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Abstract: The estimation of crowd density is crucial for applications such as autonomous driving,
visual surveillance, crowd control, public space planning, and warning visually distracted drivers
prior to an accident. Having strong translational, reflective, and scale symmetry, models for estimating
the density of a crowd yield an encouraging result. However, dynamic scenes with perspective
distortions and rapidly changing spatial and temporal domains still present obstacles. The main
reasons for this are the dynamic nature of a scene and the difficulty of representing and incorporating
the feature space of objects of varying sizes into a prediction model. To overcome the aforementioned
issues, this paper proposes a parallel multi-size receptive field units framework that leverages
the majority of the CNN layer’s features, allowing for the representation and participation in the
model prediction of the features of objects of all sizes. The proposed method utilizes features
generated from lower to higher layers. As a result, different object scales can be handled at different
framework depths, and various environmental densities can be estimated. However, the inclusion of
the vast majority of layer features in the prediction model has a number of negative effects on the
prediction’s outcome. Asymmetric non-local attention and the channel weighting module of a feature
map are proposed to handle noise and background details and re-weight each channel to make it
more sensitive to important features while ignoring irrelevant ones, respectively. While the output
predictions of some layers have high bias and low variance, those of other layers have low bias and
high variance. Using stack ensemble meta-learning, we combine individual predictions made with
lower-layer features and higher-layer features to improve prediction while balancing the tradeoff
between bias and variance. The UCF CC 50 dataset and the ShanghaiTech dataset have both been
subjected to extensive testing. The results of the experiments indicate that the proposed method is
effective for dense distributions and objects of various sizes.

Keywords: crowd density estimation; parallel multi-size receptive field; ensemble learning for crowd
estimation; self-attention with crowd estimation

1. Introduction

Crowd density estimation is a critical problem in computer vision that significantly
impacts applications such as autonomous driving, visual surveillance, crowd management,
public space design, and warning visually distracted drivers before an accident occurs.
In recent years, there has been an increase in research into crowd density estimation,
with an increase in the number of researchers attempting to design more complex projects
to address the issue. Studies show that a maximum threshold has not been reached despite
extensive research on crowd density estimation. The irregular scale of objects in an image
due to occlusion or an object’s varying distance from a camera and varying scene density
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are the leading causes of the current state-of-the-art challenge. Fundamentally, there are two
different approaches to deal with the problem, i.e., traditional methods such as pixel-level
and object-level density estimation and a deep learning-based approach.

The traditional methods employ low-level feature processing algorithms. Several
crowd density estimations have been proposed using this approach considering object
distribution in the scene, such as sparse density and dense crowd scenes. The works [1–3]
apply background subtraction and edge detection for congested crowd density estimation.
Here, they explore that the linear combination of parameters such as the number of
pixels after segmentation (e.g., number of non-background pixels) and the number of
thinned edge pixels determine the number of people in the scene. Their approach also
comprises geometrical correction due to camera perspectives to account that the same
person’s dimensions may change at different locations. When a substantial occlusion
occurs, the linear function that maps pixel counts to the number of objects in the scene
fails. In the other problem domain, sparse density estimation, the proposed algorithms
focus on counting individual objects in a scene by analyzing image texture and detecting
an individual object. Algorithms that rely on texture features are investigated at a coarser
grain than pixel-based methods. The works [4–6] estimate the objectness score using
texture analysis procedures such asa gray-level dependency matrix, straight line segments,
Fourier analysis, fractal dimension, and texture analysis. Finally, classifiers such as neural
networks, Bayesian models, and SVMs determine whether a specific scene region contains
a required object.

The second approach is based on the convolutional neural network (CNN); the pro-
posed techniques in this approach can be classified as detection or regression-based.
A detection-based approach [7–9] locates objects in the scene using detectors, and the
number of detected objects is then used to calculate the crowd count. The detection-based
methods correctly work for an ideal scene with sparse crowd density and large-scale objects.
Regression-based methods [10–15] compute a crowd’s density without explicitly detecting
and localizing each individual. They primarily learn the mapping between a feature of
image patches to crowd counts directly. Regression-based methods typically perform well
in crowded patches because they can capture general density information while taking
advantage of the rich context in local patches. Furthermore, several modules are incor-
porated into standard CNN regression and classification models to improve the density
estimation accuracy. For example, multi-column architectures [16] are a popular solution.
In a multi-column architecture, each branch layer has a different kernel size, architecture
depth, and cost function. Finally, for a better density estimation result, the output from
each branch layer is combined.

