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Abstract: Reducing the skin-friction drag of a vehicle is an important way to reduce carbon emissions.
Previous studies have investigated the drag reduction mechanisms of transverse grooves. However,
it is more practical to investigate which groove geometry is optimal at different inflow conditions for
engineering. The purpose of this paper is to establish the physical model describing the relationship
between the dimensionless depth (H+ = Huτ/υ) of the transverse groove, the dimensionless inflow
velocity (U+

∞ = U∞/uτ), and the drag reduction rate (η) to quasi-analytically solve the optimal and
maximum transverse groove depth according to the Reynolds numbers. Firstly, we use the LES with
the dynamic subgrid model to investigate the drag reduction characteristics of transverse V-grooves
with different depths (h = 0.05~0.9 mm) at different Reynolds numbers (1.09× 104 ∼ 5.44× 105)
and find that H+ and U+

∞ affect the magnitude of slip velocity (U+
s ), thus driving the variation

of the viscous drag reduction rate (ην) and the increased rate of pressure drag (ηp). Moreover,
the relationship between U+

s , ην, and ηp is established based on the slip theory and the law of
pressure distribution. Finally, the quasi-analytical solutions for the optimal and maximum depths are
solved by adjusting U+

s to balance the cost (ηp) and benefit (ην). This solution is in good agreement
with the present numerical simulations and previous experimental results.

Keywords: drag reduction; transverse groove; optimal depth; maximum depth

1. Introduction

In recent years, due to the increase in energy consumption and the strict requirements
of fuel efficiency, the technologies of reducing carbon emissions associated with skin-
friction drag reduction have drawn much attention [1]. For Lufthansa Cargo’s Boeing
777F freighters, reducing the skin-friction drag by 1% means annual savings of around
3700 tons of kerosene and just under 11,700 tons of CO2 emissions [2]. Compared with
traditional drag reduction methods, bionic microstructures have a better potential for
engineering applications because of their remarkable drag reduction properties and good
applicability [3–5]. Previous studies have shown that there are two types of microstructure,
one is the riblets imitating shark shin [6,7] and the other is the transverse grooves imitating
dolphin skin [8–11], which are parallel and perpendicular to the flow direction, respectively.
It has been reported that longitudinal riblets are capable of delivering a reduction of surface
friction drag around 10% [12]. The drag reduction mechanism of longitudinal riblets is
attributed to the damping of crossflow fluctuations or the uplift of turbulent streamwise
vortices above the riblet valley [13–15].

The better drag reduction properties of transverse grooves have been proved by
the latest research. Lee et al. [16] observed that the maximum measured drag reduc-
tion of 40% was achieved by a nanoporous transverse grooved plate. Liu et al. [17]
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used large eddy simulation (LES) technology to analyze entropy generation in the flow
over a transverse grooved plate. The results showed that the total entropy generation
in the near-wall region decreased by approximately 25%. Wang et al. [18] reported that
an 18.76% net drag reduction was achieved by transverse grooves. These studies indicate
that transverse grooves exhibit more significant potential for engineering applications than
streamwise riblets.

At present, most studies focus on the drag reduction mechanisms of transverse grooves.
Some studies suggested that the vortices formed within the grooves weaken the turbu-
lence structure in the boundary layer near the wall [19,20]. The more popular perspective
indicated that the vortices within the transverse grooves change the sliding friction into
rolling friction at the solid–liquid interface, which is also named the “micro air-bearing phe-
nomenon” [21–25]. Several studies focused on the Cassie–Baxter state to reduce the solid–
liquid contact area and create a superhydrophobic effect over the transverse grooves [26–28].
The studies of Seo et al. [29], Lang et al. [30], and Mariotti et al. [31] showed that the vortices
formed in the transverse grooves increase the momentum in the boundary layer near the
wall, thus effectively controlling the flow separation.

All the above studies are of great significance to qualitatively explain the drag re-
duction mechanism of the transverse groove. However, it is of more practical interest
to understand which groove geometry is optimal at different inflow conditions for engi-
neering. To the best of the authors’ knowledge, compared with a large number of studies
in the context of streamwise riblets, less is known regarding the parameter studies on
transverse grooves. The drag reduction characteristics of transverse grooves are mainly
determined by the shape, AR (ratio of groove width to depth), and depth. Cui et al. [22]
conducted a numerical simulation on the pressure drop in microchannel flow over different
transverse-grooved surfaces and found that the drag-reduction rate of V-shaped transverse
grooves is better than that of rectangular transverse grooves. The experimental results of
Liu et al. [32] demonstrated that the drag reduction performance was best when the AR is
2 at a Reynolds number of 50,000. The purpose of this paper is to establish the physical
model describing the relationship between the dimensionless depth (H+ = Huτ/υ) of
the transverse groove, the dimensionless inflow velocity (U+

∞ = U∞/uτ), and the drag
reduction rate (η), so as to quasi-analytically solve the optimal and maximum transverse
groove depth according to the different Reynolds numbers. The optimum depth of the
transverse groove corresponds to the maximum drag reduction rate, and the maximum
depth corresponds to the drag reduction rate of zero, which is the limit for the allowable
machining error for engineering applications.

