

)
(φS + θR− (µ + ε)V) +

(
1− E∗

E

)(
rβS(δA + I)

K(r− µ)
− (µ + σ)E

)
+GA

(
1− A∗

A

)
((1− a)σE− (µ + γ)A) + GI

(
1− I∗

I

)
(aσE− (µ + α + τ)I). (12)

By Theorem 4 and (12) at steady state, we have

Kµ(r− µ)

r
=

rβS∗(δA∗ + I∗)
K(r− µ)

+ (µ + φ)S∗ − εV∗,

(µ + ε)V∗ = φS∗ + θR∗, (µ + σ)E∗ =
rβS∗(δA∗ + I∗)

K(r− µ)
,

(µ + γ)A∗ = (1− a)σE∗, (µ + α + τ)I∗ = aσE∗.

 (13)

Clearly, from the second Equation in (13), that

εV∗ < φS∗ + θR∗. (14)

Substituting the expressions (13) and (14) into (12), we obtain

dL(t)
dt

≤ µS∗
(

2− S
S∗
− S∗

S

)
+ φS∗

(
2− SV∗

S∗V
− S∗V

SV∗

)
+

rβS∗ I∗

K(r− µ)

(
3− S∗

S
− EI∗

E∗ I
− SE∗ I

S∗EI∗

)
+

rβS∗δA∗

K(r− µ)

(
3− S∗

S
− EA∗

E∗A
− SE∗A

S∗EA∗

)
+θR

(
1− S∗VR∗

SV∗R

)(
1− V∗

V

)
.

Since the arithmetic mean is greater than or equal to the geometric mean, the following
inequalities hold:
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2− S∗

S
− S

S∗
6 0, 2− SV∗

S∗V
− S∗V

SV∗
6 0,

3− S∗

S
− EA∗

E∗A
− SE∗A

S∗EA∗
6 0, 3− S∗

S
− EI∗

E∗ I
− SE∗ I

S∗EI∗
6 0.

 (15)

In addition, V(t) is an increasing (decreasing) function while S(t) and R(t) are de-
creasing (increasing) functions, which implies(

1− S∗VR∗

SV∗R

)(
1− V∗

V

)
≤ 0. (16)

Since all state variables and model parameters are non-negative, the conditions (15)

and (16) ensure that
dL(t)

dt
≤ 0 for RV > 1, and

dL(t)
dt

= 0 when S = S∗, E = E∗, A =

A∗, I = I∗, R = R∗ and V = V∗. The largest compact invariant set in {(S∗, V∗, E∗, A∗, I∗, R∗) |
dL/dt = 0} is the singleton {P∗}. Therefore, by LaSalle’s invariance principle [73], all
solutions of the system (1), with initial conditions in D, approach the unique endemic
equilibrium, P∗, as t→ ∞, wheneverRV > 1. The proof is completed.

3.5. Vaccine-Induced Herd Immunity Threshold

For vaccine-preventable diphtheria, not all susceptible individuals can be immunized
for various reasons, for example, either children have not been fully vaccinated or adoles-
cents and adults are not continuously getting the booster vaccine causing no immunity to
prevent the disease. When a patient with diphtheria is found, it can spread to these people
as well as spreading the virus to children who have not been vaccinated. The question then
is what is the minimum proportion of the population that has to be vaccinated to eliminate
the spread of diphtheria. The notion of herd immunity (also called community immunity)
in the transmission dynamics is indirect protection. It is associated with when enough
people are vaccinated against a disease, it is harder for the disease to spread. The conse-
quence of herd immunity is that individuals who are not immune (e.g., those who cannot
be vaccinated or those who have not been infected yet) receive some protection against the
acquisition of the disease due to natural recovery from prior infection or vaccination [74,75].
Therefore, the safest and fastest way to achieve herd immunity is obviously vaccination. To
this end, a theoretical condition for achieving vaccine-induced herd immunity is derived.
RewritingRV , we have

RV =

(
µ + ε

µ + ε + φ

)
R0, (17)

where

R0 =
βσ(a(µ + γ) + δ(1− a)(µ + α + τ))

(µ + σ)(µ + γ)(µ + α + τ)
. (18)

