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Abstract: With the gradual popularization of autonomous driving technology, how to obtain traf-
fic sign information efficiently and accurately is very important for subsequent decision-making
and planning tasks. Traffic sign detection and recognition (TSDR) algorithms include color-based,
shape-based, and machine learning based. However, the algorithms mentioned above are insufficient
for traffic sign detection tasks in complex environments. In this paper, we propose a traffic sign
detection and recognition paradigm based on deep learning algorithms. First, to solve the problem of
insufficient spatial information in high-level features of small traffic signs, the parallel deformable
convolution module (PDCM) is proposed in this paper. PDCM adaptively acquires the corresponding
receptive field preserving the integrity of the abstract information through symmetrical branches
thereby improving the feature extraction capability. Simultaneously, we propose sub-pixel convolu-
tion attention module (SCAM) based on the attention mechanism to alleviate the influence of scale
distribution. Distinguishing itself from other feature fusion, our proposed method can better focus
on the information of scale distribution through the attention module. Eventually, we introduce
GSConv to further reduce the computational complexity of our proposed algorithm, better satisfying
industrial application. Experimental results demonstrate that our proposed methods can effectively
improve performance, both in detection accuracy and mAP@0.5. Specifically, when the proposed
PDCM, SCAM, and GSConv are applied to the Yolov5, it achieves 89.2% mAP@0.5 in TT100K, which
exceeds the benchmark network by 4.9%.

Keywords: traffic sign detection; deep learning; small object detection; multi-scale fusion

1. Introduction

As part of intelligent transportation system, autonomous driving is largely regarded
as a promising technology for reducing traveling time, traffic load, and guaranteeing
traveling safety, thereby reducing the incidence of traffic accidents. Traffic sign detection
has gradually become a fundamental perception task involved in the development of
intelligent transportation systems and autonomous vehicles. The research motivation of
this paper is to improve the detection accuracy of traffic sign detection task in autonomous
driving and empower autonomous driving to be realistic. Traffic signs can generally be
divided into warning signs, instruction signs, and prohibition signs, all of which contain
rich semantic information. The use of simple geometric shapes and bright colors make
it easy for the human eye to acquire traffic sign information; however, the eyes of traffic
sign detection systems: vision-based sensors are highly susceptible to the size of traffic
signs and other external environmental factors, which affect the driving safety seriously of
autonomous vehicles.

The current traffic sign detection technology has the following several deficiencies:
first, the size of traffic signs occupies a small proportion of the real road scene, which
is difficult for traffic sign detection systems to capture accurate traffic sign information.
Taking the traffic sign dataset Tsinghua-Tencent 100k Dataset (TT100k [1]) as an exam-
ple, the proportion of the pixel range of traffic signs is only 0.2% of the image pixel [2],
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illustrated in Figure 1. Second, there exist large-scale or small-scale traffic signs in the
same image, difference in scale can easily cause false or missed detections of the detector,
furthermore, seriously affecting the detection accuracy. Eventually, the deployment of
traffic sign detection technology requires not only high accuracy but a high inference speed
to satisfy the real-time detection in complex traffic environments.
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To alleviate the above problems, we propose a PSG-Yolov5 traffic sign detection
algorithm based on Yolov5 (5th version of You Only Look Once [3]). Experiments indicate
that our proposed traffic sign detector achieves relatively ideal detection and classification
accuracy. The main contributions of this paper are as follows:

• In order to eliminate the problem that most small-scale traffic signs’ spatial information
can only exist in the shallow network and cannot be transmitted to the deep network
through the feature extraction process, we propose a plug-and-play adaptive feature
extraction module, parallel deformable convolution module (PDCM), as shown in
Section 3.2. The proposed method divides the input features equally in the channel
dimension [4], with each branch extracting the features individually. By introducing
deformable convolution, the traffic sign detector can improve the feature extraction
capability and modeling capability of CNNs, better preserving the spatial information
of small-scale traffic signs.

