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Abstract: As a hydraulic pump is the power source of a hydraulic system, predicting its remaining
useful life (RUL) can effectively improve the operating efficiency of the hydraulic system and reduce
the incidence of failure. This paper presents a scheme for predicting the RUL of a hydraulic pump
(gear pump) through a combination of a deep convolutional autoencoder (DCAE) and a bidirectional
long short-term memory (Bi-LSTM) network. The vibration data were characterized by the DCAE,
and a health indicator (HI) was constructed and modeled to determine the degradation state of
the gear pump. The DCAE is a typical symmetric neural network, which can effectively extract
characteristics from the data by using the symmetry of the encoding network and decoding network.
After processing the original vibration data segment, health indicators were entered as a label into
the RUL prediction model based on the Bi-LSTM network, and model training was carried out to
achieve the RUL prediction of the gear pump. To verify the validity of the methodology, a gear pump
accelerated life experiment was carried out, and whole life cycle data were obtained for method
validation. The results show that the constructed HI can effectively characterize the degenerative state
of the gear pump, and the proposed RUL prediction method can effectively predict the degeneration
trend of the gear pump.

Keywords: gear pump; RUL; DCAE; Bi-LSTM; health indicator

1. Introduction

With the dramatic growth of the machinery industry, humans have put forward higher
requirements for the reliability of machinery and equipment [1]. Hydraulic equipment is
extensively used in construction machinery, and the remaining useful life (RUL) prediction
method of hydraulic components can effectively improve the reliability of the entire hy-
draulic equipment and its system [2]. As a typical hydraulic pump, the gear pump has the
strengths of having a small size, light weight, reliable operation and wide speed range. As
the power source of a hydraulic system, the gear pump is widely used in various hydraulic
systems. However, a gear pump usually works in the case of high-speed overload, its
operating environment is generally harsh, and its working intensity is high [3]. These
factors will undoubtedly have a great impact on the life of the gear pump, and once a
failure happens, it will impact the normal function of the entire hydraulic installation. The
RUL prediction of a gear pump can effectively improve production efficiency and reduce
equipment life cycle costs, thereby reducing the incidence of failure [4].

Deep learning has become a major tool for solving big data problems. Many scholars
have applied deep models to the fields of computer vision, natural language processing
and disease analysis with good results [5–7]. With the galloping growth of industrial
Internet of Things technology, the amount of mechanical equipment status-monitoring
data is increasing, and on the basis of massive data support, the predictive maintenance
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of equipment has become the current research hotspot in equipment management [8,9].
As one of the core parts of many types of hydraulic equipment, the working state of the
hydraulic pump is directly related to whether the entire equipment can operate safely and
stably. Intelligent algorithms based on deep learning have become an important approach
in the areas of prognostic health management (PHM), driven by massive industrial state-
monitoring data and growing computing power [10–14]. Generally speaking, for the
hydraulic pump (gear pump), once a failure occurs, the failure is often reflected in certain
feature signals. Deep-learning-based lifetime prediction models can effectively analyze and
process these feature signals.