It follows that RV |ε=0,φ=0 = R0. This expression clearly shows that R0 is the basic
reproductive number of infection for the vaccination-free model (ε = 0, φ = 0). In another
word,R0 is the basic reproductive number of the model (1) in the absence of vaccination in
the community. In this case,R0 represents the average number of secondary cases caused
by one primary case introduced into a population that is wholly susceptible during the
duration of his/her infectiousness [71]. Further, define

p =
V0

N0 (19)

be the fraction of vaccinated individuals at the disease-free steady state. For a perfect
vaccine that confers life-long protection,

RV = (1− p)R0. (20)
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The critical vaccination proportion that will achieve eradication, pc, is that for which
the basic reproductive number under vaccinationRV = 1. This yields:

pc := p = 1− 1
R0

. (21)

It follows from (20) and (21) that RV < (>) 1 whenever p > (<) pc. According to
Theorems 2 and 5, the following result is established.

Corollary 1. If p ≥ pc, the disease is eradicated and will persist in the community if p < pc.

This corollary verifies that the quality pc is the optimal vaccination coverage level
needed for diphtheria eradication (also called vaccine-induced herd immunity threshold)
of the model (1). Moreover, it is observed that the threshold vaccination coverage (pc) is
identical to the formula of herd immunity [76], which is a new result found in this study.
Furthermore, solvingRV = 1 for φ gives

φc = φ = (µ + ε)(R0 − 1), (22)

It follows, from (17), that RV is a decreasing function of the rate of vaccination φ,
thus φ > φc whenever RV < 1. According to Theorems 2 and 5, the following lemmas
are established.

Lemma 2. The unique disease-free equilibrium, P0, of the diphtheria-vaccine model (1) is globally
asymptotically stable whenever φ ≥ φc and unstable whenever φ < φc.

Lemma 3. The unique endemic equilibrium, P∗, of diphtheria-vaccine model (1) is globally asymp-
totically stable whenever φ < φc and unstable whenever φ ≥ φc.

Lemmas 2 and 3 verify that φc is the bifurcation value and is called the critical rate
of vaccination rate for diphtheria eradication. It is seen, from (21) and (22), that the rate
of vaccination φ corresponds to the vaccination coverage level p. Therefore, the following
corollary is claimed.

Corollary 2. If φ ≥ φc, the disease is eradicated and will persist in the community if φ < φc.

4. Numerical Simulations
4.1. Appropriate Model Parameters

The diphtheria-vaccine model (1) is simulated by using the fourth-order Runge–Kutta
method with the parameter values given in Table 1 for predicting the infected individuals
(diphtheria cases). The results obtained are used to compute the cumulative number of
diphtheria cases by solving the differential equation [35]:

dC
dt

= ψI (23)

where C denotes the predicted cumulative number of diphtheria cases and ψ is the rate
of duration from diagnosis to treatment, respectively. The value ψ = 1 corresponds to
data collection per month. The vaccine parameters used: φ = 0.0406 and ε = 0.0083 corre-
spond to the vaccination coverage 81.2% [10] and the vaccine-induced waning immunity
every 10 years [1], respectively. The results obtained are compared with the cumulative
number of diphtheria cases reported by the Ministry of Public Health in Thailand, 2018 [6].
It is found, from Figure 1, that the predicted cases fit well with the reported cases, which
is confirmed by the statistical test (the coefficient of determination denoted by R2 [77])
R2 = 0.9920. This study result verifies that the values of model parameters in Table 1 are
appropriate for the diphtheria-vaccine model (1). Therefore, these values will be used to
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illustrate theoretical results and to investigate the effect of imperfect vaccination coverage
in preventing the transmission of diphtheria in Thailand.
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Figure 1. Comparison of the cumulative numbers of diphtheria produced by the diphtheria-vaccine
model and reported cases in Thailand 2018 [6].