• Inspired by the sub-pixel convolution in [5], we propose SCAM in this paper. Our
proposed SCAM can more effectively utilize the rich semantic information of high-
level feature maps, better capturing the correlation between adjacent feature layers,
filtering out redundant information, and making the output feature map pay more
attention to the traffic sign information of the corresponding scale. It can also alleviate
the aliasing effect caused by feature fusion [6].

• We build our traffic sign detection model by referring to [7], which further reduces the
computational complexity of our proposed algorithm, making our proposed traffic
sign detector industrially applicable.

• We optimize our traffic sign detector and integrate it with Robot Operating System
(ROS) [8], deploying our proposed traffic sign detector to the Nvidia Jetson Xavier.
We provide a concrete reference for industrial applications of traffic sign detection
systems on edge devices.

The rest of the article is organized as follows: we present a brief overview of related
work and methods concerning traffic sign detection in Section 2. Section 3 provides details
of our research. In Section 4 we present the experimental results, and finally, in Section 5
we summarize all the work and provide conclusions.

2. Related Work

Traffic sign detection (TSD), as a branch of target detection, has gradually become
a hot research topic in recent years. The research history of traffic sign detection can be
broadly divided into traditional algorithms and deep learning algorithms.
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2.1. Traditional Algorithms

Traditional TSD can be divided into color-based, shape-based, and machine learning
based. Color-based and shape-based detection techniques mainly utilize specific image
colors and shapes to manually extract features, such as SIFT [9] (scale invariant feature
transform) features, HOG [10] [Histograms of Oriented Gradient] features, these traffic
sign detection techniques mainly extract visual information in candidate regions, cropping
and extracting traffic signs in the images, and match marker signs by templates. Takaki
Masanari [9], and others use SIFT method to detect traffic signs. However, color-based
and shape-based methods are susceptible to weather conditions, lighting, and other envi-
ronmental factors [11]. Machine learning methods are used to extract invariant or similar
visual features from traffic signs, detect the traffic signs in the image, then use classification
algorithms to classify them and hence understand the semantic information contained in
the traffic signs. Classical classification algorithms include template matching algorithms
and support vector machines (SVMs), random forests, etc. However, after nearly decades
of research, the performance of algorithms for traffic sign detection by manually designed
features has reached a bottleneck.

2.2. Deep Learning Algorithms

Deep learning came to researchers’ attention in 2012 with the introduction of AlexNet [12],
a convolutional neural network (CNN) approach to detecting traffic signs. Deep learning
algorithms can independently train and learn network models based on labeled object
datasets, and along with the development of parallel computing devices, the dataset
has been accompanied by further expansion, allowing for further robust algorithms to
be applied in the TSD field. The algorithms can be roughly divided into one-stage and
two-stage detection algorithms depending on whether candidate frames are generated.

2.2.1. Two-Stage Algorithms

Two-stage detection algorithms mainly include R-CNN [13], Fast-RCNN [14], Faster R-
CNN [15], Mask R-CNN [16], and Cascade R-CNN [17]. Due to the complexity of the traffic
sign detection task, CAO [18] proposed a multi-scale fusion detection method based on
Faster R-CNN and verified the robustness of their algorithm; TANG [2] proposed a feature
aggregation network to enhance the feature extraction capability. In general, the accuracy
of two-stage detection algorithms is higher than one-stage. Although the above-mentioned
algorithms enhance the detection capability of the model to a certain degree. The limitations
of their methods are unable to meet the real-time requirements, therefore, improvements
for one-stage detection algorithms are very valuable for research.