At present, based on signal processing technology, many researchers have studied
the condition monitoring and RUL prediction of hydraulic equipment. R. Guo et al. used
the Bayesian regularized radial basis function neural network to predict the RUL of a
gear pump [15]. X. Liang et al. used multivariate signals as data samples to realize fault
diagnosis of a hydraulic pump through a sparse autoencoder [16]. Z. Li et al. used data
dimension reduction and just-in-time learning techniques to analyze the pressure signal
to predict the RUL of a hydraulic pump [17]. S. Tang et al. presented an intelligent fault
diagnosis method based on the combination of a convolutional neural network (CNN)
and the continuous wavelet transform (CWT), which can diagnose hydraulic pump faults
through vibration signals [18]. H. Chen et al. used parallel factor-improved particle swarm
algorithm (IPSO)-probabilistic neural network (PNN)-driven multi-sensor data to identify
the nonstationary multi-fault mode of a centrifugal pump [19]. H. Tang et al. proposed
a fault diagnosis approach for the loose slipper failure of a piston pump under variable
load. The vibration signals of the axial piston pump are collected, and the root mean square
value of each segment of the signal is calculated to obtain the trend line of the root mean
square gradient. Finally, the trend line of the loose slipper failure detection is based on
the gradient [20]. Y. Lan et al. extracted the features of the vibration signals of a hydraulic
pump and classified the features through the improved extreme learning machine (ELM)
to achieve fault diagnosis [21]. H. Babikir et al. predicted axial piston pump noise based
on an improved artificial neural network model for different valve materials [22]. W.
Jiang et al. extracted the features of the sound signal of an axial piston pump based on
mel-frequency cepstrum coefficients (MFCCs). Extreme learning machine was used as a
classifier to diagnose faults from sound features [23]. Y. Zhu et al. used CNN to classify the
two-dimensional time-frequency diagram of vibration data to achieve the fault diagnosis
of a hydraulic pump [24]. Most hydraulic pumps belong to rotating machinery equipment.
As the machinery industry is also moving towards the era of big data, deep learning is
being widely used in fault diagnosis and life prediction of rotating machinery devices [25].
Many researchers have improved common deep learning models, such as CNN, long short-
term memory (LSTM), deep belief network (DBN) and generative adversarial networks
(GANs), and have demonstrated good effectiveness in pattern recognition of rotating
machinery [26–31]. The research results show that deep learning has broad application
prospects in the field of mechanical equipment PHM.

However, there are still many problems that need to be solved in RUL prediction
for hydraulic pumps. In the data acquisition stage, the traditional life test has problems
such as a long test cycle, difficulty in data acquisition and difficulty in simulating extreme
working conditions of the equipment. Currently, there are few hydraulic pump life datasets
available, making it difficult to perform effective model training. In the data analysis
stage, how to obtain valuable data from it against the background of large and complex
monitoring data and how to effectively moderate the degradation state of the hydraulic
pump are urgent problems to solve. During the RUL prediction model training phase,
the training accuracy of the remaining life prediction model is also closely related to two
factors: one is the correct choice of the model, and the other is the quality of the data
required to train the model. The correct selection of the algorithm and the high and low
quality of the training data also directly affect the predictive accuracy of the model.
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This paper uses a gear pump as the research object. The RUL scheme consists of
two segments, as illustrated in Figure 1. The first part represents the steps of modeling
the degradation state of the gear pump. By combining a deep convolutional autoencoder
(DCAE) with a self-organizing map network, effective feature abstraction of the original
vibration signal is used to construct the gear pump health indicator (HI). The second part
represents the gear pump life prediction model. The HI values are added as labels to the
original data to form the training set, and then the Bi-LSTM model is trained. The output
of the model is the prediction of the RUL of the gear pump.
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The paper is arranged as given below. Section 2 introduces the degradation state of
the gear pump and the required deep learning method. Section 3 proposes an accelerated
life experiment scheme for the gear pump. Section 4 introduces the method of degradation
state modeling of the gear pump based on a DCAE and a self-organizing map (SOM).
Section 5 proposes a RUL prediction model of the gear pump based on Bi-LSTM. Section 6
is the conclusion.

2. Theoretical Background
2.1. Degradation Analysis of Gear Pump

The main failure mode of a gear pump is fatigue and wear, where fatigue failure
occurs in the parts that bear repeated alternate loads, and wear failure occurs in the parts
that bear repeated friction. The common wear parts of a gear pump are the gear end and
floating side plate, tooth and shell inner cavity, gear tooth surface, etc. With the increase in
use time, key performance characteristics (such as oil flow back) gradually degrade. When
the performance characteristics degrade beyond the predetermined failure threshold, the
hydraulic pump fails. Degradation data of key performance characteristics can be used to
assess the reliability of hydraulic pumps [32,33]. Gear pumps belong to typical rotating
machinery; the structure and fluid will cause the vibration of the gear pump, reflected
in mechanical vibration and fluid vibration, as shown in Figure 2. When the device is
in a failure state, the quality, stiffness and damping of the system will change, and these
changes will be reflected in the vibration signal. This paper analyzes the degradation state
and predicts the RUL according to the vibration data of the gear pump.

