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Abstract: Symmetric titania nanotube arrays (TiO2 NTs) are a well-known photocatalyst with a large
surface area and band edge potentials suitable for redox reactions. Thermal treatment of symmetrical
arrays of TiO2 nanotubes in argon was used to change the carbon content of the samples. The
influence of the carbon content in the structure of symmetrical TiO2 NTs on their photoelectrochemical
properties and photocatalytic activity in the conversion of CO2 into organic fuel precursors has been
studied. The structure, chemical, and phase composition of obtained samples were studied by
X-ray analysis, Raman spectroscopy, and SEM with energy dispersive analysis. It is established
that carbon-related defects in the samples accumulate electrons on the surface required for the CO2

conversion reaction. It has been shown for the first time that varying the carbon content in symmetric
TiO2 NTs arrays by annealing at different temperatures in argon makes it possible to control the
yield of methane and methanol in CO2 conversion. It is revealed that too high a concentration of
carbon dangling bonds promotes the growth of CO2 conversion efficiency but causes instability in
this process. The obtained results show a high promise of symmetric carbon-doped TiO2 NTs arrays
for the photocatalytic conversion of CO2.

Keywords: symmetric TiO2 nanotube arrays; CO2 conversion; photocatalysis; carbon

1. Introduction

Climate change due to increasing greenhouse gas (CH4, CO2) concentrations has
attracted increasing attention from the scientific community [1]. Photocatalytic conversion
of CO2 to hydrocarbon fuel precursors may be one approach to the transition to carbon
neutrality energy [2,3].

TiO2-based photocatalysts have attracted much attention for the CO2 conversion
process because of their chemical and photocorrosion stability, and also low cost [4–6].
Symmetric titania nanotube arrays (TiO2 NTs) are a well-known photocorrosion-resistant
nanomaterial for use in photocatalytic processes due to their high specific surface area and
suitable band edge potentials [7,8]. However, TiO2 NTs are not photoactive in the visible
wavelength range, which hinders the use of this material as a photocatalyst.

Today, there are several approaches to increasing the photocatalytic activity of titanium
oxide in the visible wavelength range. It was shown that to expand the absorption spectrum
of titanium oxide or other semiconductors, and increase the lifetime of photogenerated
charge carriers, can use the formation of heterojunctions by modifying the surface with met-
als nanoparticles Pd, Pd2Cu, Pt, Ag [9–11], semiconductors CuO, TiO2, WO3, Fe2O3 [12,13],
various modifications of carbon [14,15] and perovskites nanoparticles [16,17]. It is also well
known that the thermal treatment of titanium oxide in oxygen-free atmospheres (H2, Ar,
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vacuum) promotes the formation of point defects (oxygen vacancies) in the oxide structure
and on its surface, changing the concentration of which can control the photocatalytic
activity of titanium oxide in the visible range [18]. It was also shown that doping with
non-metals S, C, and N [19,20] makes it possible to expand the absorption spectrum of
titanium oxide due to the formation of energy levels in the band gap of the semiconductor.
In turn, the modification of titanium oxide by carbon can solve three symmetric problems
for photocatalysis applications: reduce the electrical resistance, improve the separation of
photogenerated charge carriers and increase the photoactivity of the material in the visible
light range [21–24].

One approach to carbon modification of TiO2 NTs arrays can be thermal treatment in
inert atmospheres of nanotubes obtained in ethylene glycol-based electrolytes [25–28]. High-
ordered symmetric arrays of titania nanotubes with a multi-wall nanotube structure [29]
and oxide layer thicknesses ranging from one to several hundred micrometers can be
obtained in such electrolytes [30]. The inner layer (IL) of a nanotube, is a mixture of
solvolysis products of dissolved in water complex [TiF6]2− and ethylene glycol. During
thermal treatment in oxygen-free atmospheres, the IL of a nanotube can be a source of
carbon for material modification [26]. We have previously shown that carbon centers on
the surface of the IL saved after thermal treatment in the air can enhance the conversion
efficiency of CO2 [31]. As far as we know, the works devoted to the study of symmetric
TiO2 NTs arrays modified by carbon through thermal treatment in inert atmospheres pay
attention to the electrochemical properties of the material for supercapacitors or the study
of photoactivity by photoelectrochemistry and decomposition of organic dyes. In turn,
thermal treatment in such atmospheres should help preserve more carbon in the material,
potentially leading to high material activity in photocatalytic CO2 conversion. However, no
works devoted to the study of the photocatalytic properties of carbon-modified symmetric
TiO2 NTs arrays in the process of CO2 conversion have been previously presented.