2.2.2. One-Stage Algorithms

One-stage detection algorithms are represented by SSD [19], YOLO [3], etc. He [20]
applied SPP to collect features at different scales learning multi-scale features more com-
prehensively, which obtained 97% accuracy with an average inference speed of 19.3 ms
per frame on the CCTSDB dataset. The M-Yolo traffic sign detection model proposed
by Liu [21], achieves an accuracy of 93.5% on the CCTSDB dataset by introducing net-
work structures such as FOCUS [22] and SPPF, etc. The above improvements increase
the detection accuracy as much as possible while keeping inference speed, reaching an
accuracy sufficient to rival algorithms such as Faster R-CNN with less inference time. In
summary, the state-of-the-art Yolo algorithm is very suitable for the recognition of traffic
sign detection due to its outstanding real-time performance, generalization ability, and its
remarkable performance of fine-grained instances, etc. Although the above researchers’
one-stage models had improved the detection accuracy, there is still some room for further
improvement in small-scale traffic signs detection and multi-scale feature fusion process.
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3. Traffic Sign Detection with PSG-Yolov5

In Chapter 3 we present the structure of our proposed module in detail. Section 3.1
introduces the overall architecture of our model, Section 3.2 introduces our proposed
PDCM module, Section 3.3 introduces our proposed SCAM module, Section 3.4 briefly
describes the GSConv convolution structure we introduce, and finally we introduce the
loss functions used in this paper.

3.1. Architecture of PSG-Yolov5

In this section, we present our proposed PSG-Yolov5 network model architecture,
illustrated in Figure 2. The first is a plug-and-play parallel deformable convolution module
(PDCM) embedded in the generic feature extraction backbone network, which adaptively
changes the perceptive field to enhance the feature extraction capability. PDCM can
reduce the loss of spatial information caused by the backbone network during feature
extraction. The second part is in the feature fusion phase, in which we propose the sub-
pixel convolution attention module (SCAM). Our proposed SCAM module focuses on
aggregating adjacent high-level feature layers (P3 and P4). First, sub-pixel convolution
is used to perform up-sampling operations to alleviate the aliasing effects [6] during
cross-scale feature fusion. Second, we introduce spatial attention and channel attention
to capture the correlation between adjacent feature layers. For example, P2 contains rich
spatial information and focuses more on small-scale objects, and P4 contains rich semantic
information and focuses more on large-scale objects. How to make better use of multi-
scale features is very meaningful to improving the performance of the traffic sign detection
algorithm. In this paper, we also refer to the GSConv proposed in [7] as shown in Section 3.4,
while keeping the accuracy almost constant and reducing the complexity of our PSG-Yolov5.
It requires both high accuracy and speed of inference in traffic sign detection systems. In
general, the larger the number of parameters, the higher the accuracy and the slower the
inference speed; however, the introduction of GSConv reconciles the contradiction between
accuracy and inference speed. The third part is the prediction stage, in which PSG-Yolov5
contains three prediction heads, as shown as Head1–Head3 in Figure 2.
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Figure 2. The structure of PSG-Yolov5 consists of three main parts: (1) the backbone network,
CSPNet [23], with an embedded PDCM (shown in Section 3.2) for enhanced feature extraction
capability of small objects. (2) The fusion network, PANet [24], with the addition of SCAM (shown in
Section 3.3), is used to perform multi-scale feature fusion. (3) Prediction head, which outputs feature
maps containing multi-scale information.
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3.2. Parallel Deformable Convolution Module

As shown in Figure 3, we propose a parallel and symmetrical deformable convolution
module, which can enhance the spatial information extraction capability of the backbone
network by adaptively changing the shape of convolutional kernel. Because the shallow
neural network structure is rich in spatial information, we apply our proposed module
to the shallow network to effectively improve the modeling capability of CNNs when
capturing small-scale traffic signs. In PDCM, we first equally split the input feature
map in the channel dimension, and then independently change the perceptive field size
through two identical separate branches. Then, we concatenate the two branches in channel
dimension, and finally, we shuffle the resulting feature map to obtain the output feature
map. C1 and C2 in Figure 3 represent the number of channels of input and output feature
maps respectively, and H, W are the height and width of the tensor, respectively.
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Figure 3. The structure of parallel deformable convolution module. The module consists of a split
operation, convolution operation; deformable convolution module; concatenate; and shuffle. It is
primarily used to enhance the spatial information extraction and modeling capability of the backbone
network by adaptively changing the size of perceptive field.