2.2. Autoencoder (AE)

An autoencoder (AE) is an unsupervised learning model, whose functions are to take
the input information as the learning target and carry out representational learning. AE
is a neural network that consists of input layers, hidden layers and output layers, and
neurons in different layers are connected in a fully connected manner. The output layer
and input layer in AE usually have more neurons than the hidden layer; this construction
is known as an imperfect AE. Imperfect learning refers to the need for AE to capture the
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significant characteristics of data to achieve the effect of characteristic parsimony [34].
Autoencoders provide a way to perform unsupervised and semi-supervised learning.
Rotating mechanical devices have a long life cycle and usually contain a large amount of
unlabeled data information. The feature extraction process for these data falls under the
category of unsupervised and semi-supervised learning.
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In this paper, the encoding network and decoding network are expressed by h = g(x)
and r = ϕ(h), where x and r are the input and output of the AE. Its optimization goal can
be formulated as minJ(x,r). J is the loss function, which is usually the mean square error.

Convolutional Autoencoder (CAE)

The convolutional autoencoder is an extension of the traditional AE, which replaces
the ordinary matrix inner product with the convolution operation [35]. The CAE not only
enhances the nonlinear mapping ability of the AE but also enhances its ability to extract
spatially related information. The DCAE constructed in this paper exploits the symmetry
in AE. The encoder and the decoder have the same structure and can effectively extract the
features of the vibration signal based on their symmetry characteristics.

2.3. Convolutional Neural Network (CNN)

The two most important parts of a traditional CNN are the convolutional layer and the
pooling layer [36,37]. CNN has three core ideas: parameter sharing, equivalence denotation
and sparse interaction. These features of CNN are ideal for handling big data. The gear
pump has a long life cycle and a large amount of data, and the data type is a non-smooth
one-dimensional time series. In this paper, the AE is improved by a one-dimensional
convolution kernel to make the AE more suitable for processing one-dimensional time
series of vibration data. Convolution is used to reconcile the output characteristic vector
of the previous layer and to construct the output characteristic vector using the nonlinear
activation function. The network can be expressed as:

xl
j = f

 ∑
i∈Mj

xl−1
i × kl

ij + bl
j

 (1)

where b is the bias vector, xl
j and xl−1

i stand for the output and input of the l-th layer,
respectively, k is the convolution kernel, and Mj is the input feature vector.
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The pooling layer is proposed to alleviate the excessive sensitivity of the convolutional
layer to position. Pooling is a form of sampling under nonlinearity, reducing computation
by reducing the parameters of the network. Maximum pooling is the division of the input
layer into different areas using rectangular boxes that do not overlap, so each rectangular
box maximizes the output layer. The maximum pooling is denoted as:

Pl+1
i (j) = max

(j−1)U+1≤n≤jU

{
vl

i(n)
}

(2)

where n ∈ [(j− 1)U + 1, jU], U is the width of the pooling zones, Pl+1
i (j) is the value of

neurons in the (l + 1)-th layer, and vl
i(n) is the value of the n-th neuron in the i-th feature

vector of the l-th layer.

2.4. Self-Organizing Map (SOM) Network

A SOM network is an unsupervised learning network. It automatically changes
the network parameters and structure through self-organization and self-adaptation by
automatically searching the intrinsic laws and natural properties of the data. By learning
the data in the input space, SOM produces a low-dimensional and outlying map. To a
certain extent, it can also be regarded as a dimension reduction algorithm. SOM is a typical
self-organizing neural network with an input layer and competition layer. The input layer
accepts external information and transmits the input pattern to the competition layer; the
competition layer is responsible for “analyzing and comparing” the input pattern, looking
for rules and classifying them.

2.5. Long Short-Term Memory (LSTM)

An LSTM network is a peculiar kind of recurrent neural network (RNN) proposed
by researchers according to performance requirements [38]. By introducing gating units,
LSTM can dynamically change the accumulated time scale to better handle time-series
data. In LSTM, x, h and y are the input layer, hidden layer and output layer of the network.
At time t, its input is not only xt but also the output of the previous time step ht−1. The
specific expression is

ht = f (U · xt + W · ht−1 + bh) (3)

yt = V · ht + by (4)

where f is the nonlinear activation function; W, U and V are weight coefficient matrices,
which are shared at different times and do not change with time; and bh and by are the bias
vectors of the hidden layer and output layer.