4.2. Sensitivity Analysis of the Reproductive Number

The sensitivity analysis [29] is applied to determine the relative importance of model
parameters to diphtheria transmission and prevention, which are related to the reproductive
number,RV . To this end, the sensitivity indices ofRV , denoted by ζRV

ϕ , with respect to a
model parameter ϕ is given by

ζRV
ϕ =

∂RV
∂ϕ
· ϕ

RV
. (24)

The resulting sensitivity indices of RV with respect to each of the ten different pa-
rameters in Table 1 are shown in Figure 2. The positive (negative) sign of ζRV

ϕ means
increasing (decreasing) the value of model parameter ϕ would increase (decrease) the value
of RV . It is found, from Figure 2, that the most sensitive parameter to increasing RV is
ε and followed by β, βδ, µ and aσ, respectively. On the other hand, the most sensitive
parameter to decreasingRV is φ and followed by τ, γ, (1− a)σ, and α, respectively. These
study results indicate that the major factors in controlling diphtheria are the rate of vaccine
waning (ε), the transmission rate (β), the rate of infection by asymptomatic individuals
(δβ) and the rate of progression from primary to symptomatic state (aσ), respectively. On
the other hand, the major factors in preventing diphtheria are the rate of vaccination (φ), the
recovery rates for infected individuals (τ), the recovery rate for asymptomatic individuals
(γ) and the rate of progression from primary to asymptomatic state ((1− a)σ), respectively.

The combined effect of two model parameters with respect to RV are explored by
plotting the contour plots ofRV , as shown in Figures 3 and 4. Figure 3 shows a marked de-
crease inRV with increasing the rate of vaccination φ and decreasing the transmission rate
by infected individuals (β) and asymptomatic individuals (δβ). This result interprets that
increasing the rate of vaccination will be decreasing the risk to cause infection by infected
individuals and asymptomatic individuals. Further, increasing φ, the recovered rates of
infected (τ) and asymptomatic individuals (γ) would decrease RV (achieve RV < 1).
Figure 4a,b show that increasing the rate of vaccination φ, the recovered rates of infected (τ)
and asymptomatic individuals (γ) would decreaseRV (achieveRV < 1). On the other
hand, it is observed that RV is not less than unity even though the recovered rates of
infected and asymptomatic individuals are increasing, see Figure 4c.
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Figure 2. Sensitivity indices ofRV to each of the ten different model parameters for the diphtheria-
vaccine model, evaluated at the based line values given in Table 1.
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4.3. Effect of Vaccination Rate

Due to the rate of vaccination φ being most sensitive toRV , the effect of φ on diphtheria
prevalence then is explored with various φ. With the baseline model parameter values
in Table 1, the critical value of vaccination rate for diphtheria elimination is φc = 0.0597
(see (22)), which corresponds to the threshold vaccination coverage level for diphtheria
eradication pc = 0.864 (see (21)). In the following, numerical simulations are illustrated for
φ < φc and φ > φc, respectively.

This verifies that good treatments for infected and asymptomatic individuals are
necessary but insufficient in controlling and preventing diphtheria. Thus, this study
suggests when infected individuals recover, they should get a booster vaccine against
diphtheria. Meanwhile, asymptomatic individuals should get a diphtheria vaccine at an
opportunity or a booster vaccine against diphtheria every 10 years. These causes lead to
an increase in the number of people who need to receive a booster vaccine. Therefore, the
study results verify that a high rate of vaccination would be needed to effectively control
diphtheria spread. The following section will explore the evidence in more detail.

For φ = 0.0618 > φc and the other model parameters given in Table 1, we obtain
RV = 0.9709 < 1. The diphtheria-vaccine model is first simulated with different initial
conditions for all sub-populations. The profiles of all sub-populations are displayed in
Figure 5. It is found that all solutions of a diphtheria-vaccine model approach the correct
disease-free equilibrium irrespective of the initial sizes of the six state variables whenever
RV < 1 as guaranteed by Theorem 2. The phase space of susceptible, vaccinated and
infected individuals is also supported by this study result, see Figure 6. Therefore, it is
verified that diphtheria is eradicated whenever φ > φc is guaranteed by Lemma 2. Further,
it is found that even the profiles of infectious populations decline to zero irrespective of the
initial sizes of all state variables, see Figure 5c–e, the profiles of vaccinated individuals are
slowest convergent to their steady state (see Figure 5b and confirmed in Figure 6). This is
due to the effect of the fluctuations of the initial sizes of sub-populations, especially the
initial size of vaccinated individuals, that impact the effectiveness of vaccination strategy
which will investigate in the next section.