The current state-of-the-art performances still have a gap for a dynamic scene with
changing spatial and temporal domains and a background with varying size objects.
For example, image patches of varying density are standard in snapshots. Some areas
of a location have dense crowds, while others have sparse crowds, and still, others have
only a background. A scene, on the other hand, changes over time. For example, a street
may be congested with people or cars during the working day, especially in the morning
and evening. However, the exact location may be devoid of people or vehicles during the
holiday. The other challenge is a scene with very small to very large objects.

We propose a framework for the problem mentioned above by leveraging CNN’s
scale separation and interaction structure. CNN contains cascading layers of convolution,
nonlinearity, and dimension reduction operations. A convolution processes information
in a local neighborhood, but the cascading of convolution layers causes the relationship
between image features to have long-term modeling dependencies in images. This depen-
dency results in complex geometrical shapes aggregated from the tiniest neighborhood,
progressively aggregated broader and broader. CNN’s successive nonlinearity and pooling
operations diminish the feature strength of small or occluded objects, resulting in only
objects with dominant feature maps such as large-scale objects, and a scene with a sparse
object distribution participating in a crowd density estimation function. Therefore, to han-
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dle all object scales and the dynamic nature of a scene, we propose a parallel multi-scale
receptive field framework that uses feature maps generated from the framework’s various
depths. We examine the framework prediction accuracy using the feature maps derived
from the framework’s lower layers.

The experiments show that the framework prediction is overestimated compared to the
background truth. We explore that overrating is caused by a weak interrelationship between
receptive field units and high background noise at lower layers. On the other hand, when
the framework’s higher layers feature maps are used as input for the density estimation
function, the framework predicts an underrated value compared to the background truth.
Since successive pooling and convolution operations on small-size objects cause, object’s
feature maps do not participate in prediction because their signals almost contain no
information at the end of the framework. Accordingly, to take advantage of each layer and
tackle the problems related to each layer, we employ non-local attention [17] and global
attention [18] on the lower and higher layers of the framework, respectively. The non-local
attention module creates a long-range interaction between several parts of an image without
deep stacks of convolutional operations, i.e., makes a descendant hierarchy that combines
non-local and local data. The global attention module eliminates the feature map’s depth
containing no feature maps because, at the higher layers, most feature maps’ depth has
weak signals. Eventually, we propose ensemble stack meta-learning of all branch’s outputs
to predict crowd density, as shown in Figure 1. The main contributions made in this work
are as follows:

1. We propose a parallel multi-scale receptive field framework that uses feature maps
generated by the framework’s various depths. In addition, we also investigate the
effect of the attention operation on crowd density prediction in a dynamic scene with
objects of various scales.

2. We propose an ensemble stack meta-learning that best combines the framework
outputs’ predictions resulting from various depth feature maps. As a result, the frame-
work can use the capabilities of a variety of high-performing layers to make predic-
tions that outperform any single layer’s feature maps.

3. We examine how a CNN’s scale separation and integration properties can aid crowd
density prediction with varying scales, which means that a high-dimensional feature
of an image can be projected to a low-dimensional real value, such as the number of
people in a crowd.

4. Detail experiments and analyses are conducted on the Shanghai Tech dataset [19] and
UCF CC 50 [20]. Our approach achieves a MAE of 263 and an MSE of 398.2 on the
UCF CC 50 dataset.

We organized the rest of the paper as follows: we describe related work in Section 2.
Then, the proposed architecture and the description of its components are presented in
Section 3. Subsequently, we conduct detailed experiments, analyze the result, and conduct
an ablation study. The last section summarizes the paper and makes some directions for
further research.
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Figure 1. Representation of the proposed architecture. The first three (1–3) depth layers of framework-
generated features are processed by the non-local operation module (NLM), while the last two (4–5)
depth layers are processed by the feature map’s channel weight module (FCW). Stacked ensemble
meta-learning ultimately integrates each depth’s predictions (SEML).