Figure 3 is the basic structure of the LSTM unit. In order to realize the control and
flow of storage memory, LSTM introduces three gate units: the forget gate, input gate and
output gate. By introducing gate units, it is easier for LSTM networks to learn long-term
dependencies than ordinary RNN. The forget gate is used to decide which information to
keep in the status unit, and the specific mathematical expression is

ft = σ
(

W f [ht−1, xt] + b f

)
(5)

where σ is generally a sigmoid function, and [ht−1, xt] is the concatenation of the state of
the previous time step and the input at this moment.

The input gate is used to determine the input information, and its expression is

it = σ
(

Wi[ht−1, xt] + b f

)
(6)

~
Ct = tanh(Wc[ht−1, xt] + bc) (7)
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The results obtained by the forget gate and the input gate are united to update the
long-term memory unit C, and the definition is as follows:

Ct = ft � Ct−1 + it �
~
Ct (8)

In the formula, ft � Ct−1 represents the multiplication of each element of the forget
gate and the corresponding element of the long-term memory state at the previous moment,

which is used to forget part of the information of the long-term memory state. it �
~
Ct is

used to select the current input information and then accumulate it into the long-term
memory state. The end output of the LSTM unit is controlled via the output gate ot, and its
expression is defined as follows:

ot = σ(Wo[ht−1, xt] + bo) (9)

ht = ot � tanh(Ct) (10)

The basic idea of the RNN-based method for RUL prediction is to use the input of
monitoring data from the project as the input of the RNN and to use the training of the
model parameters through time backpropagation to achieve the RUL prediction of the
equipment. It should be noted that the internal feedback connection of the RNN portrays
the before-and-after dependence of the monitoring data. The LSTM determines whether to
preserve the existing information through the structure of the three gates, a feature that
makes it more suitable for dealing with the prediction problem of long-term data. The
amount of data for the whole life cycle of a gear pump is very large. RUL prediction based
on LSTM can effectively reduce problems such as gradient disappearance and gradient
explosion faced by RNN models with large datasets.

3. Experimental Settings

The experiment was an accelerated life test with four gear pumps operating at higher-
than-rated pressures the majority of the time. However, the test pressure needs to be
adjusted to the rated operating pressure of the pump when collecting data, so each gear
pump has two branches: the high-pressure acceleration branch and the rated operating
pressure branch. During the experiment, the rated operating pressure branch is only
entered during data acquisition, and the rest of the time, it is under the high-pressure
acceleration branch. When the signal acquisition is carried out, the reversing valve operates
and enters the rated working pressure branch, and the acquisition starts after the flow is
stabilized. In order to reduce the impact of hydraulic oil temperature changes during the
experiment, a PLC-controlled fan is used. When the set hydraulic oil temperature is greater
than 49 ◦C, the fan starts to reduce the oil temperature, and when the oil temperature is
lower than 49 ◦C, the fan stops rotating; the purpose is to ensure that the oil temperature is
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controlled at around 50 ◦C. During the experiment, the safety pressure of all four safety
valves was set to 30 MPa in order to ensure the safety of the experiment.

This life acceleration test bench was used to conduct experiments on 4 gear pumps of
the same type at the same time. The sensors installed in the test include torque sensors,
flow meters and acceleration sensors to monitor and collect changes in torque, rotational
speed, output flow and vibration throughout the life test. The test bench can make the
gear pump work under non-rated conditions so that the gear pump accelerates its wear
and degradation. The change in pumps’ pressure is mainly controlled by the low-pressure
relief valve. The schematic diagram of the gear pump accelerated life test bench system is
illustrated in Figure 4.
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The main purpose of this accelerated life test was to use vibration signals, torque speed
signals, flow signals and other signals to predict the RUL of the gear pump. The test bench
is illustrated in Figure 5. The acceleration sensor is installed near the oil outlet of the pump,
and the axial acceleration sensor is installed at the end face of the gear pump near the
passive shaft bearing. The torque speed sensor is installed at the connection shaft between
the motor and the hydraulic pump. The main test component types and performance
parameters are illustrated in Table 1.
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Table 1. Essential components of the test bench.