This paper is organized as follows. First, the numerical methodology is formulated
in Section 2. Secondly, the drag reduction characteristics of transverse V-grooves with
different depths at different Reynolds numbers are investigated by LES in Section 3. Then,
in Section 4, the theoretical model for the optimal and maximum depth of the transverse
groove is established. Based on this model, the quasi-analytical solution of the groove
depth has been solved and several grooved plates with different groove depths have been
designed to verify the drag reduction characteristics in Section 5. Finally, the conclusions
are presented in Section 6.

2. Numerical Methodology
2.1. Solving Methods

The large eddy simulation (LES) method is used in the commercial software FLUENT
18.0 to obtain the induced drag reduction and flow characteristics [33,34]. A dynamic
subgrid-scale (SGS) is chosen to model the unresolved small flow field scale motions [35,36].
The discretized continuity equation is solved using the Rhie and Chow method [37] to
compute the mass flux at each face. The diffusion terms and the advection terms in
the discretized momentum equations are solved using a second-order-accurate central-
differencing discretization scheme and a second-order upwind scheme, respectively. More-
over, a second-order implicit time-stepping approach is used for temporal discretization.
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Thus, the space and time resolution of the numerical method is of second-order accuracy.
For the pressure–velocity coupling, SIMPLE (Semi-Implicit method for pressure linked
equations) is used to enforce the mass conservation and obtain the pressure fields. For the
evaluation of gradients and derivatives, the least-squares cell-based gradient method is em-
ployed. The dimensionless physical timestep ∆tU/H ≈ 0.02 [38] is used, where U denotes
the uniform velocity at the inlet and H represents the depth of grooves. The dimensionless
time of statistical averaging is above TU/H ≈ 400 [34] to obtain the time-averaged results.

2.2. Computational Domain and Boundary Conditions

The 3D computational domain and the boundary conditions are shown schematically
in Figure 1 and Table 1. The height and spanwise length of the computational domain are
25 mm (L+

y = L+
z = 103) [34], which covers at least the thickness of the boundary layer

under all the flow conditions. The total length of the computational domain is 200 mm
(L+

x = 833). A smooth wall with a length of 160 mm is placed upstream of a grooved wall
for the development of turbulence from laminar flow. Another smooth wall with a length of
20 mm is located downstream of the grooved wall to prevent the propagations of pressure
perturbations at the outlet. The simulated grooved wall is about 20 mm long, consisting
of different symmetric V-grooves profiles—whose AR is 2 (aspect ratios, S/H, where S
represents the width of an individual groove) and depths are 0.05~0.9 mm (a baseline
plate without grooves is also simulated in the same position). Reynolds numbers range
from 1.09× 104 to 5.44× 105, which is based on the length of the flat wall placed upstream
of a grooved wall (160 mm), the freestream velocity, and the viscosity of the fluid. At
all the solid walls, the no-slip condition is specified. At the inlet of the computational
domain, an ideal gas flows with uniform velocity and a freestream turbulence intensity of
1%, and the pressure condition is set at the outlet.
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Figure 1. Computational domain and boundary conditions.

Table 1. Size of the computational domain and the corresponding number of grid nodes.

Dimensionless
Parameters Nodes

L+
x 667 + 83 + 83 100 + 1200 + 25

L+
y 103 50

L+
z 103 25

∆x+
Groove 0.05 1200
Other <10 100 + 25

∆y+ 0.02~10 50

In order to verify that the normal height (L+
y ) and spanwise length (L+

z ) of the compu-
tational domain meet the requirements of LES, two normal heights (L+

y = 103 and 123.6)
and two spanwise lengths (L+

z = 103 and 123.6) are chosen to investigate the effect on
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outcomes. Table 2 shows the simulation results of the total drag of the grooved plate. The
drag hardly changes when the normal height and the spanwise length are greater than
103, which means that the results conducted with L+

x = 103 and L+
z = 103 in the present are

adequate for the requirements of LES.

Table 2. Domain independence test (h = 0.1 mm, Re = 1.09× 104 ).

L+
x L+

z Drag (N)

103
103 0.00272

123.6 0.00273

123.6
103 0.00273

123.6 0.00276

2.3. Grid Independence Study

The structured mesh is generated by commercial software, ICEM, as shown in Figure 2.
The grid resolution and the number of grid nodes are shown in Table 1. The grids are
clustered near the wall surface and the normal distance from the wall surface to the nearest
grid points Y+ is 0.04. The maximum normal grid resolution ∆y+max is less than 10. The
streamwise grid resolution ∆x+ is 0.07 within the grooves, and ∆x+max is less than 10 in
other streamwise positions. The spanwise grid resolution ∆z+ is 4.1 [34].
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Figure 2. Mesh distribution around transverse V-grooves.

In order to verify that the grid resolution meets the requirements of the large eddy
simulation, two streamwise grid resolutions within the groove ∆x+ (0.07 and 0.32) and
two spanwise grid resolutions ∆z+ (4.1 and 10) are chosen to investigate the effect on
the outcomes. Table 3 shows the simulation results for the drag of the grooved plate and
the streamline inside the groove. The resistances of a grooved plate hardly change when
∆x+ = 0.07 (groove) and ∆z+ = 4.1, which are selected for deriving all the other results.