In the present work, we investigated the influence of thermal treatment conditions
in argon on structure, chemical and phase composition, and photocatalytic properties of
carbon-modified symmetric titania nanotube arrays during carbon dioxide conversion in
the presence of water vapor.

2. Materials and Methods

Samples of symmetric titania nanotube arrays were obtained by electrochemical
oxidation of titanium foil (99.7%). Electrolyte used: ethylene glycol, 0.3 g NH4F, 2 mL H2O
per 100 mL electrolyte volume. Anodizing was performed in a horizontal thermostatically
controlled cell at 20 ◦C in two stages. The first stage lasted 30 min, and then the formed
nanotube layer was removed from the surface of the foil. The second stage lasted 1 h, after
which the sample was washed in ethyl alcohol and dried in an air stream. The anodized
area of the samples was 7 cm2. The geometric-specific surface area of the samples is
0.0054 m2/cm2 corresponding with previously published data [31].

The as-prepared samples are not photocatalytic active due to a non-symmetric amor-
phous oxide structure (TiOx). The samples were subjected to thermal treatment for crystal-
lization in an argon flow of 100 mL/min at 1.1 atm overpressure at different temperatures
(300, 400, 550 ◦C) for 1 h. A sample annealed in air at 450 ◦C for 1 h was prepared as a
comparison sample (Air 450). The thermal treatment in an argon inert atmosphere was
used to pyrolyze the organic content in the as-prepared samples and preserve carbon
during heating.

The phase transformations during heating of symmetric TiO2 NTs samples in an argon
atmosphere (purity 99.999%) were investigated by differential thermal analysis (DTA) and
thermogravimetric analysis (TGA) on the Setsys TG-DTA 16 with simultaneous registration
of pyrolysis products by mass spectrometric analysis. The analysis was performed in the
temperature range of 25–700 ◦C at a heating rate of 10 ◦C/min. The samples for analysis
were prepared by scraping the oxide layer from the titanium substrate.
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The morphology and sample composition were studied by scanning electron mi-
croscopy (SEM) using a Helios G4CX (Thermo Fisher Scientific, Waltham, MA, USA) scan-
ning electron microscope equipped with an EDS attachment (EDAX Octane Elite Super).

Spectra of diffuse light reflection from the samples were recorded on an SF-56 spec-
trometer (OKB-Spectr, St. Petersburg, Russia) in a spectral range from 300 to 650 nm.

Raman spectra were obtained on a LabRAM HR Evolution Raman spectrometer
(manufactured by Horiba) using a Melles Griot 05-LHP-928 helium-neon laser at the
operating wavelength of 633 nm. X-ray diffractometer Rigaku MiniFlex XRD was used to
analyze the obtained symmetric TiO2 NTs samples.

The photoelectrochemical properties of the obtained samples were studied in a 0.1 M
Na2SO4 solution with a platinum counter electrode and a silver chloride reference electrode
(3 M KCl). A 150 W xenon lamp NEWPORT (Ozone Free) 6255 was used as the light source,
the incident light intensity on the sample was 100 mW/cm2. For measurements in the
visible light range, an optical filter was used to cut off radiation with a wavelength of
less than 430 nm. Photoelectrochemical measurements were performed using an AutoLab
PGSTAT302N potentiostat. Photocurrent measurements were performed at a zero volt
constant potential vs. Ag/AgCl with alternating switching a light to record the photore-
sponse of the sample. The voltammetric characteristics of the samples were obtained in the
potential range from −0.6 to 1.6 V vs. Ag/AgCl at a sweep rate of 10 mV/s.