After feature extraction and concatenation, we obtain a feature map containing rich
spatial information about the multi-scale traffic signs, after which we apply a channel
shuffling to the feature map. As shown in Figure 3, the feature map with channel size
C2 is obtained. The output feature map of the parallel deformable convolution module is
shown as Equation (1). fshu f f le, fDCN , and fConv represent shuffling channels, Deformable
Conv function, and standard convolution function respectively. Our proposed parallel
deformable convolution module is very effective in improving the accuracy of traffic sign
detection as shown in Section 4.

output = fshu f f le(cat( fDCN( fConv(xsplit1)), fDCN( fConv(xsplit2))) (1)

3.2.1. Identical and Symmetrical Branch Operation

Since the two branches are identical, we only describe one branch in detail. Each
branch is composed of convolution module and deformable convolution network (DCN)
operation. As illustrated in Figure 3, Conv in every branch represents the standard con-
volution operation, k = 1 and s = 1 represent the size of the convolution kernel equaling
to 1 and the stride equaling 1 respectively. k and s default to 1 in PDCM unless specially
stated. Since CNN models have a fixed geometric structure, such as convolutional layers,
pooling layers, etc., which leads to the same perceptive field for all activation units lacking
mechanisms to handle geometric variations. Therefore, we refer to deformable convolu-
tional networks [25] and introduce deformable convolution, which is capable of adaptively
detecting geometric changes in size, pose, etc. Since small-scale traffic sign recognition and
localization are closely related to their shape and pose, DCN is particularly suitable for the
recognition of small-scale traffic signs. The Deformable Conv in Figure 3 represents the
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standard deformable convolution, which is illustrated in Figure 4. The DCN module first
obtains offsets from the input feature maps, the convolution kernel shape is then adaptively
changed by the learned offsets.
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In PSG-Yolov5, the input feature map which size is X ∈ R80×80×256. We split the input
feature map equally and feed it into two separate branches, whose size is X ∈ R80×80×128.
The operation of each branch after splitting is shown as Equation (2). The fConv and fDCN
represent the Conv operation and DCN operation respectively.

xbranch1 = fDCN( fConv(xsplit1)) (2)

3.2.2. The Introduction of DCN and Conv Module

Deformable convolutional networks proposed deformable convolution that adaptively
changes the size of perceptive field to better capture the spatial information. Deformable
convolution adds a 2D offset to the regular grid sampling positioning, which allows
spontaneous deformation of the sampling grid. The offset is drawn from the previous
feature map. The deformation of the sampling grid depends on the input features in a local,
density, and adaptive manner. The sampling grid in deformable convolution is indicated in
Figure 4. Equation (3) represents the deformable convolution, where P0 represents each
position on the output maps; Pn represents sampling on the input feature map with regular
kernel size; ∆pn represents offset for each sample point.

In PDCM, each Conv module consists of three parts, a convolutional-2D layer, a batch
normalization-2D layer, and an activation layer. The calculation process is shown in
Equation (4), where σ(·) and B(·) represent the activation function and Batch Normalization
layer [20] respectively.

f (p0) = ∑
pn∈R

w(pn) · x(p0 + pn + ∆pn) (3)

fConv = σ(B(xsplit1)) (4)
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3.3. Sub-Pixel Convolution Attention Module

It is well-known that the information contained in low-level and high-level feature
maps are complementary for multi-scale detection tasks, and it is valuable to study how to
fully utilize the information at different scales for traffic sign detection tasks.

As shown in Figure 5, we propose the sub-pixel convolution attention module (SCAM).
In the traffic sign detection task, the high-level feature maps contain rich semantic informa-
tion, such as {P3, P4} in Figure 5.
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Along with the proposed of FPN network [6], which can effectively fuse high-level
feature maps, the widely used cross-scale fusion strategy effectively improves detection
performance. However, multi-scale feature maps cannot be fused directly due to different
scales, interpolation is needed if we wish to effectively utilize the feature maps. We know
that direct interpolation-fusion may bring significant aliasing effects, and may seriously
affect the classification and localization of traffic sign detection tasks.