Component Name Component Model Component Performance Parameter

Gear pump CBWF-304 Rated pressure: 20 MPa; rated speed: 2500 r/min;
theoretical displacement: 4 mL/r

Acceleration sensor YD-36D Sensitivity: 0.002 V/ms−2; frequency range:
1–12,000 Hz

Flowmeter MG015 Measuring range: 1–40 L/min
Pressure sensor PU5400 Measuring range: 0–400 bar

Data acquisition card NI PXIe-6363 16 bits; 2 MS/s

The minimum pressure for this test was set to 23 MPa, and the maximum pressure was
27 MPa. The sampling frequency set in this experiment was 12 kHz, and the acquisition
time was 2 s. Data collection was performed every 10 min. The detailed test process is
described as follows:

(1) The pressure of the collection branch is adjusted to 20 MPa, and the test pressure is
adjusted to the first stage pressure of 23 MPa;

(2) The system is switched to the collection branch, and the preliminary flow of the gear
pump is recorded;

(3) During the test, at first, the system works under the accelerated pressure for 10 min,
and then the system is switched to the collection branch for data acquisition;

(4) The test method uses a non-substitute time tac-tail life test. The whole experiment is
divided into three stages, and the time length of each stage is 300 h. The pressure of
the first stage is 23 MPa, the pressure of the second stage is 25 MPa, and the pressure
of the third stage is 27 MPa until the end of the operation.

Determination of Test Data

The tested gear pump was disassembled after the test. It can be observed that the gear
pump has obvious wear, as illustrated in Figure 6. The failure mechanism of the tested gear
pump is wear, which leads to an increase in internal leakage and a decrease in volumetric
efficiency. The flow degradation curve of the tested gear pump is shown in Figure 7. The
output flow of the tested gear pump decreases significantly with the extension of running
time. The flow rate of the gear pump decreases slowly in the early stage of operation and
gradually accelerates in the later stage of operation until the failure threshold is reached.
According to the wear condition and flow degradation curve, the experimental data are
consistent with the degradation law of the initial wear stage and the stable wear stage.
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Figure 6. Wear and tear of gear pump: (a) side plate wear; (b) end-face wear of driving gear.

In the experiment, each pump collected vibration signals in three directions: X, Y and
Z. The vibration data of one pump were selected for analysis. Of the three directions, the Z
direction has the largest amplitude. Considering that the end-face wear is the main wear
form of the gear pump, the data in the Z direction were selected as the usage data in the
vibration data. The vibration curve of one pump is shown in Figure 8.
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4. Modeling of Gear Pump Degradation State

This paper reflects the degradation status of gear pumps by constructing their HI.
During the construction of HI, effective feature abstraction of the original data is required
to explore its more in-depth representation. Multiple valid characteristics are combined to
create a degradation curve reflecting the health of the gear pump. Figure 9 is the flow chart
for obtaining the gear pump HI. Firstly, the original vibration signal is segmented, and
the segmented data are directly input into the DCAE. In this paper, the one-dimensional
convolutional kernel was selected to improve the coding network with respect to the
characteristics of the vibration signal. During the experiment, it was found that the one-
dimensional convolutional kernel enables efficient feature extraction of the vibration data
as a time series. The decoding network consists of one-dimensional convolution layers and
upsampling layers. The upsampling layer is represented as:

U j
n,l = upsampling

(
X j

n,l

)
(11)

where U j
n,m is the output of the upsampling layer of the j-th object at the n-th data area of

the l-th layer, and X j
n,m is the input of the j-th object at the n-th data area of the l-th layer.

The DCAE was trained to obtain a high-dimensional feature vector. SOM was used
for feature dimensionality reduction. The output of the SOM network is the HI values of
the gear pump.

The training steps for the DCAE and SOM network are illustrated using one of the
gear pumps as an example.

Step 1: Based on the sampling frequency and the speed of the gear pump, the length
of a single training sample is 2400; i.e., it contains 2400 individual vibration values.