Incident photon-to-electron conversion efficiency was evaluated by photocurrent
spectroscopy based on the ZOLEX photoelectrochemical measurement complex. A xenon
lamp with a total power of 500 watts was used as the light source. The photocurrent was
measured in the range of 300 to 500 nm in 25 nm increments and at 0 V applied potential
vs. Ag/AgCl. Quantum efficiency was calculated according to Formula (1) [32]:

IPCE =
jph(λ)

P(λ)
∗ 1240

λ
(1)

jph =

∣∣∣∣∣∣
(

Ilight − Idark

)
S

∣∣∣∣∣∣ (2)

where jph is the difference between the recorded values of current density in the dark
and in the light at the selected wavelength (µA·cm−2), λ—the wavelength at which the
measurement was made (nm), P(λ) is the power of incident light at the selected wavelength
(µW·cm−2), S is the sample area, (cm2).

The process of photoinduced conversion of CO2 was performed under the following
conditions: reaction temperature 30 ◦C, relative humidity ~5%, total CO2 (99.999%) gas
flow rate—1.2 mL/min. Before measurements, the samples were placed in the reactor in
a helium stream (99.999%, flow rate—3 mL/min) with water vapor overnight (10 h) to
remove air from the chamber. Firstly, the samples were illuminated (~2 h) in a stream of
moist helium with a flow rate of 1.2 mL/min with the recording of photocatalytic reaction
products to clean the surface from organic substances. Then the flow changes to CO2 while
maintaining the gas flow rate. The light irradiation was turned off after 4 h. Gas products
were analyzed using a gas chromatograph with a flame ionization detector with an HP
PLOT/Q capillary column.

3. Results and Discussion
3.1. Thermal Treatment Condition Determination

Figure 1 shows the results of differential scanning calorimetry and thermogravimetric
analysis obtained together with the registration of pyrolysis reaction products. Molecules
with masses 16, 18, 28, and 44 by mass spectrometry were recorded.
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Figure 1. DTA-TGA dependences (a) and in situ registered mass spectra products (b) of a thermal
decomposition process: I, II, III and IV are stages of the process.

Two exothermic peaks are observed in the process of heating the powder of amorphous
samples in the argon flow. The first peak (at 280 ◦C) is accompanied by the greatest release
of carbon monoxide or molecular nitrogen (CO, N2), methane (CH4) and carbon dioxide or
nitrogen oxide (CO2, N2O). The release of products can be attributed to the pyrolysis of
organic compounds and electrolyte residues (nitrogen source) (stage I) in the sample and
the desorption of thermal reaction products from the material surface. This process is also
accompanied by an extensive sample mass loss of about 5.6 wt.% in the temperature range
of 220–330 ◦C. The second stage II is accompanied by further weight loss (about 1.9 wt.%)
and crystallization of amorphous titanium oxide (TiOx) occurs at 365 ◦C. Crystallization is
accompanied by the re-registration of pyrolysis products, which can be attributed to the
thermal decomposition of organics located at some depth of the surface layer of nanotubes.
The plateau is observed at 400 ◦C on the DSC curve with a further decrease in signal
intensity. At the same time in the temperature range from 450 to 650 ◦C the release of
methane and carbon dioxide is observed. That effect can be attributed to the pyrolysis
of more deeply retained products of ethylene glycol decomposition in the oxide volume
(stage III). The mass loss when heating the sample in the temperature range from 380 to
700 ◦C was 1.6%. Finally, stage IV is associated with no release of any products or thermal
effects, which can indicate removing residual organic matter from the material. Based on
the data obtained, four temperature ranges were identified at which the greatest change
in the structure and composition of the material occurs. The temperatures of isothermal
treatment of the obtained samples of symmetric TiO2 NTs arrays were chosen: 300, 400, and
550 ◦C to study the material properties at the boundaries of certain ranges. Carbon after
pyrolysis is saved at 300 ◦C (stage I), but there is no crystallization of the structure. The
material structure crystallizes and part of the carbon is retained at 400 ◦C (the boundary of
stages II and III). The structure of the material is also crystalline and residual carbon could
be removed at 550 ◦C (stage IV). The samples thermal treated in argon were designated as
Arg 300, Arg 400, and Arg 550, respectively.