2. Related Works

Various approaches have been proposed to estimate crowd density; the previous
studies employ image processing techniques. In this approach, after removing the image
background and thinning the edges, the number of individual objects in the image was
approximated using linear regression of the number of pixels [21–23]. The other methods
relied on the detection of individual objects. This method is not suitable for dense crowds
because not everything will face the camera, and there will be a lot of occlusions. This
section looks into CNN-based crowd counting methods, including fundamental CNN-
based, multi-column-based, and single-column-based methods.

2.1. Fundamental CNN-Based Methods

This network structure utilizes the core CNN layers without integrating additional
feature data. They are typically included in the first work that involves using CNN for
density prediction and crowd count [24–26]. It works well in a setting with a sparse
distribution of objects and large object sizes, but for other settings, it gives a worse result.

2.2. Multi-Column Based Method

Because typical network topologies utilize a large number of columns to record multi-
scale information corresponding to a wide range of receptive fields, the precision of crowd
counting is exceptional. This contributes to the remarkable precision with which crowd
counting can be performed. Similar to the concepts of Mixture of Counting CNNs (MoC-
CNN) [27,28] and contextual pyramid CNNs (CP-CNN) [29], scale-aware attention net-
works (SAAN) [30] generate high-quality density maps by fusing global and local con-
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textual information. In spite of this, it is equipped with a visual attention mechanism
that allows it to automatically choose the optimal size for both the global and local image
patch levels. MXML [31] employs a statistical network for the examination of standard
characteristics when conducting an analysis on multiple columns. The mutual learning
method (MML) proposed for use in analyzing individual mini-batch training data is able to
optimize specific columns alternately while maintaining the current state of other columns.
Using a front-end dilated-CNN with variable dilation rates and a back-end adaptive de-
formable convolution, Ref. [32] makes accurate predictions about the locations of objects.
Experiments conducted by Li et al. [33] demonstrated that despite the significant advance-
ments made by these multi-column networks, they still have some shortcomings. This was
demonstrated despite the significant progress made by these networks. A multi-column
CNN-based approach has a number of disadvantages, including a lengthy training period,
information redundancy due to different branches, the requirement for density level classi-
fiers prior to sending images into networks, and the consumption of numerous parameters
for density level classifiers as opposed to preparing them for the generation of final density
maps. These disadvantages can be mitigated by employing a CNN-based method with
a single column. As a result, a large number of researchers are encouraged to utilize net-
works that are easier to use, more productive, and more efficient. As a result, new network
architectures based on a single column are emerging to meet the requirements of more
challenging crowd-counting scenarios.

2.3. Single-Column Based Methods

The principle of single-column network architectures [34–41] is to avoid increasing
network complexity by deploying a single CNN with a deeper depth as opposed to the
bloated structure of multi-column architectures. Architecture and training efficiency have
contributed to the recent rise in popularity of single-column network layouts. Our technique
is a part of a single-column architecture. We use the features of each layer of the base model
(in our case, VGG-16) for prediction. Despite the fact that each layer’s features are capable of
representing different object scales and densities, some layers have high background noise
while others have low feature values. Therefore, we developed a module to circumvent
this restriction. The final component, The stack ensemble meta-learning module, allows the
framework predictions for each layer to contribute to the final prediction in proportion to
their trust or estimated performance.

3. The Proposed Architecture

This section contains our proposed architecture, called parallel multi-size receptive fields
and stack ensemble meta-learning (PMSRML), its components, basic design ideas, experi-
ments and analyses, and an ablation test. Non-local attention, feature map channel weights,
and stack ensemble meta-learning are the three modules in the proposed architecture.

3.1. The CNN Scales Separation and Integration Property

The CNN scale separation mechanism enables all CNN frameworks to approximate a
low-dimensional regression output f (x) for a high-dimensional input signal x [42]. This
scale separation nature of a CNN enables each object scale in an image to be represented in
various depths of CNN layers. Each scale of objects in an image is represented in various
depths of CNN layers. Due to the fact that convolutional and recurrent operations process
a local neighborhood in space, the network’s lower layers are responsible for representing
smaller-scaled objects.