Table 3. Verification of grid resolution (h = 0.1 mm, Re = 1.09× 104 ).

∆x+ (Groove) ∆z+ Drag (N) Streamline

0.07
4.1 0.00274 →
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Figure 3 shows the relative error of the total resistance of a grooved plate (with
symmetric V-grooves whose AR is 2) compared with that of a smooth plate (based on
the total drag in the case of 2,403,465 grids) at five different grid-refinement levels. The
resistances of a grooved plate and the baseline plate no longer change when the number of
grid cells is greater than 1,603,491, and the relative difference is 0.0465%, which is used as
the grid resolution in deriving all the other results.
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2.4. Experimental Validation

In order to check the accuracy of the obtained numerical results, the results of the
numerical simulation are compared with the relevant experimental data reported previously.
The numerical results of velocity profiles over the grooved plates with a groove depth
of 1.62 mm and groove width of 3.57 mm are compared with the experimental results
obtained by Ahmadi-Baloutaki et al. [39] in Figure 4a,b (the Reynolds number based on
the length of the grooved plate is 1.85× 105, and the turbulence intensity is 0.4% and 4.4%,
respectively). The simulated velocity profiles agree well with the previously published
experimental results, suggesting that the present numerical approach has sufficient accuracy
for predicting the drag reduction of transverse grooves (the relative error is found to be less
than 3%). Moreover, Figure 4c,d show the experimental results [40] and numerical results
of the velocity vector over the grooved plate, respectively. It is apparent that the simulation
results show good predictions of the location and structure of the vortex formed within the
groove, which indicates that the CFD method can accurately simulate the flow details over
the grooved plate.
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vector over the grooved plate of experimental data [40] (c) and numerical result (d).

3. Characteristics of Drag Reduction Induced by Transverse V-Grooves with Different
Depths at Different Reynolds Numbers

Before establishing the prediction model of the optimal and maximum depth, it is
necessary to analyze the key physical factors affecting the drag reduction characteris-
tics. In this section, the amounts of drag reduction induced by grooves with different
depths at different Reynolds numbers are computed and the mechanisms of drag reduction
are analyzed.

Figure 5 illustrates the variation in drag-reduction rate with depth at different Reynolds
numbers. The drag-reduction rate is defined as,

η =
FG − FR

FR
(1)

in which FG and FR represent the resistance of the grooved plate and the baseline plate,
respectively. The results show that the drag-reduction rate induced by the grooved plate
first increases and then decreases with the increase of depth. At each Reynolds number,
there is an optimal groove depth for maximum drag reduction and a maximum groove
depth corresponding to the zero-drag reduction rate, which is qualitatively consistent with
the results of the previous study in the context of streamwise riblets [12]. Interestingly,
the optimal and maximum depth decrease with the increase in Reynolds number, as shown
in Table 4. It is worth noting that because the groove depth in the simulation cases is discrete,
the optimal groove depth chosen from Table 4 actually corresponds to the ‘near-maximum’
drag reduction rate, and the maximum depth actually corresponds to the ’near-zero’ drag
reduction rate.
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Table 4. Drag reduction rate of transverse grooves with different depths at different Reynolds numbers.

Re\h(mm)0.05 0.1 0.15 0.25 0.3 0.35 0.4 0.45 0.5 0.6 0.65 0.7 0.8 0.9

−1.4% −1.7% −2.1% −2.5% −2.6% −2.8% −3.3% −4.0% −4.6%
−4.2% −4.8% −5.2% −5.6% −5.8% −6.0% −6.4% −7.0% −7.9%
−5.0% −5.5% −6.1% −6.8% −7.1% −7.3% −7.6% −8.2% −8.8%
−5.9% −6.2% −6.8% −7.7% −8.2% −8.5% −8.7% −9.3% −10.1% −8.7% −7.4% −6.1% −3.0% 0.3%
−6.7% −7.2% −7.9% −8.8% −9.4% −9.8% −10.2% −10.7% −9.4% −6.3% −4.7% −3.1% 0.7%
−7.3% −8.1% −9.0% −9.8% −10.2% −11.0% −11.7% −12.0% −8.4% −3.6% −1.5% 1.5%
−8.1% −9.2% −9.9% −10.5% −11.3% −11.9% −12.4% −10.6% −6.7% −2.1% 0.5%
−9.2% −9.6% −10.4% −11.4% −12.6% −12.9% −10.4% −5.4% −2.4% 0.8%
−9.8% −10.5% −10.9% −12.2% −13.2% −12.7% −9.8% −4.2% 0.2%
−9.9% −10.9% −11.8% −13.3% −14.4% −11.5% −6.8% −2.3% 1.0%
−11.0% −12.0% −12.8% −14.4% −14.1% −10.2% −5.4% 0.2% Optimal depth
−10.4% −11.0% −12.0% −12.3% −9.2% −6.2% −3.3% 1.2% Maximum depth
−9.9% −10.1% −10.2% −9.6% −8.7% 0.4%
−8.1% −7.1% −5.9% −4.8% −1.5%

Figures 6 and 7 show the flow details at different depths (h = 0.3 mm and h = 0.4 mm)
and Reynolds numbers (to facilitate model building in the next section, we convert the
Reynolds number into the dimensionless velocity, U+

∞ , according to Equation (2) [41]) to
analyze the physical mechanism driving the variation in total drag.