For φ = 0.0406 < φc and the other model parameters given in Table 1, we obtain
RV = 1.3826 > 1. Figures 7 and 8 show all solutions of the diphtheria-vaccine model
approach to a unique endemic equilibrium for different initial sizes of sub-populations
whenever RV > 1. It is seen that when all sub-populations are varied at the initial time
will be effective in the fluctuation of infectious populations in the sense that the number
of infected individuals found is faster or slower, see Figure 7d,e. This result indicates that
diphtheria still persists in the community. It is also observed that the fluctuations of initial
sizes of susceptible and vaccinated individuals (see Figure 7a,b) impact increasing the num-
ber of infectious populations (infected and asymptomatic individuals), which eventually
would increase the number of recovered populations, see Figure 7f. Thus, if recovered
individuals get the diphtheria vaccine, they will move to the vaccinated class, that is, the
vaccination coverage is maintained. However, if this population does not get the diphtheria
vaccine, they will become susceptible to diphtheria which would increase the number of
infected and asymptomatic individuals. Therefore, it can be concluded that diphtheria
persists in the community wheneverRV > 1; that is, φ < φc as in line with Theorem 5 and
Lemma 3. Moreover, the vaccination strategy is effective if the rate of vaccination is equal
to or greater than the threshold value level needed for diphtheria elimination.
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Figure 5. Time series plots of all sub-populations produced by a diphtheria-vaccine model (1) with
different initial conditions of state variables. The parameter values used are given in Table 1 with
φ = 0.0618 > φc so that RV = 0.9709 < 1. (a) Profiles of susceptible individuals; (b) Profiles of
vaccinated individuals; (c) Profiles of exposed individuals; (d) Profiles of asymptomatic individuals;
(e) Profiles of infected individuals; (f) Profiles of recovered individuals.
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Figure 6. Phase space of susceptible, vaccinated and infected individuals produced by a diphtheria-
vaccine model with different initial conditions of state variables. The parameter values used are given
in Table 1 with φ = 0.0618 > φc so thatRV = 0.9709 < 1.
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Figure 7. Time series plots of all sub-populations produced by a diphtheria-vaccine model with
different initial conditions of all state variables. The parameter values used are given in Table 1
with φ = 0.0406 < φc so that RV = 1.3826 > 1. (a) Profile of susceptible individuals; (b) Profile of
vaccinated individuals; (c) Profile of exposed individuals; (d) Profile of asymptomatic individuals; (e)
Profile of infected individuals; (f) Profile of recovered individuals.
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Figure 8. Phase space of susceptible, vaccinated and infected individuals produced by a diphtheria-
vaccine model with different initial conditions of all state variables. The parameter values used are
given in Table 1 with φ = 0.0406 < φc so thatRV = 1.3826 > 1.

4.4. Effect of Asymptomatic Individuals on Spreading Diphtheria

The results obtained in Section 4.2 reveal that the rate of progression from primary to
asymptomatic state (ãσ) is one of the main factors to decrease (or increase) the diphtheria
prevalence. To investigate the effect of asymptomatic individuals on spreading diphtheria, the
diphtheria-vaccine model is then simulated using the baseline parameter values in Table 1
and various ãσ. With the baseline parameter values in Table 1, φ = 0.0406, then we obtain the
baseline values: RV = 1.3826 > 1, ãσ = 2.7, φc = 0.0597 and pc = 0.864, respectively. The
value ãσ is chosen to be 5.94, 4.26, 2.7, 2.1, 1.26, which correspond to the incubation period of
asymptomatic individuals for 5,7,11,14 and 24 days, respectively.