The cascade of convolution operations creates long-range dependencies between
receptive field units, resulting in large objects representing the higher layers. The non-
linearity operations [43] provide an interaction across a scale resulting in objects in an
image represented in different depths of a framework.

Figure 2 is a representation of how a scale increases as an input image passes from the
input layer to the output layer of a framework. Here, f is a function (framework), and X is
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the framework’s input, which has a size of Rd pixels. The input is processed by a cascade of
convolution layers followed by nonlinear operations (ρl1, ρl2, . . . ρlj). At the very first layers
of the framework, information is represented by individual pixels or by the integration
of several neighboring pixels. Then, a cascading of convolution layers and nonlinear
operation take a collection of pixels and turn them into a meaningful representation of an
object. As a consequence of this, the aforementioned form of computational architecture
makes it possible to separate scales and transforms a high-dimensional input value, X,
into a one-dimensional output value, f (X), as a result of an attraction of a piece of signal,
as shown in Figure 3.

Figure 2. Representation of how to scale growth as a framework’s layer increases, with small scales
on the lower layer and large scales on the higher level. As a result, all CNN frameworks may
approximate a low-dimensional regression output f(x ) for a high-dimensional input signal x using
the CNN scale separation method.

Figure 3. Representation of the interaction graph that exists across all of the framework’s layers.
As shown in the figure on the left, the raw image axis (u1, u2) is made up of scattered pixels. The image
is then processed by a convolution layer, which reduces a group of adjacent pixels to a single value,
as shown in the illustration in the middle of the figure. Large objects are generated by interacting
with successive CNN layers, which represent interactions between small objects. Therefore, in order
to estimate density, nearly all layers of the framework are taken into account.

3.2. Non-Local Attention Module

Using each layer’s features for the prediction can help accommodate a wide variety
of object scales and densities; however, these features are plagued by a large number of
bugs that negatively impact the framework’s performance and increase resource utilization.
A receptive field unit value in the lower layers is obtained by averaging the values of
neighboring pixels with similar grey-level values. The issue with this unit output is that
approximating only grey level values in a single pixel is not robust to noise and is too
small to consider detail and structure. This limitation allows noise and background details
to participate in the framework’s crowd density estimation, resulting in incorrect output.
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As a result, we employ non-local operations in the framework’s lower layers [17,44]. (i.e.,
the output of layers one, two, and three, as shown in Figure 1).

The non-local operation module improves feature maps by allowing a value of each
receptive field unit to interact with all other values in feature maps, resulting in non-local
behavior for the receptive’s unit value, which means it is robust to noise and can handle
detail structure without cascading of convolution operations. A global reference for each
pixel-level prediction is defined in Equation (1)

yi =
1

C(X) ∑
∀j

f
(
xi, xj

)
g
(
xj
)

(1)

where each output position value is determined by the covariance between the expected
pixel and every other pixel, where each pixel is assumed to be a random variable. The re-
stored pixel is simply a weighted sum of all pixel values, where the weights represent
the relationship between each pixel and the target pixel. Here, i is the output position’s
index, and j is the index that enumerates all possible positions. x is the input image, yi
is the output at index i and y is the output signal of the same size as x. A function f ,
which is defined in Equation (2), calculates a scalar between i and all j. The function g
computes a representation of the input signal at j is defined in Equation (3); factor C(X) is
the normalization factor, as C(x) = N, where N is the number of positions in x. Several
variants of functions f and g can be instantiated for a reader interested in investigating how
various forms of functions f and g can be referred to [17,45]; for our problem, the frame-
work’s predicted output outperforms other instantiated functions when f is defined as a
dot similarly function.

f
(
xi, xj

)
= ReLU

(
wT

f [ θ(xi); φ
(
xj
)
]
)

(2)

g
(
xj
)
= wg · xj (3)

where wg is a weight matrix to be learned. It is implemented as a 1× 1 convolution in
space. As shown in Figure 1 of the red container, here θ(xi) = Wθ xi and φ

(
xj
)
= Wφxj . wT

f
is a weight vector that projects the concatenated vector to a scalar.