U+
∞ =

U∞

uτ
=

1√
0.029Re−0.2

(2)

here, uτ represents the local friction velocity.
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The streamline patterns and velocity that contour over the grooved plate are shown in
Figure 6. Some vortices formed in the grooves can be distinctly observed as perpendicular
to the flow direction. These boundary vortices act as “air bearings”, which separate the
boundary layer from the solid wall, resulting in fluid sliding over the grooved plate. In
order to measure the sliding degree, the dimensionless velocity profiles (Y+ = yuτ/ν,
and U+ = U/uτ) at the centerline of the grooved plate and the baseline plate at the cor-
responding position are compared (Figure 6, right). The results show that the velocity
gradient over the grooved plate is less than that on the baseline plate, and an induced
slip velocity (U+

s ) on the horizontal line can be selected as the quantitative parameter to
describe the slip phenomenon. Moreover, the comparison results of the different numer-
ical cases indicate that the slip velocity is affected by the groove depth (h) and inflow
velocity (U+

∞).
The wall shear distribution and pressure contour shown in Figure 7 further illustrate

that the magnitude of slip velocities drives the variation in the total viscous drag and
pressure drag. On the one hand, these slip velocities reduce the velocity gradient over the
groove plate, thus reducing the total viscous resistance. This point is further proved by the
shear stress distribution diagram, which shows that the shear stress of the grooved wall
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is significantly less than that of the baseline plate. By comparing the numerical cases of
grooved plates with the same depth at different inflow velocities, it can be seen that the
larger the slip velocity, the smaller the velocity gradient. As well, the corresponding shear
stress decreases the most, so the total viscous resistance decreases the most in turn. On
the other hand, the “slip fluids” induced by the vortices separate on the leeward side of
the groove and stagnation occurs on the windward side, resulting in additional pressure
drag compared to the baseline plate—which increases the total resistance of the grooved
plate. The larger the slip velocity, the greater the stagnation pressure on the windward
side, resulting in greater additional pressure drag. In summary, the grooved plate reduces
the viscous drag (benefits) and increases the pressure drag (costs), and the optimal drag
reduction is the result of balancing the benefits and costs.

From the above analysis, the total drag of the grooved plate consists of the viscous drag
(FGV) and pressure drag (FGP), which are expressed by Equations (3) and (4), respectively.
FGV and FGP are determined by calculating the corresponding local stress—namely, shear
(τ) and pressure (p) at the wall—and integrating the projected stress in the drag direction
(ex, that is the unit vectors in the x direction shown in Figure 1 along the wetted wall (ls).

FGV =
∫ ls

0
τ·exdl (3)

FGP =
∫ ls

0
(p− p∞)n·exdl (4)

here, p∞ represents the ambient pressure, l is the unit area along the groove wall, and n denotes
the normal vector to the wall. Therefore, Equation (1) is transformed into Equation (5):

η =
FGV − FR

FR
+

FGP
FR

= ην + ηp (5)

here, ην = (FGV − FR)/FR denotes the reduction rate for viscous drag, and “ηp = FGP/FR”
denotes the increased rate of pressure drag.

Figure 8 shows the variation of ην and ηp with Us, ut, and U+
s (in order to compare the

model results with the experimental results in the following sections, four different grooves
with h of 0.05, 0.1, 0.15, and 0.3 mm are used for analysis). It can be seen that the absolute
values of ην and ηp increase with the increase of U+

s (U+
s = Us/ut, where ut =

√
τω/ρ

is only a unit commonly used for dimensionless values. Therefore, there is no physical
relationship between ut and the drag reduction rate), which further indicates that the slip
velocity drives the variation in the total viscous drag and pressure drag. In conclusion,
the essence of balancing the benefit (ην) and cost (ηp) to obtain the optimal drag reduction
is how to obtain the optimal slip velocity by matching the depth of the groove and the
inflow velocity.

Based on the above analysis, we propose a model to match the relationship between
inflow velocity (U+

∞) and groove depth (h) by determining the optimal slip velocity (U+
s ).

The establishment process of this model is shown in Figure 9.

Step 1. Construct the relationship between inflow velocity (U+
∞), depth (H+ = huτ/ν),

and slip velocity (U+
s ).

Step 2. Construct the physical relation between slip velocity (U+
s ) and viscous drag-

reduction rate (ην).
Step 3. Construct the physical relation between slip velocity (U+

s ) and pressure drag-
increase rate (ηp).
Step 4. Balance ην and ηp to design the groove depth (H+) in different inflow velocities (U+

∞).
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4. Construction the Theoretical Model Describing the Relationship between the
Dimensionless Depth (H+), the Dimensionless Inflow Velocity (U+

∞ ), and Drag
Reduction Rate (η)
4.1. The Relationship between Slip Velocity (U+

s ), Depth (H+), and Inflow Velocity (U+
∞)

The streamline patterns shown in Figure 7 reveal that the boundary vortices are not full
inside the grooves. Therefore, we assume that the distances from the vortex center to the groove
bottom and the slip surface are Kh and Ls (slip length, Ls = (1− K)h), respectively—as shown
in Figure 10. Since the slip surface shown in Figure 10 (i.e., the position of the baseline
plate) is at the viscous bottom layer, the total viscous stress can be expressed as

τ|slip = µ
∂u
∂y

= τω (6)
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Over the grooved plate, the velocity at the vortex core and the slip surface increases
from 0 to Us, and both Us and Ls are small quantities, so the velocity gradient of U in the Y
direction at the midpoint of the slip surface can be approximated as

∂u
∂y

=
τω

µ
≈Us

Ls
(7)

in which τω = ρ(uτ)
2, then Equation (7) can be transformed into Equation (8).