Let S∗, V∗, E∗, A∗, I∗ and R∗ be the number of sub-populations at steady state. Further,
let p̃ = V∗

S∗+V∗ represents the vaccination proportion induced by the rate of vaccination
φ = 0.0406. The results in Table 2 show that as ãσ increase, it is found thatRV is decreased
resulting in decreasing the numbers of E∗ and I∗, while the number of A∗ increase. These
results indicate that the diphtheria prevalence is decreased, but not eradicated. Further, the
results in Table 2 also show increasing ãσ has an impact on decreasing the threshold values of
φc, pc, and p̃. Although p̃ is decreased, it is less than pc which is caused by φ = 0.0406 less
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than each φc. To support these findings, the model is simulated with the parameters given
in Table 1 and p = 0.812, which corresponds to the 81.2% vaccination coverage of DTP5
(Diphthera –Tetanus–Pertussis Vaccine for only children younger than 7 years old [78]) in
Thailand 2017. The dynamics of the fraction of asymptomatic and infected individuals
(denoted the A/N and I/N) are shown in Figure 9. It is found, from Figure 9c,d, that
diphtheria is eliminated for approximately 3 years, which is quite a short period. When %p
increases to 83.8%, 84.6% and 84.8%, it is found that the timing of eliminated diphtheria
is eliminated for approximately 6, 9, and 11 years, respectively. To explore the cause of
this finding, the effects of p = 0.812 and p = 0.846 are compared in the first year after
immunization. For p = 0.812, it is found that the I/N decreases at the beginning, then
continuously increases after approximately two months, see a red curve in Figure 9b. This
is caused by continuously increasing the A/N, see a red curve in Figure 9a. However, the
values of the A/N and I/N are quite small compared with the values at the beginning of
the first epidemic curve after 36 months, see a red curve in Figure 9c,d.

This is due to asymptomatic carriers contributing to the spread of the disease, which is
the cause of covert infections in a community in that time period. In addition, children get
DTP5 at 4–6 years old and Td (Tetanus, Diphtheria Vaccine for children 7 years and older,
adolescents and adults [79]) dose at 11–12 years old, the DTP5 coverage is the cause to have
a gap of age groups that will become a risk group for Td vaccine dose [6]. Therefore, the
study results verify that asymptomatic individuals are influential in the effectiveness of the
vaccination strategy.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−9

F
ra

c
ti
o
n
 o

f 
A

s
y
m

p
to

m
a
ti
c
 P

o
p
u
la

ti
o
n

Times (months)

 

 

81.2% DTP5(baseline)

84.6% DTP5

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−9

F
ra

c
ti
o
n
 o

f 
In

fe
c
te

d
 P

o
p
u
la

ti
o
n

Times (months)

 

 

81.2% DTP5(baseline)

84.6% DTP5

(b)

0 12 24 36 48 60 72 84 96 108 120 132 144 156
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

F
ra

c
ti
o

n
 o

f 
A

s
y
m

p
to

m
a

ti
c
 P

o
p

u
la

ti
o

n

Times (months)

 

 

81.2% DTP5(baseline)

83.8% DTP5

84.6% DTP5

84.8% DTP5

(c)

0 12 24 36 48 60 72 84 96 108 120 132 144 156
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

F
ra

c
ti
o

n
 o

f 
In

fe
c
te

d
 P

o
p

u
la

ti
o

n

Times (months)

 

 

81.2% DTP5(baseline)

83.8% DTP5

84.6% DTP5

84.8% DTP5

(d)

Figure 9. Time series plots showing the impact of a DTP5 coverage on the proportions of infectious
populations predicted by the diphtheria-vaccine model. The model parameter values used are
given in Table 1: (a) Dynamics at first year of vaccination; (b) Dynamics at first year of vaccination;
(c) Dynamics after a DTP5 immunization; (d) Dynamics after a DTP5 immunization.
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Table 2. Effect of ãσ onRV , φc, pc, p̃ and the number of diphtheria cases at steady state.