3.3. Feature Map’s Channels Weigh Module

We investigate the presence of a weak signal in the majority of feature maps of each
higher layer, which is not significant but increases computational complexity. Figure 4
depicts the distribution of channel signals in the higher layers of the feature map; approx-
imately half of the channel signals have zero value output. As a result, the squeeze and
excitation operation [18] is adopted to the proposed framework. This operation contains a
parameter that appropriately re-weights each channel, making it more sensitive to signif-
icant features while ignoring irrelevant features. The feature maps pass through several
operators, as shown in Figure 1 of a green container, including global average pooling
(GAP), which is used to extract global information from each feature map channel, and ex-
citation operators, which is a series of a fully connected layer, Relu, a fully connected layer,
and Sigmoid. Eventually, the module output then scales the input feature maps; during
the scaling operation, the original feature map and the output of the sigmoid activation
function are multiplied element by element.
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Figure 4. Each row, which displays a sample signal distribution, represents the framework’s first,
second, third, fourth, and fifth depth feature maps. The strength of feature contents in each depth of
the higher layer feature maps is degrading; about half of the depth’s feature comprises merely the
image’s main objects.
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3.4. The Stack Ensemble Meta-Learning

We used feature maps created from various depths as input to test the framework’s
prediction performance. We noticed that some layers’ prediction output has a high variance
and low bias, whereas others have low variance and high bias. As a result, we propose
stack ensemble meta-learning to improve prediction while balancing the tradeoff between
bias and variance. Ensembles are employed to produce greater prediction performance on
a predictive modeling task than a single predictive model [46].

The stack ensemble meta-learning module allows the framework predictions for each
depth to contribute to the final prediction in proportion to their trust or estimated perfor-
mance. Experiments demonstrate that a prediction model that uses features generated
from the shallow to deep layers of a model yields distinct results. With approvals for the
use of ensembles of models, we could make more accurate predictions. We use features
derived from the framework’s layers 1, 2, and 3 as depicted in Figure 1. for the prediction
of density, the experimental evaluation demonstrates that the prediction of the framework
overestimates the underlying reality. Low interrelationships between receptor field units
and a high level of noise in the lower layers are responsible for overrating, according to
our preliminary findings. In contrast, when the density estimation function is provided
to feature from the framework’s bottom layers as shown in Figure 1 (4, 5) feature maps,
the framework predicts a value that is less than the true value. Thus, to get a better
prediction and generalization we employed the stack ensemble meta-learning. Stacked
generalization is an ensemble technique that seeks a diverse group of members by varying
the model types fitted to the training data and combining them with a model’s predictions.
Stacking is a general procedure in which learners are instructed to group together. Individ-
ual learners are called first-level learners, while combined learners are called second-level
learners or meta-learners. First, the row of data is provided as input to the base model.
Next, a higher layer and lower layer feature pass through the non-local operation and
feature map’s channel weight module. The stack ensemble meta-model then discovers
(SEML) how to optimally combine the predictions of the non-local operation module and
the feature map’s channel weight module. The predictions from both models are then
concatenated into a vector and supplied to the SEML as input. The SEML then generates a
conclusive forecast for the row of data. The output of this module generates more precise
predictions and generalizations than its sub-modules, as defined by Equation (4).

y =
[
W1 W2

]([x1
x2

])
+

[
β1
β2

]
(4)

where W1 and W2 represent the weights learned by SEML, and x1 and x2 represent the
output from the sub-models. β1 and β2 are the bias parameters. A modeling averaging
ensemble combines the prediction from each model equally and frequently yields better
average performance than a single model. There are times when we would like less-
competent models to contribute more to an ensemble prediction and times when we would
like less-competent models to contribute more. Stack ensemble meta-learning is a method
that allows multiple models to contribute to a prediction based on their reliability or
estimated performance.

4. Experiments and Results

We evaluated the proposed framework on a standard challenging dataset. We will
start by briefly introducing two standard datasets. Following that, we set our method to
test on these datasets.