Us

uτ
=

ρuτ Ls

µ
(8)

therefore, substituting “Ls = (1− K)h” into Equation (8) yields the relation between the
dimensionless slip velocity and dimensionless depth, which is described as

U+
s = (1− K)H+ (9)

here, U+
s is equal to Us/uτ , H+ is equal to ρuτh/µ, and K represents the fullness of the

vortex within the groove, which varies with different inflow velocities and groove depths,
as shown in the streamline patterns of Figure 11.
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To quantitatively estimate the variation of K, we use the Boltzmann function to fit the
data points (see Figure 12), which can be expressed as Equation (10). The resulting fits are
accurate to better than 2% at a 95% confidence interval.

K = A2 +

(
A1 − A2

1 + e((U+
∞−U0)/du)

)
(10)

where A1, A2, u0, and du are the control parameters of the Boltzmann function, which can
be described by Equation (11) (h is in millimeters).

A1 = 0.45809− 0.32244h + 0.79245h2

A2 = 0.74836 + 0.44569h− 1.12162h2

U0 = 18.5287− 9.83878h + 6.70225h2

du = 0.33396 + 4.79502h− 10.6357h2

(11)

therefore, substituting Equations (10) and (11) into Equation (9) yields Equation (12), which
can predict the slip velocity over the groove plate with depth H+ at the inflow velocity U+

∞ .

U+
s = f1

(
H+, U+

∞
)

(12)
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Figure 13 compares the CFD data with the results of Equation (12). The results show
that the prediction value of Equation (12) are qualitatively in agreement with the numerical
simulations. In detail, when h ≤ 0.1, the prediction accuracy decreases with the increase
of U+

∞ , so Equation (12) is more adequate for the 14.88 < U+
∞ < 18.53. However, when

h > 0.1, Equation (12) has a greater prediction accuracy when the dimensionless inflow
velocity is between 14.9 and 22.
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4.2. The Relationship between Slip Velocity (U+
s ) and Viscous Drag-Reduction Rate (ην)

Fukagata and Kasagi [42] proposed a theoretical prediction model for the drag reduc-
tion rate achieved by superhydrophobic surfaces in a turbulent channel flow. By comparing
the bulk mean velocity of the baseline plate and the hydrophobic surface, they successfully
established the relationship between the streamwise and spanwise slip length and the
drag reduction rate. Different from their work, our work aims to establish the relationship
between slip velocity, U+

s , and viscous drag reduction rate, ην, over the grooved plate.
According to Equation (5), the viscous drag reduction rate ην is expressed by (FGV − FR)/FR,

where FGV ∝ uτg and FR ∝ uτb, so ην can be expressed as Equation (13).

ην =
FGV − FR

FR
=

(
uτg

uτb

)2
− 1 (13)

here, uτg and uτb represent the local friction velocities of the grooved plate and baseline
plate, respectively. Therefore, ην can be estimated if the relationship between U+

s and
uτg/uτb is established.

Ug = Ug−s + Us (14)

The velocity profile over the grooved plate, as shown in Figure 14, can be regarded as
the superposition of slip velocity, Us, and the no-slip flow velocity profile (Ug−s), which
can be described as Equation (14). Figure 15 shows the dimensionless velocity profiles
of Ug and Ug−s (U+

∞ = 22, h = 0.1). The results show that if the local friction velocities
of the grooved plate and baseline plate (uτg and uτb) are used as the dimensionless units
of Us and Ug−s, respectively, then both Ug/uτg and Ug−s/uτb satisfy the logarithmic law
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(U+ = 1
κ lnY+ + B, κ = 0.41, B = 5.0) [43] in the logarithmic region (50 < Y+ < 1000),

which was also demonstrated by the work of Min and Kim [44]. Therefore, Ug and Ug−s at
Y = Kδδ can be described as Equations (15) and (16), respectively, where δ stands for the
boundary layer thickness and Kδ is an adjustable constant (Kδ = 0.1∼0.2 in the logarithmic
region [41]). For the predicted equation, uτg over the grooved plate is unknown before
numerical calculation or experimental measurement, so all uτg in Equation (15) is converted
to uτg

uτb
uτb.

Ug =

(
1
κ

ln
Kδδuτg

ν
+ B

)
uτg =

[
1
κ

ln
(

Kδδuτb
ν

uτg

uτb

)
+ B

]
uτg

uτb
uτb (15)

Ug−s =

(
1
κ

ln
Kδδuτb

ν
+ B

)
uτb (16)
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Similarly, Us in Equation (14) can be expressed as Equation (17) with uτb.