3.2. Morphology and Composition of Samples Characterization

Figure 2 shows SEM images of symmetric TiO2 NTs arrays annealed in the air and
argon stream.

The pore size of all obtained samples ranges from 40 to 90 nm. The thickness of the
oxide layer does not change with temperature and annealing atmosphere ~5.6 µm.

The composition of obtained samples was also investigated by energy dispersive X-ray
spectroscopy (EDS), and the summarized results of the analysis are presented in Table 1.
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Table 1. The composition of obtained samples TiO2 NTs arrays annealed in different conditions.

Sample Ti, at.% O, at.% C, at.% N, at.% F, at.%

Air 450 33.0 62.0 4.6 0 0

Arg 300 24.6 55.4 11.2 2.0 6.2

Arg 400 26.9 61.2 8.9 2.2 0.3

Arg 550 30.0 64.0 5.0 0 0.1

As can be seen, the ratio of atoms of Ti to oxygen in the Air 450 sample is close to
1:2, at the same time the presence of carbon on the surface of the sample of 4.6 at.% was
recorded. Most of the carbon can be associated with adsorbed organic compounds from
the atmosphere. At the same time, for samples Arg 300 and Arg 400, we can observe
an increased amount of carbon (above the background value of the adsorbed organic
compounds), 11.2 and 8.9 at.%, respectively. It is expected that increasing the temperature
of thermal treatment in argon leads to a decrease in the amount of carbon in the material. It
can be noticed that for the Arg 550 sample the amount of carbon exceeds the background
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value by ~0.4%, but we cannot say for sure that this difference is not a measurement error. It
should also be noted, the presence of a significant amount of fluorine in the sample Arg 300,
its presence is due to the use of fluorine-containing electrolyte during anodizing. Nitrogen
was detected in samples Arg 300 and Arg 400, its presence can also be explained by the
composition of the electrolyte. The presence of nitrogen in these samples may affect their
photoactivity in the visible light range, according to [33,34].

The crystal structure of the obtained samples was studied by X-ray diffraction analysis
(Figure 3). Ti foil without oxide was used as a comparison sample.
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Figure 3. XRD analysis of annealed in argon samples at different temperatures and references (Ti foil
without oxide layer and annealed symmetric TiO2-NTs on air).

All registered peaks could be clearly attributed to the characteristic peaks of TiO2
anatase and titanium (JCPDS-ICDD: 21-1272 and JCPDS-ICDD: 44-1294 correspondingly).
The diffraction peaks of TiO2 anatase at about 2θ of 25.05, 36.7, 37.58, 47.81, 53.81, 54.82,
62.6, and 62.9 correspond to the orientations (101), (103), (004), (200), (105), (211), (204), and
(216), respectively. The results show that the sample crystallization does not occur during
annealing at 300 ◦C, which correlates with the DSC data obtained. At the same time, we can
note that the intensity of the anatase peaks for the Arg 400 sample is less than for Arg 550,
which may indicate a lower degree of ordering of the Arg 400 sample structure. Despite
the high annealing temperature, no rutile phase was detected in sample Arg 550.

Raman spectra are shown in Figure 4. For all samples except amorphous TiO2 NTs
(as-prepared) and Arg 300, the main peak of the anatase phase (146 cm−1) can be observed.

It can be seen that the spectrum of samples that were thermally treated in an argon
stream is distorted by photoluminescence. As the thermal treatment temperature increases
to 400 ◦C, the photoluminescence increases. This effect can be attributed to oxygen vacancies
or carbon content formed in the nanostructure during thermal treatment in an inert argon
atmosphere [35]. Additionally, nitrogen in the TiO2 matrix can lead to a fluorescence
effect [36]. In spite of the noisiness of the spectrum, the peak with a maximum at 1570 cm−1

can observe for both Arg 300 and Arg 400 samples. This peak can be associated with carbon
in the sp2 hybridization state (G bond) and based on the shape of the peak, carbon is in
an amorphous state [37]. In the Arg 550 sample, photoluminescence was observed to a
lesser extent, and the main peaks of polymorphic modification of anatase were recorded
at 146, 398, 520, and 637 cm−1 as for the Air 450 sample. As the concentration of carbon
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and nitrogen in the Arg 550 sample nanostructure decreases compared to Arg 400, the
photoluminescence intensity decreases. A decrease in the content of carbon and nitrogen
can lead to a decrease in the contribution of radiative recombination and, consequently,
in the intensity of photoluminescence. It is worth noting that photoluminescence is not
observed in the sample thermally treated in air.
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Registered carbon also can be associated with carbon dangling bonds. Such carbon
bonds can accumulate an excess negative charge, thereby contributing to greater photocat-
alytic activity during CO2 conversion [31,38].