UCF CC 50 [20] dataset: This dataset comprises 50 grayscale images, each with a
head annotation. The number of persons per image ranges from 94 to 4543, with an
average of 1280 people per image. Images from various contexts, such as concerts, political
rallies, religious meetings, stadiums, and so on, are included in the dataset. We use 5-fold
cross-validation to assess the performance of our method.
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ShanghaiTech [19] dataset: A collection of 1198 annotated images with 330,165 people
with head center annotations. This dataset is divided into two units: Part A and Part B.
The crowd images in Part B are sparser than in Part A. We use 300 photos for training and
182 images for testing in Part A, and 400 images for training and 316 images for testing in
Part B, as described in [19]. Table 1 contains a detailed summary of both datasets.

Table 1. The following dataset statistics assess the framework’s performance. The number of
images (no. images) is the total number of images; min, max, and avg are the minimum, maximum,
and average pedestrian numbers per image, respectively.

Dataset Resolution No. Images Min Max Avg Total

ShanghaiTech PartA different 482 33 3139 501.4 241,677
PartB 768 × 1024 716 9 578 123.6 88,488

UCF CC 50 different 50 94 4543 1279.5 63,974

4.1. Implementation Details and Evaluation Metrics

Our proposed method was evaluated on two major crowd counting datasets [19,20]
collected from real-world surveillance cameras. The proposed model was optimized with
200 epochs for all datasets. We set the initial learning rate at 1× 10−3 and dropped it to
1× 10−5 after 100 epochs. We utilized 5-fold cross-validation to estimate the ability of the
model to generalize to new data. To balance the bias-variance trade-off and to improve the
generalization of the model, weight constraints in conjunction with dropout (0.5) at the
dense layer were applied, and the constraint was applied after every weight update.

To increase the size of the training dataset, each training sample was augmented
with 0.3% noise. Adding noise to input samples is thus a straightforward method of data
augmentation. Furthermore, the number of training samples for the regression network
is increased. As in previous works [33,47,48], mean absolute error (also known as MAE)
and mean squared error (MSE) are two of the metrics that we use for evaluation. The MAE
metric is used to measure how accurate the algorithm is at estimating the size of a crowd,
while the MSE metric is used to measure how well the estimation is performed. Ground
truth annotations for each head center in the standard benchmarks are included in each
image in the datasets.

MAE =
1
N

N

∑
i=1
|FY −Yi| , MSE =

1
N

N

∑
i=1

√
(FY −Yi)

2 (5)

where N is the number of test images, FY denotes the number of people in the ith image,
and Yi denotes the estimated number of people in the ith image. MAE, in general, reflects
the accuracy of the estimates, whereas MSE indicates the robustness of the estimations [49].

4.2. Experimental Result on UCF CC 50

Table 2 compares the proposed approach with other state-of-the-art methods on the
UCF CC 50 dataset. Utilizing all of an image’s foreground features is the standard method
for making precise predictions with minimal computational complexity. Nonetheless, when
using a CNN for feature extraction, several essential features are discarded during feature
propagation as a result of successive pooling and convolution operations; in particular,
feature maps for small-sized objects do not contribute to prediction because their signals
contain almost no information at the end of the framework. Therefore, numerous strategies
have been proposed to capitalize on each layer’s benefits and address each layer’s issues.

A dilated convolution is implemented in the method from [33]. This method processes
C feature maps by incrementally aggregating contextual data at increasing scales without
degrading resolution. It is a viable replacement for the pooling player, resulting in a
significant improvement in accuracy. Nevertheless, there are approximately 64C2 network
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parameters in total; the alternative method [31] employs three columns of different-sized
filters to obtain distinct scale characteristics.

In other words, it is analogous to adding a statistical network to determine how much
information each column contains about the other. Multi-column learning can be facilitated
by decreasing the volume of mutual information. Each column in the McML mutual
learning scheme is optimized, while the remaining columns in each training data set remain
unchanged. Gating CNN employs a visual attention mechanism to automatically select
a particular scale at both the global image level and the local image patch level. This is
accomplished by looking at the entire image. The first step in the process of adaptively
selecting expert CNNs is to assign weights to the predictions of the expert CNNs. This
allows the desired result to be achieved. This strategy is comparable to ours in terms
of utilizing an attention mechanism to select specific features. Nonetheless, this method
employs multiple parallel CNN models, which increases computational complexity, and the
results of each parallel model are given equal weight, i.e., the result is the mean of all models.
This contrasts with our procedure, which assigns a weight to each set of features based on
their contribution.