Us = U+
s uτg = U+

s
uτg

uτb
uτb (17)

Therefore, substituting Equations (13) and (15)–(17) into Equation (14) yields the
relationship between ην and U+

s .

U+
s =

1
κ ln Kδδuτb

ν + B√
1 + ην

− 1
κ

ln
Kδδuτb

ν
− B− 1

κ
ln
√

1 + ην (18)
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With different U+
s in Figure 13 and the corresponding U+

∞ ∈ [14.9, 22.0] as an input.
Implicit Equation (18) is solved by the dichotomy to obtain ην. In Figure 16, we compare
the prediction of Equation (18) with CFD data in the present, The CFD data reported by
Wu et al. (2019) [5], and the experimental data reported by Liu et al. (2020) [32]. The reason
why the relationship between ην and U+

∞ is used, ην U+
s , is shown in Figure 16 and is mainly

to facilitate the comparison between the results predicted by Equation (18) and the data
obtained by previous studies. It is worth noting that the Reynolds number in all the U+

∞
according to Equation (2), and the groove depths in our simulation are consistent with those
in the references (h is 0.05, 0.1, and 0.3, respectively). 14.9 < U+

∞ < 20.35, the predicted drag
reduction rates are in good agreement with those from the present numerical simulations
and the previous experimental data U+

∞ > 20.35, there is a significant error between the
prediction of the model and the numerical results of Wu et al. [5], which indicates that this
model is not applicable at a high Reynolds number.
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4.3. The Relationship between Slip Velocity (U+
s ) and Pressure Drag-Increase Rate (ηp)

Predicting the viscous drag reduction rate (ην) of the grooved plate according to
the corresponding slip velocity (U+

s ) has been conducted in Section 4.2. In this section,
the relationship between U+

s and the pressure drag-increase rate (ηp) will be established by
analyzing the effect of the slip velocity on the pressure distribution of the groove wall.

According to Equation (5), the pressure drag-increase rate ηp is expressed by Equation (19).

ηp =
FGP
FR

(19)

here, the drag of the baseline plate can be estimated as

FR = N
∫ S+

0
τωdx = NS+ρµ2

τb (20)

where N denotes the number of transverse grooves in the corresponding length groove
plate, and S+ represents the dimensionless width of a groove.

Figure 17 shows the gauge pressure distribution on the groove wall (h = 0.05) at
different inflow velocities. The results show that the high-pressure region is formed with
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the stagnation of slip velocity induced by the boundary vortex on the groove windward
side and the corresponding low-pressure region is formed on the groove leeward side due
to local flow separation. Therefore, the additional pressure drag (FGP) of the grooved plate is
equal to the integral of the difference between the high and low pressure in each groove. For
a groove, taking the axis with zero-gauge pressure as the abscissa axis and the centerline
of the groove as the ordinate axis, the pressure distribution is a function of x, as shown in
Figure 18. Therefore, the total pressure drag of the grooved plate is expressed as

FGP = 2N
∫ S+/2

0
p(x)sinθdxtanθ (21)

here θ is 45 degrees (AR = 2).
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Figure 18. Schematic diagram of p(x).

For the model description of p(x), the experimental results of Feng et al. [45] show that
the static pressure distribution in the groove can be described by an exponent or polynomial.
On the basis of their work, combined with the pressure distribution in Figures 17 and 18,
we assume that p(x) can be described by Equation (22).

p(x) = C1x3 + C2x2 + C3x (22)

where C3 = 0, and C1 and C2 are adjustable variables that aim to obtain high-precision
model results. Then, Equation (21) is transformed into Equation (23).

FGP = N
√

2
S+

8

[
C1

8
(
S+
)3

+
C2

3
(S+)

2
]
= N

√
2p
(

S+

2

)
8

S+ + N
√

2C2

96
(S+)

3 (23)

where p
(

S+

2

)
represents the maximum pressure on the windward side, which is caused by

the stagnation of the slip velocity, so p
(

S+

2

)
can be estimated as

p
(

S+

2

)
= Kp0.5ρ(Us)

2 (24)

in which Kp is an adjustable variable and “0.5ρ(Us)
2” represents the dynamic pressure

of the fluid velocity from Us stagnation to 0. Substituting Equations (20) and (23) into
Equation (19) yields ηp as

ηp = K1
(
U+

s
)2

+ K2
(H+)

2

µ2
τb

(25)

where K1 =
Kp
√

2
16 and K2 =

√
2C2

24ρ . Equation (25) shows that ηp is related to the slip velocity
and the depth of the groove.

By adjusting the appropriate K1 and K2 values, the ηp predicted by Equation (25) can
be consistent with the numerical results. Figure 19 shows the prediction of Equation (25)
with different K1 and K2. Taking the fitting degree R2 as the objective function, K1 and
K2—which have the largest fitting degree—are selected as the model parameters, where
K1 = 6.93× 10−6h−1.428 and K2 = 0.00955h−0.31646.
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5. Solution and Verification of the Model
5.1. Balance ην and ηp to Solve the Quasi-Analytical Solution of Groove Depth (H+) in Different
Inflow Velocities (U+

∞)

Simultaneous Equations (12), (18) and (25) yield Equation (26), which can predict the
optimal depth and maximum depth of the transverse groove according to different inflow
velocities. The steps for solving this equation are shown in Figure 20.