Inspired by sub-pixel convolutional networks [5], we introduce sub-pixel convolution
to solve the defects caused by nearest neighbor interpolation, and we introduce spatial
and channel attention mechanisms to fully utilize the feature layers of different scales.
SCAM can adjust the feature layers of different scales to pay more attention to their own
corresponding scale information. The overall schematic of the sub-pixel convolution
attention module and the changing process of feature dimension is illustrated in Figure 5.

We validate our proposed SCAM in Section 4, and our experimental results show that
our approach is effective and brings performance gains with almost negligible computa-
tional burden.

3.3.1. Sub-Pixel Convolution

In order to fully utilize the rich semantic information in P4 and P3, we introduce the
sub-pixel convolution module by referring to the up-sampling method in super-resolution.
As an up-sampling strategy, sub-pixel convolution can modify the input feature’s width
and height to turn low-resolution features into high-resolution features through the pixel-
shuffle process, which is illustrated in Figure 6, and its mathematical expression is shown
in Equation (5). PS represents periodic shuffling operator which turns a tensor of shape
H ×W × C · r2 to rH × rW × C, r is an up-sampling factor, in our paper r equals to 2, T is
input feature map.

PS(T)X,Y,C = TX/r,Y/r,C·r.mod(Y,r)+C·mod(X,r) (5)
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Figure 6. The structure of sub-pixel convolution. The channel of the low-resolution feature map is first
expanded by the channel extension (a standard 1 × 1 convolution) operation, and the high-resolution
feature map is obtained by the pixel shuffle operation.

3.3.2. Attention Module

We refer to the CBAM attention mechanism [26], of which the channel attention
module and spatial attention module are two submodules respectively.

Channel attention: Keeping the channel dimension unchanged and compresses the
spatial dimension. In PSG-Yolov5, the introduction of channel attention can make P3 paying
more attention to the medium-scale traffic signs, thus excluding the redundant information.
The input feature map first goes through two parallel MaxPool layers and AvgPool layers,
which change the dimension of the feature map from C× H ×W to C× 1× 1, and then
goes through the Share MLP module, which compresses the channel of the feature map to
1/r times of the original, and then expands it to the original channel, and the results of the
two branches obtained by the activation function execute the element-wise operation, and
then finally by the sigmoid activation function is multiplied with the original feature map.
The schematic diagram of channel attention is shown in Figure 7, and the mathematical
formula of our channel attention is shown in Equation (6).

MC(P3) = σ(MLP(AvgPool(P3)) + MLP(MaxPool(P3))) (6)Symmetry 2022, 14, x FOR PEER REVIEW 9 of 16 
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Spatial attention: Keeping the spatial dimension unchanged, the channel dimension is
compressed to render it more focused on the location information of the target. In our traffic
sign detection task, the introduction of the spatial attention module can localize traffic signs
more efficiently and alleviate the nuisance caused by uneven sample scales. The spatial
attention is shown in Figure 7 and its mathematical equation is shown as Equation (7).

Ms(P4′′ ) = σ( f 7×7([AvgPool(P4′′ ); MaxPool(P4′′ )])) (7)

3.4. GSConv Module

Traffic sign detection task in industrial project requires high detection accuracy, in
addition, the inference speed is essential. Usually, the higher the number of parameters
of the model, the higher detection accuracy will be; however, the pursuit of accuracy is
no longer a perfect solution to the traffic sign detection task. To summarize, we refer
to GSConv [1] and introduce a lighter convolutional structure to make the number of
parameters of our proposed model smaller. We embed the GSConv module into the feature
fusion stage so that our model is under a significantly lower number of parameters with
slightly lower detection accuracy. We did not use GSConv in the backbone network because
it would cause a deeper backbone network layer, and a deeper network would aggravate
the resistance to spatial information flow and thus affect the inference speed, which is
intolerable in a traffic sign detection system. Figure 8 shows the schematic diagram of the
GSConv module. Yolov5: 5th version of Yolo Only Look Once.