ãσ RV φc pc p̃ E∗ A∗ I∗

5.94 1.1398 0.0476 0.8351 0.8347 1 4 0

4.26 1.2657 0.0539 0.8515 0.8509 3 6 2

2.70 1.3826 0.0597 0.8640 0.8633 4 5 6

2.10 1.4276 0.0619 0.8683 0.8675 4 4 7

1.26 1.4905 0.0651 0.8739 0.8730 5 3 10

5. Discussion and Conclusions

To maintain adequate levels of controlling diphtheria when immunity from previous
doses wanes off and the recommended booster vaccinations in different years of ages [80].
This fact, the reported diphtheria cases and the proportion of vaccinated individuals
have been increasingly interested in the long-term effects of vaccination on population
immunity [5,6]. The diphtheria model with asymptomatic infection, logistic growth, and
vaccination is formulated for assessing the impact of imperfect vaccination coverage against
the diphtheria outbreak. The proposed model is rigorously analyzed to gain insights into
its dynamical features and the main results obtained are as follows.

(i) The threshold value called the basic reproductive number under vaccination of the
diphtheria-vaccine model, denoted by RV , is derived by using the next generation
method. It is found that the disease-free equilibrium of the diphtheria-vaccine model
is globally asymptomatically stable whenever RV ≤ 1 in the sense that routine
vaccination against diphtheria can lead to the effective control or elimination of
diphtheria if it can bring (and maintain) RV ≤ 1. Furthermore, the critical rate of
vaccination (φc) and the threshold vaccine-induced community herd immunity of
the proposed model (pc) are derived. It is found that pc is identical to the formula
of herd immunity (also called community immunity) which is a new result found in
this study.

(ii) Based on constructing the suitable Lyapunov functions, it is found that the endemic
equilibrium of the proposed model is globally asymptotically stable wheneverRV > 1.
The epidemiological implication of these results is that the community transmission
of diphtheria can be significantly curtailed ifRV ≤ 1 and the disease still persists in
the community if RV > 1, that is, the vaccination program adopted is not effective.
The implication of global stability of equilibrium is verified that the solution of the
diphtheria-vaccine model converges to the correct equilibria irrespective of the ini-
tial sizes of the six state variables. Our simulations show that if the initial sizes of
sub-populations have fluctuated, they will affect fast (slow) convergence to a correct
equilibrium. This finding is interesting because the initial sizes of sub-populations, es-
pecially, susceptible and vaccinated individuals are major factors in either eliminating
diphtheria or controlling diphtheria spreads before the next vaccine type is taken.

(iii) The appropriate model parameters given in Table 1 are obtained by comparing the cu-
mulative number of diphtheria cases produced by the diphtheria-vaccine model with
the real cases in Thailand in 2018. The sensitivity analysis ofRV has demonstrated that
the rate of vaccination is the most sensitive toRV . Contour plots ofRV suggest the
combined control measures should be addressed on the rate of vaccination and the in-
cubation period of asymptomatic individuals. Further, we consider the asymptomatic
class as a separate population because this population can spread the infection without
being sick themselves. The study results obtained indicate that the incubation period
of asymptomatic individuals has an impact on the optimal vaccination coverage level
needed for diphtheria eradication, see Table 2. Our simulations also show that when
the vaccination coverage level is greater than the threshold value φc, asymptomatic
individuals still persist in the community for some period of time, even though the
infected individuals decrease and are eventually eliminated. In epidemiology, this
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result supports the possibility of asymptomatic infection being related to antibody
decay due to waning and not boosting immunity [54]. Although it is well known that
a low rate of vaccination has had an impact on the vaccination proportion resulting in
the duration of diphtheria protection, this is the first time to investigate the impact of
asymptomatic infection on the vaccination coverage for the past and recent vaccination
coverage levels have an effect on the duration of diphtheria’s protection, and it is also
the cause of discovering the patients in the different age groups [6]. Therefore, our
study suggests that the officers involving disease control should be concerned not
only with maintaining the coverage level needed for the primary vaccination but they
should be concerned to maintain the boosting vaccination coverage level for all adults
every 10 years at least the threshold coverage level (pc) in order to significantly halt
the spread of diphtheria in the community.