Step 2: DCAE model training. In the encoder, there are six convolutional layers, and
the number of convolutional kernels in every convolutional layer is: 32, 64, 128, 256, 64, 1.
The maximum pooling layer is added after each convolution layer. In the decoder, there
are six convolution layers, and the number of convolution kernels in every convolution
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layer is: 64, 256, 128, 64, 32, 1. The convolution kernel size of every convolution layer
is 3 × 1. The size of the maximum pooling layer is 2 × 1. After each convolution layer,
the ReLU function is used to activate it. The learning rate of the model is 0.001, and the
optimizer is Adam. The batch size is 64. All of the test models mentioned in this paper
were calculated by two GPUs, and the model was GeForce RTX 3090. The structure of the
DCAE is indicated in Figure 10, where P1–P4 denotes the pooling layer, U1–U4 denotes the
upsampling layer, and C1–C12 denotes the convolution layer.
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Step 3: The vector of the hidden layer C6 in the DCAE is selected as the feature vector.
The output of the C6 layer is used as the input to the SOM. In the SOM network, the number
of nodes in the input layer is equal to the number of features in the C6 layer, both being 100.

Next are the training steps for the SOM network.
Step 3.1: The number of neurons in the topological layer in the SOM is defined as

r = 5
√

Y, and Y is the input sample number.
Step 3.2: The input data for the SOM network at the t-th time is denoted by

xt = {x1t, x2t, . . . , x100t}. xjt is the j-th neuron at the t-th time point of the input layer,
j = 1, 2, . . . , 100.

Step 3.3: The distance between neuron d at the topological layer and input sample xt
in the SOM network is represented by dt.‖xt − wl‖ = min{dt}. wl is the vector expression
of the best-fitting neuron l. The vector of connection weights between every neuron in
the topological layer and the neuron in the input layer to which it is attached is denoted
as wi′ = {wi′1, wi′2, . . . , wi′100}; in the formula, i′ = 1, 2, . . . , d. i′ is the i′-th neuron of the
topological layer.
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Step 3.4: Renew the linkage weights of best-fitting neurons l and adjacent neurons
with input layer neurons.

wi′′ j(n + 1) = wi′′ j(n) + η(n) ·Oi′′ ,l ·
(
xjt − wi′′ (n)

)
(12)

In the formula, wi′′ j(n + 1) is the connection weight of the n + 1-th training of the
input layer neuron xjt with the i′′ -th neighborhood neuron in the topology layer.

i′′ is the i′′ -th neighborhood neuron in the topological layer that surrounds the best-
fitting neuron l. η(n) is the augmentation function. Oi′′ ,l is the weight vector, which is
represented by

Oi′′ ,l = exp
(
−S2

i′′ ,l/2σ2
)

(13)

where Si′′ ,l is the Euclidean distance between the i′′ -th neighborhood neuron of the best-
fitting neuron l. σ is the criterion deviation of the distance between every neighborhood
neuron and the best-fitting neuron l.

Step 3.5: At another point in time, a 100-dimensional sample is selected to provide the
input layer to the SOM, and step 3 is repeated until each sample is provided to the SOM.

Step 3.6: Step 3.2 is repeated, and training is stopped when n (training step n = n + 1)
equals the maximum number of training times N.

Step 3.7: The HI of the gear pump is calculated by Formula (14):

HI = MQE = ‖xt − wl‖ (14)

where MQE is the minimum quantization error.
Step 4: Validation and evaluation of DCAE.
In anticipation of a smoother HI curve, a sliding filtering process with a window width

of 10 is executed on the obtained HI curve. The results are presented in Figure 11.
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Figure 11. HI curve of the gear pump.

Three other methods were selected to compare with the proposed method, and the
evaluation index was selected for quantitative analysis. The first method is named principal
component analysis (PCA), and it extracts time-domain characteristics and frequency-
domain characteristics from the data. These include skewness, center of gravity frequency,
kurtosis, variance, margin index, peak value, root mean square frequency, waveform
index, peak-to-peak value and frequency standard deviation. The 10 features derived were
subjected to principal component analysis to obtain the state degradation curve of gear
pumps. The algorithm in this paper was used as the second method [39], named stacked
autoencoder (SAE). The third method was used in [40], named PAirwiSe CompArison
Learning (PASCAL). The HI curves constructed based on the gear pump data with the four
methods were compared. The HI curves constructed by the four methods are illustrated
in Figure 12.
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Two commonly used evaluation indicators, Monotonicity and Correlation, were se-
lected to quantitatively analyze the four methods. Monotonicity measures the monotonic
tendency of the HI curve to change, and Correlation indicates the tendency of the HI curve
to degrade in relation to the time spent working.