U+
s = f1(H+, U+

∞)

U+
s =

1
κ ln Kδδuτb

ν +B√
1+ην

− 1
κ ln Kδδuτb

ν − B− 1
κ ln
√

1 + ην = f2(U+
∞ , ην)

ηp = K1(U+
s )

2
+ K2

(H+)
2

µ2
τb

= f3(H+, U+
s )

(26)

Step 1: We input different H+ and U+
∞ to get different slip velocities U+

s of the transverse
grooves.
Step 2: Input U+

s and U+
∞ into implicit Equation (18) to solve ην, and input U+

s and H+ into
Equation (25) to get ηp.
Step 3: Taking the sum of ην and ηp as the objective value. When this value is the max-
imum, the relationship between optimal depth H+

opt and U+
∞ is obtained, and when this

value is equal to 0, the relationship between maximum depth H+
max and U+

∞ is obtained.
Figure 21 shows the solution when the step of U is 1 (U ∈ [1, 70], the corresponding U+

∞ is
calculated by Equation (2)) and the step of h is 0.0006 (h ∈ [0.01, 1.2], H+ is calculated by
corresponding h).
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5.2. Verification of the Quasi-Analytical Solution

In the previous section, we have established a theoretical model and solved the quasi-
analytical solution of groove depths. In this section, firstly, the quasi-analytical solution of
this model is verified by comparing the previous research and CFD results in the present
with the model prediction results. Secondly, we redesign three grooved plates with different
depths based on the quasi-analytical solution and compare the drag reduction effect of the
grooved plates to further verify the correctness of the model.

Figure 21 shows the dimensionless depths predicted by the model versus the dimen-
sionless inflow velocities. The results show that the predicted optimal depths are in good
agreement with those from the present numerical simulations. However, for the prediction
of the maximum depths, the model accuracy decreases with the increase of U+

∞ . Table 5
shows the details of the prediction accuracy of this model. For the prediction of the optimal
depth, the average error of the model is less than 4.35% when U+

∞ < 20.07 (Re < 2.18× 105).
For the prediction of the maximum depth, the average error of the model is less than 4.09%
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when U+
∞ < 19.07 (Re < 1.31× 105). The main reason for the error may be that the changes

of h and Re in the CFD cases are discrete, so the presentation of the optimal or maximum h
in the CFD cases is not an accurate value (more details shown in Table 4).

Table 5. Comparison between model results and numerical results.

Re (×105) Mean 0.436 0.544 0.653 0.762 0.870 0.980 1.09 1.20 1.31 2.18 × 105

U+
∞ – 17.09 17.47 17.80 18.07 18.32 18.53 18.73 18.91 19.07 20.07

Model_opt(h) – 0.54 0.47 0.43 0.39 0.35 0.32 0.29 0.27 0.24 0.14
CFD_opt(h) – 0.50 0.45 0.45 0.40 0.35 0.30 0.30 0.25 0.25 0.15

Model_opt(H+) – 8.63 9.21 9.84 10.24 10.48 10.64 10.61 10.56 10.47 9.43
CFD_opt(H+) – 7.97 8.76 10.33 10.54 10.40 9.92 10.90 9.90 10.70 10.17
Relative error 4.35% −7.7% −4.9% 4.9% 2.9% −0.7% −6.8% 2.7% −6.3% 2.2% 7.9%

Model_max(h) – 0.93 0.81 0.72 0.65 0.59 0.54 0.50 0.47 0.44
CFD_max(h) – 0.90 0.80 0.70 0.65 0.60 0.50 0.50 0.45 0.45

Model_max(H+) – 14.74 15.78 16.52 17.14 17.54 17.91 18.25 18.54 18.87
CFD_max(H+) – 14.34 15.58 16.06 17.13 17.84 16.53 18.17 17.82 19.27
Relative error 4.09% −2.8% −1.2% −2.8% 0.0% 1.7% −7.8% −0.4% −3.9% 2.1%

Table 6 shows the details of the comparison between the predicted results of the model
with the numerical results of Wu et al. [5] and the experimental results of Liu et al. [32].
Wu et al. [5] optimized the groove depth on the airfoil with a Reynolds number of 299,444
(U+

∞ = 20.72). The results show that when H+ is 7.225, the drag reduction rate of the groove
is the largest, while when H+ is 21.675, the drag reduction rate of the groove approaches 0.
On the premise of consistent dimensionless velocity, the prediction results of our model
for the optimal and maximum depth are 8.475 and 19.290, respectively, which is close
to the work of Wu et al. [5]. The inconsistency of the application object may have been
the reason for the minor errors. Meanwhile, the optimal dimensionless groove depth for
pipelines, H+

opt = 8.488, was observed by the water tunnel experiment of Liu et al. [32] with
a Reynolds number of 50,000 (U+

∞ = 17.326). In this case, the optimal dimensionless groove
depth predicted by the model is 9.215, and the relative error between the model results and
the experimental results is 7.8%, which qualitatively proves the correctness of the model.
The inconsistency of the medium may have been the reason for the minor errors.

Table 6. Comparison between model results and previous results.