Table 2. Comparison of the proposed framework with other state-of-the-art on the UCF CC 50 dataset.

Method MAE MSE

Lempitsky et al. [50] 493.4 487.1

Zhang et al. [51] 467.0 498.5

Idrees et al. [20] 419.5.0 541.6

Boominathan et al. [47] 452.5 -

Zhang et al. [19] 377.6 509.1

Onoro et al. [52] 333.7 425.3

Sam et al. [53] 318.1 439.2

SaCNN [35] 314.9 424.8

MoC-CNN [27] 361.7 493.5

ic-CNN + McML [31] 242.9 357

Csrnet [33] 266.1 397.5

PMSRML 263 398 .2

The results presented in Table 2 are derived from a review of the pertinent literature,
and their validation procedures vary. For example, Ref. [50] used k-means on SIFT descrip-
tors extracted from the holdout 20 images, and a codebook of K entries were constructed.
Then, each pixel was represented by a vector of length K, which is 1 at the dimension corre-
sponding to the entry of the SIFT descriptor at that pixel and 0 for all other dimensions; the
other approach [51] used 5% of the data for testing and the rest for training in addition to
a method for determining the optimal number of training samples. The work presented
in [20] employed 10-fold cross-validation, whereas the work presented in [19,47] utilized
employee hold out validation techniques, and the work [27,31,33]. Apart from the above,
our method employs k-fold cross-validation with varying k values.

4.3. Experimental Result on ShanghaiTech

The ShanghaiTech PartB (SHB) [19] is one of the largest databases that has been
collected in real outdoor scenes and was used as a benchmark for our evaluation exper-
iments. A total of 40 images from the dataset were chosen at random for the purpose of
validation. Results of our analysis and comparison with other cutting-edge approaches
are shown in Table 3. Congested crowds are difficult to estimate using detection-based
frameworks [54,55] because of the wide range in object density and size on the SHB dataset.
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Table 3. Comparison of the proposed framework with other state-of-the-art on ShanghaiTech
PartB dataset.

Method MAE MSE

R-FCN [54] 52.35 70.12

Cross-scene [48] 32.00 49.80

Faster R-CNN [55] 44.5 53.22

FCN [56] 23.89 33.58

Switching-CNN [53] 21.6 31.98

CP-CNN [29] 21.1 30

PMSRML 20.3 30

4.3.1. Individual Input Feature Maps and Their Integration Ablation Analysis

This ablation study examined the individual feature maps’ feature content’s capability
for crowd density estimation and how the percent of the performance improves when all
framework layers are integrated and used for density estimation. Table 4 shows the MSE
and MAE for each layer and their integration on the UCF CC 50 dataset.

Table 4. An ablation investigation of the framework prediction error was conducted for various input
feature maps and their stacking.

Layer MAE MSE

1 523.4 521.1
2 480.5 531.6
3 490.0 498.5
4 452.5 469.4
5 318.1 467.1

Integration of all layer
features 263 398.2

4.3.2. The NLM and SEML Attention Module Ablation Analysis

We experimented without integrating the non-local attention and feature map’s chan-
nel weight modules into the main framework to examine their effects. We note that the
mean square error automatically raises. Noise and background details features participate
in the framework’s crowd density estimation function, resulting in biased prediction, as
shown in Table 5.

Table 5. The MAE and MSE for each module, as well as how they are integrated into the framework
to improve the performance. ShanghaiTech PartB dataset.

The Framework Integrated with MAE MSE

NLM 28.9 44.8
FCW 32 49.8

NLM + FCW 20.3 30

We experimented to determine the effect of NLM and FCW on sparse and crowded
samples; we find that when the lower layer feature is integrated with NLM, it yields
superior results in comparison to FCW. Due to the aggregation of multi-scale contextual
information, they are less accurate when applied to dispersed crowds. However, the best
result is produced by the FCW sub-model. All very closed objects in the higher layers of
features are dominated by a large object, resulting in the disappearance of all small-scale
objects’ features. Consequently, only large or dispersed objects can be identified. Conse-
quently, to manage numerous congested areas, we use levels of features to predict crowd
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density. Finally, we weight their prediction results according to their STEM contribution.
In Tables 4 and 5, we display all sub-module integrations.