3.3. Functional Properties Investigation

The optical properties of the obtained samples were investigated by diffuse light
reflectance spectroscopy (Figure 5). It can be seen that the reflection coefficient in the range
from 300 to 650 nm decreases with annealing temperature in an argon stream (Figure 5a).
The Arg 300 sample has the lowest reflection coefficient in the entire measured range,
but due to the fact that no symmetric crystal structure is observed, such a sample cannot
be used as a photocatalyst or photoanode. The reflection coefficient increases with the
temperature of thermal treatment in an argon stream (Figure 5a). The obtained spectra of
diffuse light reflection were recalculated according to the Kubelka–Munk theory (Figure 5b).
The values of the optical band gap width of the obtained samples were determined. The
band gap width of Arg 300 and Arg 400 samples is close and is about 2.9 eV, in turn for Arg
550 and Air 450 samples, it is about 3.1 eV. A little decrease in the optical bandgap width of
Arg 300 and Arg 400 samples compared to Arg 550 and Air 450 can be attributed to the
presence of carbon and nitrogen in the material [36,39].

Figure 6 shows the voltammetric characteristics of the symmetric TiO2-NTs in darkness,
under illumination by the xenon lamp (full spectrum) and under illumination with a
wavelength of more than 430 nm.

As can be seen, the Arg 300 sample shows no photoactivity in any of the emission
spectra. This is due to the amorphous structure of the sample, leading to a large degree
of recombination of photogenerated charge carriers in the volume of the material. It
can be seen that the samples Air 450 and Arg 550 have the highest photoactivity in the
full spectrum, the maximum photocurrent recorded during the measurement at 0.5 V
was 0.6 and 0.4 mA/cm2, respectively. At the same time, the Arg 400 sample shows
low photoactivity in the full spectrum with a maximum photocurrent at 1 V of about
0.25 mA/cm2.
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The photoactivity of the samples was also investigated by chronoamperometry under
visible light and full spectra at 0 V bias vs. Ag/AgCl (Figure 7).

As can be seen from obtained data, the Arg 400 sample has the highest photoactivity in
the visible light range, its registered values of photocurrent exceed other samples by at least
15 times. That correlates with the optic band gap measurements, the band gap of the Arg
300 is lower than the Air 450 and Arg 550 samples. However, the overall photoactivity of
light conversion of the Arg 400 sample in the full spectrum is low. This effect may be related
to the high defectiveness of the structure due to excessive carbon and nitrogen content in
the material. Increasing the annealing temperature in argon to 550 ◦C and the decrease in
carbon and nitrogen content leads to an increase in the photoactivity of the material in full
spectra of the xenon lamp. However, when compared to the Air 450 sample, the effect of
thermal treatment in an argon stream on the photoactivity of the samples is negative.
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The light conversion efficiency of obtained samples was evaluated in the wavelength
range of 300 to 500 nm at an applied 0 V bias vs. Ag/AgCl (Figure 8).
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As can be seen, Air 450 and Arg 550 samples most effectively convert light at wave-
lengths less than 400 nm. At the same time, the Arg 400 sample showed less than 10% light
conversion efficiency in the entire range studied. The low light conversion efficiency of
the Arg 400 sample can be associated with light adsorption by amorphous surface carbon
without generation charge carriers. One can notice a light conversion efficiency of ~0.2% at
wavelengths longer than 400 nm probably because of the fast recombination of generated
charge carriers (Figure 8).