GSconv module mainly consists of Conv module, DWConv module, Concat module,
and shuffle module, whose mathematical expression is Equation (8), fshu f f le means shuffle
operation, fconv consists of standard convolution, batch normalization [27] operation and
activate function, fdsc represents depth-separable convolution (DSC), batch normalization
operation and activate function.

Xout = fshu f f le(cat( fconv(Xin), fdsc( fconv(Xin)))) (8)
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Figure 8. The structure of the GSConv module. DWConv in the figure means depth-separable
convolution (DSC). In Figure 8 the “G” represents the GhostNet [28], “S” represents the shuffle
operation, and the “Conv” is standard convolution operation.

3.5. The Loss Function of PSG-Yolov5

The loss function of the target detection task is generally composed of bounding
boxes regression loss and classification loss. The commonly used calculation indicator
of bounding boxes regression loss is the intersection-over-union ratio (IOU [29]), which
compares the predicted bounding boxes with the ground truth bounding boxes. The
IOU loss function can continuously correct the localization of the predicted bounding
boxes through regression. With continuous research on loss functions, many excellent
loss functions have been proposed, such as GIOU [30], DIOU [31], CIOU [32], etc. The
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mathematical formula expressions of the above four types of loss functions are Equation (9)
to Equation (12) respectively.

A and B in the above equations represent the area of ground truth bounding boxes and
the area of prediction bounding boxes respectively. C represents the minimum enclosing
box of A and B. In Equation (11), d represents the Euclidean distance of the opposite corners
of the bounding boxes. ρ(·) represents the calculation expression for Euclidean distance.
In Equation (12), the v represents the evaluation metric for evaluating the aspect ratio of
ground-truth bounding boxes and predicted bounding boxes, and α represents the indicator
of trade-off.

Loss IOU = 1− IOU, IOU =
A ∩ B
A ∪ B

(9)

LossGIOU = 1− IOU +
C− (A ∪ B)

C
(10)

LossDIOU = 1− IOU +
ρ2(b, bgt)

d2 (11)

LossCIOU = 1− IOU + ρ2(b,bgt)
d2 + αv

v = 4
π2 (arctan wgt

hgt − arctan w
h )2, α = v

(1−IOU)+v
(12)

The IOU loss function has the advantages of scale invariance and non-negativity;
however, when the bounding boxes do not intersect, the IOU equaling 0, and the IOU
cannot reflect the distance relationship between the predicted bounding box and the ground
truth bounding box. GIOU loss function focuses not only on overlapping regions, but also
non-overlapping regions. However, the GIOU loss function converges slowly when doing
regression tasks. DIOU introduces the Euclidean distance indicator between center point of
predicted bounding box and ground truth bounding box, which can accelerate the model
convergence, but does not consider the aspect ratio of the bounding box. CIOU, the aspect
ratio of the bounding box is increased, which makes up for the deficiency of the DIOU loss
function to a certain extent. The PSG-Yolov5 proposed by us adopts the CIOU bounding
boxes loss function.

4. Experimental Results and Analysis

In this chapter we introduce the test dataset we used, the related experimental eval-
uation indexes, the ablation and comparison experimental results and analysis, we also
visualize our experimental results in this chapter.

4.1. Traffic Sign Dataset

We utilize the Tsinghua-Tencent 100K Tutorial [1] as the benchmark dataset to test our
proposed PSG-Yolov5 algorithm. The dataset comprises 9176 images, including 6105 train-
ing images and 3071 test images. The TT100k dataset consists of 227 categories with
2048 × 2048 image resolution, covering scenes with different weather conditions. Table 1
shows a brief description of the dataset.

Table 1. Statistical tables for the TT100k dataset.

Benchmark Datasets Tsinghua-Tencent 100K

Images 9176 (6105 for training, 3071 for testing)
Categories 227
Resolution 2048 × 2048
GT Boxes 16,527
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4.2. Experimental Configuration and Evaluation Metrics
4.2.1. Experimental Configuration

We use the Pytorch framework to build our PSG-Yolov5. Our experiments were
conducted on the Ubuntu18.04 operation system with two Nvidia Tesla V100. The hyper-
parameter configuration of PSG-Yolov5 is as follows: epoch is 100; batch size is 16; initial
learning rate is 0.01 and final learning rate is 0.01; the momentum and weight decay are
0.937 and 0.0005. The optimizer is SGD [33] optimizer. The Nvidia Jetson Xavier’s operation
system is Linux Ubuntu 18.04.