Medium U (m/s) Characteristic
Length (m) Re uτ U+

∞ H+ (opt) H+ (Max)

Wu et al. CFD air 22 0.2 299,444 1.062 20.722 7.225 21.676
Present model air 27.5 0.16 299,444 1.327 20.723 8.475 19.290

Liu et al. EXP water 1.478 0.034 50,000 0.085 17.326 8.488
Present model air 4.6 0.16 50,089 0.265 17.320 9.215

Figure 22, which is transformed from Figure 21, shows the relationship between the
optimal and maximum groove depths and the local Reynolds numbers. Based on this
model, three grooved plates have been designed at U = 4.6 m/s, as shown in Figure 23.
A 160 mm smooth plate is placed in front of the grooved plate in each case. The grooved
plate of Case 1 is divided into four sections, each with a length of 80 mm. According to the
average local Reynolds numbers of each section, the corresponding optimal groove depths
predicted by the model are 0.44, 0.35, 0.28, and 0.23 mm, respectively. On the contrary,
the groove depths of Case 2 (h ≡ 0.5 mm) and Case 3 (h ≡ 0.21 mm) are calculated
by the model according to the local Reynolds numbers before and after the grooved
plate, respectively.
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Table 7 shows that the drag reduction rate of the grooved plate (Case 1) according
to the model design is the largest (12.25%) compared with other cases. On the contrary,
the drag reduction rate of the grooved plate (Case 2) with the most deviation from the
model design is the smallest—only 0.06%. The drag reduction rate of Case 3 is 7.83%, which
is significantly less than Case 1. The reason why the drag reduction rate of Case 2 is almost
zero is that the depth of the tail of the grooved plate has exceeded the predicted maximum
depth (as shown in Figure 22), so these grooves at the tail cannot reduce the total drag,
resulting in the decrease of the total drag reduction rate. Although the depth of the grooves
in Case 3 do not meet the design of the optimal depths, it is less than the maximum groove
depths predicted by the model, so Case 3 can slightly reduce the total drag.

Table 7. Comparison of the drag of three grooved plates.

Viscous
Drag (N) ην

Pressure
Drag (N) ηP η

Baseline 0.01046 —- 0 — —
Case1 0.00756 −27.7% 0.00427 15.4% −12.25%
Case2 0.00798 −23.7% 0.00557 23.6% −0.06%
Case3 0.00839 −19.7% 0.00124 11.9% −7.83%

Figure 24 compares the time-averaged entropy generation over different plates. The
weaker the entropy generation, the smaller the total drag. Compared with the baseline plate,
the entropy generation of the three grooved plates decreases gradually at the beginning of
the groove area. From X = 0.16 to X = 0.48 in Case 1, the entropy generation at each place
decreases significantly, which means that the grooves at each place play a role in reducing
drag. However, in Case 2, the closer the groove is to the tail section of the grooved plate,
the smaller the reduction of entropy generation, which means that the groove in the tail section
may not reduce drag because the groove depth here exceeds the maximum depth shown
in Figure 22. Compared with Case 2, the entropy generation of the front section (X = 0.32)
of Case 3 decreases less, and the entropy generation of the tail section (X = 0.40~0.48)
decreases more because the groove depth of the front section of Case 2 is closer to the
optimal design depth and the groove depth of the tail section of Case 3 is closer to the
optimal design depth, which further verifies the correctness of the model.

6. Conclusions

In this paper, we used the LES with the dynamic subgrid model to investigate the drag
reduction characteristics of transverse V-grooves with different depths (h = 0.05~0.9 mm)
at different Reynolds numbers (1.09× 104 ∼ 5.44× 105). Based on the numerical results,
the physical model describing the relationship between the dimensionless depth (H+ = Huτ/υ)
of the transverse groove, the dimensionless inflow velocity (U+

∞ = U∞/uτ), and the drag
reduction rate (η) was established to quasi-analytically solve the optimal and maximum
transverse groove depth according to different Reynolds numbers. The main conclusions
are summarized as follows:

(1) The dimensionless groove depth (H+) and dimensionless inflow velocity (U+
∞)

affect the magnitude of the slip velocity (U+
s ), thus driving the variation in the total viscous

drag and pressure drag and thereby affecting the total drag. Therefore, the essence of
balancing the benefit (the viscous drag reduction rate, ην) and cost (the pressure drag-
increase rate, ηp) to obtain the optimal drag reduction is to obtain the optimal slip velocity
by matching the depth of the groove and the inflow velocity.

(2) The relationship between U+
s and ην can be constructed by comparing the velocity

profile of the grooved plate (slip) and baseline plate (no-slip), and the relationship between
U+

s and ηp can be established by analyzing the effect of the slip velocity on the pressure
distribution of the groove wall. When the value of ην + ηp reaches the maximum, the rela-
tionship between optimal depth H+

opt and U+
∞ is obtained, and when this value is equal to

0, the relationship between maximum depth H+
max and U+

∞ is obtained.
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(3) The model results are consistent with the present numerical results and with
previous data. For the solution of the optimal depth, the average error of the model is less
than 4.35% when U+

∞ < 20.07 (Re < 2.18× 105). For the solution of the maximum depth,
the average error of the model is less than 4.09% when U+

∞ < 19.07 (Re <1.31× 105).
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