On the other views, with all the international travel in the world these days, it is impor-
tant to keep vaccines, or immunizations, up to date as the asymptomatic population is one
of the main factors that are difficult to control. If this population group travels, diphtheria
will spread quickly. For this reason, the most careful factor of diphtheria disease would
be the traveler, especially inadequately vaccinated people who travel internationally or
have contact with people from less-developed countries. Therefore, the optimal vaccination
coverage for each age group with a transport-related infection needs to be included in the
model, which will be our future work.
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Appendix A. Proof of Theorem 4

Proof. To apply the Centre Manifold theory [81] and Theorem 4.1 in [82],
let x = (x1, x2, x3, x4, x5, x6)

T with S = x1, V = x2, E = x3, A = x4, I = x5, R = x6, so that
N = x1 + x2 + x3 + x4 + x5 + x6. Further, the system (1) is first rewritten in the form

dx
dt

= f (x), (A1)
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where f (x) = ( f1(x), f2(x), f3(x), f4(x), f5(x), f6(x))T ,

f1(x) = rN
(

1− N
K

)
− βx1(δx4 + x5)

N
− k1x1 + εx2,

f2(x) = φx1 + θx6 − k2x2,

f3(x) =
βx1(δx4 + x5)

N
− k3x3, f4(x) = (1− a)σx3 − k4x4,

f5(x) = aσx3 − k5x5, f6(x) = γx4 + τx5 − k6x6.


(A2)

The Jacobian of the system (A1) evaluated at P0 is given by

J(P0) =

[
A B
C D

]
, (A3)

where k8 = r− 2µ,

A =

 −(k1 + k8) ε− k8 −k8
φ −k2 0
0 0 −k3

, B =


− βδk2 + k7k8

k7
− β k2 + k7k8

k7
−k8

0 0 θ

βδk2

k7

βk2

k7
0

,

C =

 0 0 ãσ
0 0 aσ
0 0 0

 and D =

 −k4 0 0
0 −k5 0
γ τ −k6

, respectively.

It follows, from (5), thatRV = 1 is equivalent to

β = β∗ =
k3k4k5k7

k2σ(ak4 + ãδk5)
,

and the DFE, P0, is locally asymptotically stable when β < β∗ and unstable when β > β∗ as
guaranteed by Theorem 1. Hence, β = β∗ is a bifurcation parameter. Furthermore, it can be
shown that the system (A1) with β = β∗ has at least one non-hyperbolic equilibrium point;
that is, the assumption (A1) of Theorem 4.1 in [82] is verified. Using the notations in [82],
the right eigenvector of J(P0) with β = β∗ is given by w = [w1, w2, w3, w4, w5, w6]

T , where

w1 = − (((k5 ã + ak4)σεθ + k2k4k5k6 + σk4(k2 + θ)(µ + τ + ãα))r̃ + aσαk2k4k6)w5

ar̃σk4k6k7
,

w2 =
((φaτ + Q1)θσr̃− (σ(k6 + γ)(ãk5 + aτ) + k4k6(k5 + aσ))φr̃− aφσαk4k6)w5

ar̃σk4k6k7
,

w3 =
k5w5

aσ
, w4 =

ãk5w5

ak4
, w6 =

(γ ãk5 + aτk4)w5

ak4k6
, w5 = w5 > 0.


(A4)

Further, the left eigenvector of J(P0) with β = β∗ is given by v = [v1, v2, v3, v4, v5, v6],
where

v1 = v2 = v6 = 0, v3 =
(ak4 + ãδk5)σv5

k3k4
, v4 =

δk5v5

k4
, v5 = v5 > 0. (A5)

Finally, evaluating the associated non-zero partial derivatives of fi, i = 1, 2, ..., 6 (given
in (A2)) at P0 with β = β∗ and using the expressions in (A4) and (A5), the coefficients A
and B defined in [82] are given by
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A =
6

∑
k,i,j=1

υkωiωj
∂2 fk

∂xi∂xj
(P0, β∗),

= −
2rk5Q2(σk2k6(ak4 + ãk5) + Q1(k2 + θ) + k2k4k5k6)v5w2

5
r̃σk2k2

4k6a2K
,

B =
6

∑
k,i=1

υkωi
∂2 fk

∂xi∂β∗
(P0, β∗)

=
Q2

2σk2w5v5

ak3k2
4k7

,

Clearly, A is negative and B is positive. By Theorem 3 and Theorem 4.1 in [82], the
unique endemic equilibrium point P∗, therefore, is locally asymptotically stable whenever
RV > 1 and β > β∗ with β close to β∗.
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