4.2.2. Experimental Evaluation Metrics

There exist multiple metrics to evaluate algorithms in target detection tasks. Com-
monly used include, precision(P), which indicates the proportion of predicted positive
samples. Recall(R), which indicates the proportion of all predicted positive samples. AP
(average-precision), which indicates the average accuracy of different recall points. Mean
average-precision(mAP), is the average of AP(average-precision) of multiple categories.
The mathematical expressions of the evaluation index mentioned above are illustrated in
(13) to (14). TP and TN represent positive and negative samples with correct prediction
respectively, FP and FN represent positive and negative samples with incorrect prediction
respectively. In our experiments, the mAP@0.5 is the average precision of the traffic sign
categories when the accuracy evaluation IOU threshold is set to 0.5.

P =
TP

TP + FP
, R =

TP
TP + FN

(13)

APc =
1

Nc
∑

rc∈Rc

p(rc), mAP =
1
N ∑ (APc) (14)

4.3. Experimental Results
4.3.1. Ablation Experiments

We evaluate the effectiveness of our proposed individual modules, including the
PDCM, SCAM, and GSConv convolutional module on the publicly available traffic sign
dataset TT100k. The results are illustrated in Table 2. In the Table 2 and following tables,
red represents the percentage decline in performance compared to the baseline, and green
represents the percentage increase.

Table 2. PSG-Yolov5 ablation experiments on TT100k dataset.

Method P/% R/% mAP@0.5/% Param/M GFlOPs

Yolov5l (baseline) 86.1 75.2 84.3 46.3 108.4

Yolov5l + GSConv 83.4
(−2.7)

76.4
(+1.2)

83.6
(−0.7)

44.5
(−1.8) 106.1

Yolov5l + GSconv + PDCM 86.2
(+0.1)

78.3
(+3.2)

86.2
(+1.9)

47.1
(+0.8) 107.3

Yolov5l + GSconv + SCAM 83.4
(−2.7)

81.2
(+6.0)

86.3
(+2.0)

45.6
(−0.7) 106.9

Yolov5l + GSconv + PDCM + SCAM 86.3
(+0.2)

82.4
(+6.2)

89.2
(+4.9)

48.4
(+2.1) 108.3

According to mAP@0.5 and Param evaluation metric in Table 2, the introduced GSConv
convolution module leads to a 0.7% decrease in mAP@0.5, while our proposed PDCM
structure and SCAM structure improve by 1.9% and 2.0%, respectively, and when we apply
both of our proposed modules to the benchmark model the mAP@0.5 improves by 4.9%.
Although the GSConv convolutional module we introduce causes a decrease in mAP@0.5,
the number of parameters also decreases by 3.9%, and the inference speed is also important
in the traffic sign detection task, so the decrease of slight performance is tolerable. In
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summary, in terms of performance improvement alone, our proposed PSG-Yolov5 is fully
validated on the TT100k dataset, and its performance improvement is obvious. After that,
we tested our proposed model on Nvidia Tesla V100 and Nvidia Jetson Xavier for FPS
(frames per second), respectively, the results as shown in Table 3.

Table 3. FPS detected by Nvidia Tesla V100 and Nvidia Jetson Xavier respectively.

Method
FPS (Image Size = 640 × 640)

Nvidia Tesla V100 Nvidia Jetson Xavier

Yolov5l 91.7 24.6
Yolov5l + GSConv 94.3 25.1
Yolov5l + GSconv + PDCM 89.3 23.5
Yolov5l + GSconv + SCAM 90.9 24.1
Yolov5l + GSconv + PDCM + SCAM 85.5 23.1

4.3.2. Comparative Experiments

In order to fully verify PSG-Yolov5 algorithm we propose in this paper, we carried out
a full comparison experiment with other researchers and some advanced algorithms on
TT100k dataset, and the comparison results are shown in Table 4. According to the results
of comparative experiments, our proposed PSG-Yolov5 achieves relatively excellent results
in both mAP@0.5 and FPS.