5. Discussion

In this paper, we discuss the regularity properties of a convolutional neural network
(CNN) that allow a high-dimensional image X ∈ Rn, such as the number of pixels in an
image, to be represented by a low-dimensional image X ∈ R1, which is the number of
crowds in an image. Additionally, the paper investigated how a CNN can recognize objects
of various sizes.

A CNN’s key characteristics of multi-scale, regular deformation and sparseness make
it the optimal tool for handling the dynamically changing nature of crowd density and the
scale of various objects. First, the bottom layers of a CNN aggregate very fine, small-scale
information, which is close neighbor information, and then, through the cascading of
convolutional and sub-sampling operations, they gradually aggregate information on a
larger scale.

This paper predicts a dynamically changing crowd using each layer of a CNN feature
because a crowd has various scales ranging from small scales, such as very crowded objects,
to large scales, such as sparse objects (large objects). A CNN’s sparsity is also an intriguing
characteristic. This property is a result of the nonlinearity function (rectifier) present in
each CNN layer, which renders numerous model coefficient parameters null. Therefore,
pattern representation with a high-quality sparse dictionary is possible, resulting in reduced
computational complexity and a discernible prediction result for crowd density estimation.

In addition, this paper investigates which CNN layers are optimal for dense and sparse
crowds. Experiments indicate that the bottom layers of a CNN are effective at predicting
dense crowds. The features, however, contain background noise and redundant informa-
tion. As shown in Figure 1, we employ a non-local operation module to accommodate such
constraints. This is used to improve feature maps by permitting the value of each receptive
field unit to interact with all other values in feature maps, resulting in non-local behavior
for the receptive’s unit value, which is noise-resistant and capable of handling intricate
structures without cascading convolution operations.

The features of the refined image’s upper layers represent the global information
(features of large objects). However, the presence of a weak signal in the majority of each
higher layer’s feature maps is not significant, but it does increase computational complexity.
Consequently, this paper investigates the feature map’s channel weight module (FCW)
for removing a low-signal feature map that is irrelevant for crowd estimation. In order to
handle all object scales, the paper utilizes all CNN layer features for predictions. The paper
concludes by proposing stacked ensemble meta-learning, which discovers how to optimally
combine the predictions of the non-local operation module and the channel weight module
of the feature map. The predictions from both models are then combined into a vector and
provided as input to the STEM. The STEM then generates a conclusive prediction for the
data row.

The proposed method predicts sparse to dense crowd densities with remarkable accu-
racy and minimal computational complexity. However, there is still a discrepancy between
the ground truth and the most advanced prediction results. Consequently, a maximum
accuracy result can be achieved by increasing the size of the dataset and utilizing a vari-
able size of kernels to maintain resolution, which is essential for improving prediction.
The other alternative is unsupervised learning, which can resolve the labeling issue and
make a system more adaptable.

6. Conclusions

In this paper, parallel multi-size receptive fields and stack ensemble meta-learning
(PMSRML) is proposed. It exploits CNN’s scale separation and interactive nature to
produce a robust scale-adaptive crowd counter for each image using multiple feature maps
of varying scales; to handle all object scales, all CNN layer features are used for predictions
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in this paper. The conclusion of the paper proposes stacked ensemble meta-learning, which
finds the optimal way to combine the predictions of the non-local operation module and
the channel weight module of the feature map. The predictions from both models are
then combined into a vector and fed into the STEM as an input. The STEM then produces
an authoritative prediction for the data row. Extensive experiments on standard crowd
counting standards demonstrate the efficacy and significance of the proposed method
in comparison to the current state-of-the-art. The proposed method accurately predicts
sparse to dense crowd densities with minimal computational effort. However, there is still
a discrepancy between the ground truth and the results of the most advanced prediction
models. Increasing the size of the dataset and utilizing a variable size of kernels to maintain
resolution, which is essential for enhancing prediction, yields the highest level of accuracy.
Unsupervised learning is an alternative. It can solve the problem of labeling and increase
the flexibility of a system.
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