The process of photocatalytic conversion of CO2 was carried out in a flow-through
reactor with a gas flow rate of 1.1 mL-min−1. The obtained results are presented in Figure 9.
As can be seen in Figure 9, the release of methane and methanol occurs when the light is
turned on in the stream of wet helium. Products such as acetaldehyde and ethanol have
also been detected. The presence of these products in the wet helium stream with light
irradiation can be associated with two symmetric processes: photocatalytic decomposition
of adsorbed organic compounds on the surface of the symmetric TiO2 NTs, as well as
desorption of such compounds. After the system was stabilized, the working gas was
changed to CO2 without changing the gas flow rate. The concentration of methanol and
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methane increases with the presence of CO2 in the reactor for all studied samples. This
effect indicates the beginning of the photocatalytic conversion of CO2.
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It can be noted that the yield of methane and methanol in the helium stream for all
samples under investigation is not much different, which can indicate that the carbon on the
surface of the material is not converted into organic compounds. Methane and methanol
are common CO2 conversion products for TiO2-based photocatalysts [4]. As can be seen,
the greatest photocatalytic activity exhibits the sample Arg 550, but after 120 min of the
CO2 injection in the reaction the rate of photoconversion critically decreases. The activity of
Arg 550 rapidly decreases during the formation of methanol, to almost zero even before the
light is turned off. That can indicate the active deactivation of the photocatalyst surface. The
deactivation can be connected with adsorbed reaction products on the sample′s surface and
further block the photocatalytic process. At the same time, for sample Air 450, the decrease
in the production rate of methanol can be observed, but to a lesser extent compared to Arg
550. The Arg 400 sample has the lowest photocatalytic activity, but it should be noted that
during 440 min of photoinduced conversion of CO2, deactivation of the photocatalyst is
not observed.

The photocatalytic activity of the Arg 550 sample is higher than that of the Air
450 sample, which can be explained by the large number of carbon dangling bonds that
accumulate an excess negative charge. However, as can be assumed such carbon defects are
not stable and are quickly deactivated in the CO2 conversion process by the reaction prod-
ucts, which is observed in these two samples. In turn, the Arg 400 sample with the greatest
amount of carbon in its composition shows a low production rate but stable kinetics of
methane and methanol formation during experiment time. We can assume two symmetric
processes: the surface carbon is a drain for the electrons from carbon dangling bonds, and
the CO2 conversion process takes place at a distance from such carbon centers, due to
which their passivation does not occur.

As can be seen from the obtained results the excess modification by carbon of TiO2
nanotube arrays leads to a decrease in the photocatalytic activity in the CO2 conversion
process. The presence of carbon dangling bonds increases the rate of the CO2 conversion
process, but their amount should be optimal. Controlling the concentration of such carbon
centers can be a good way to obtain an efficient catalyst in carbon dioxide conversion
processes. In the case of the photoanode material, excessive carbon doping leads to an
increase in photoactivity in the visible range, but critically suppresses the light conversion
in the UV range.
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4. Conclusions

In the present work, we have investigated the influence of the temperature of thermal
treatment in argon on the structure, chemical, and phase composition, as well as photo-
catalytic and photoelectrochemical properties of arrays of the symmetric titanium oxide
nanotubes obtained in ethylene glycol-based electrolyte. It can be concluded that thermal
treatment of the symmetric TiO2 NTs in argon contributes to the preservation of carbon in
the material. Carbon modification of the symmetric TiO2 NTs arrays leads to an increase in
optical absorption in the visible light range. In turn, carbon modification of the symmetric
TiO2 NTs arrays promotes the process of CO2 conversion. This effect may be related to
the formation of carbon dangling bonds in the structure of the samples. Such defects
accumulate electrons on the surface required for the carbon dioxide conversion reaction.
However, despite the increased activity of such carbon defects, they seem to be prone to
passivation. At the same time, the presence of carbon in the samples is necessary because it
leads to greater stability of the CO2 conversion process, which may be a consequence of the
separation of photoinduced charge carriers on the catalyst surface. Further development
of methods to control the concentration of carbon dangling bonds and protect them from
deactivation may be a successful way to increase the activity of the symmetric TiO2 NTs
arrays in the photocatalytic conversion of CO2.
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