Table 4. Comparison with other researchers tested on TT100k.

Method Parameters/M GFLOPs mAP@0.5/% FPS

CUI [34] - - 77.6 -
Gan [35] - - 87.9 31.3

TANG [2] - - 93.6 2.3
CAO [18] 40.08 123.28 44.4 26
Wu [36] - - 79.4 41.7
Yolov3 59.58 158.00 61.7 27.0
YoloX-s 9.01 27.03 68.6 59

Mobilenet-SSD 25.067 29.20 32.0 22
Wu [37] - - 82.9 65

Improved-Yolov4 [38] - - 82.3 84.5
ReYolo [39] - - 68.3 188.3

ours 48.4 108.3 89.2 85.5

According to the data in Table 4, the traffic sign detection algorithm based on Cascade-
RCNN of TANG [2] achieved 93.6% mAP@0.5, but its FPS was only 2.3, which could not
satisfy the needs of real-time detection on embedded platforms. We also tested on the
advanced Yolo series algorithm: YOLOX [40], which has lower parameters and GFLOPs,
but the accuracy is not comparable to PSG-Yolov5.

In summary, our proposed algorithm perfectly achieves the balance between mAP@0.5
and FPS with slight increase in computational complexity. The inference speed is main-
tained while obtaining a relatively high accuracy and we tested it on an embedded platform
to respond to the real-time requirements. Figure 9 shows some of the detection results of
our proposed traffic detection model.
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4.3.3. Visualization of Results

To further verify the practicality of our proposed method, we refer to Grad-CAM [41]
and generate the heatmaps based on the benchmark model and the PSG-Yolov5, respec-
tively, as shown in Figure 10. Based on the information acquired by heatmaps, we can
comprehend that the detection results of PSG-Yolov5 are more based on the traffic signs
themselves without relying too much on the external environment, so it is less influenced
by the external environment and more robust compared to the benchmark model.
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Figure 10. Heatmap visualization of selected detection results of PSG-Yolov5 and the benchmark
model (Yolov5l) on the TT100k dataset. (a–d) denote the heatmap visualization of our proposed
PSG-Yolov5, and (a’–d’) denote the heatmap visualization based on Yolov5l.

We can conclude from Figure 10 that the detection results of our proposed PSG-Yolov5
are based more on the traffic signs themselves rather than on other external factors. In
realistic roads, the task of traffic sign detection is very easily affected by weather factors.
It will become unreasonable to rely too much on the external environment for traffic sign
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detection under weather conditions such as rain, fog etc. This also proves from the side
that our proposed algorithm has a certain robustness.

5. Conclusions

To address the problems of small target detection, information loss during multi-scale
fusion, and the real-time performance of traffic sign detection algorithm, we propose the
PSG-Yolov5 traffic sign detection algorithm based on Yolov5l. In this work, we propose the
PDCM module, which can enhance the feature extraction ability of the model and improve
the detection performance of small-scale traffic signs; our proposed SCAM module can
fuse multi-scale features more efficiently and alleviate the influence of scale distribution;
we also introduce the GSConv module to reduce the computational complexity of our
proposed PSG-Yolov5 traffic sign detection algorithm. Through comparison experiments
and ablation experiments in TT100k dataset, we can conclude that our proposed algorithm
achieves significant results in terms of detection accuracy (mAP@0.5 equals 89.2%, which
improves by 4.9% compared to the benchmark) and real-time detection (FPS equals 85.5).
The algorithm proposed in this paper has achieved satisfying results on the TT100k dataset;
however, the robustness of our algorithm in complex natural environments such as rain,
snow, and fog has not yet been verified. In future, we plan to conduct research on traffic
sign detection facing complex natural environments, and explore a robust TSD system.
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