The two evaluation indicators are expressed as follows:

Vmon =

∣∣∣∣Num o f dF > 0
K− 1

− Num o f dF < 0
K− 1

∣∣∣∣ (15)

Vcorr =

∣∣∣∣ T
∑

t=1
(Kt −

∧
K)(lt − l̂)

∣∣∣∣√
T
∑

t=1
(Kt −

∧
K)

2 T
∑

t−1
(lt − l̂)

2
(16)

In the formula, Kt is the HI curve value of the t-th sample. K is the total number
of samples of the gear pump. dF is the difference between two contiguous objects in the
HI curve.

lt is the sample number of the t-th sample.
∧
K and l̂ are the means of HI curve values

and sample numbers, respectively.
Table 2 presents the values of the evaluation indicators for the HI curves built by the

method in this paper and the comparative methods described above. As shown in Figure 12,
the proposed method is more sensitive to small early changes in the data. Combining
Table 2 and Figure 12, the method proposed in this paper has the best monotonicity and
trend. No human intervention is required during modeling, and feature self-extraction
is achieved.

Table 2. HI curve evaluation results.

Method Pump1 Pump2 Pump3 Pump4

DCAE + SOM
Mon 0.21 0.22 0.17 0.15
Corr 0.94 0.96 0.91 0.89

PCA
Mon 0.20 0.12 0.15 0.13
Corr 0.75 0.76 0.79 0.73

SAE
Mon 0.17 0.11 0.12 0.09
Corr 0.87 0.78 0.81 0.77

PASCAL
Mon 0.21 0.14 0.15 0.12
Corr 0.90 0.84 0.87 0.85



Symmetry 2022, 14, 1111 13 of 21

Parameter Selection

The core of the gear pump degradation state modeling scheme is based on one-
dimensional convolution. In the degradation state modeling stage of the gear pump,
the number of convolution kernels, the number of convolution layers and the size of
convolution kernels have the most obvious influence on the training results. Several
key factors are analyzed below. In the experimental stage, six network structures were
designed for comparative analysis. The five network structures are shown in Table 3,
and the parameters and parameter settings of each structure are consistent with those in
Section 4. The network structure used in this paper is structure 1. Structure 6 is the same as
structure 1, but the pooling layer of structure 6 adopts average pooling. Two evaluation
indicators, Monotonicity and Correlation, were selected to analyze the HI constructed by
each structure. The quantization results of each network structure are shown in Table 4.

Table 3. The different structures of DCAE.

Number Number of Convolution Kernels Number of Convolution Layers Convolution Kernel Size

Structure 1 32-64-128-256-64-1-64-256-128-64-32-1 12 3 × 1
Structure 2 32-64-128-256-64-1-64-256-128-64-32-1 12 7 × 1

Structure 3 128-256-512-1024-512-1-512-1024-512-
256-128-1 12 3 × 1

Structure 4 32-64-128-256-512-1024-512-256-1-256-
512-1024-512-256-128-64-32-1 18 3 × 1

Structure 5 16-32-64-1-64-32-16-1 8 3 × 1

Table 4. Results of HI curve evaluation for six structural exercises.

Number
Gear Pump1 Gear Pump2 Gear Pump3 Gear Pump4

Mon Corr Mon Corr Mon Corr Mon Corr

Structure 1 0.21 0.94 0.22 0.96 0.17 0.91 0.15 0.89
Structure 2 0.14 0.85 0.17 0.85 0.13 0.87 0.12 0.75
Structure 3 0.19 0.91 0.17 0.92 0.15 0.89 0.15 0.89
Structure 4 0.05 0.35 0.01 0.33 0.03 0.34 0.02 0.35
Structure 5 0.08 0.45 0.09 0.55 0.10 0.59 0.11 0.60
Structure 6 0.19 0.90 0.18 0.92 0.14 0.89 0.11 0.85

By analyzing the experimental results, structure 1 has the best effect. Comparing
structure 1 with structure 2, theoretically, a larger convolution kernel will have a larger
perception field and receive more information. However, a large convolution kernel will
result in an explosion of computation. When more convolutional layers are needed for
complex data, the large convolution kernel will impact the performance of the model. A
smaller convolution kernel size will reduce the calculation parameters. Structure 3 and
structure 4 did not improve the training results but, on the contrary, led to a significant
increase in training time. The original vibration data are noisy and vibratory, but as one-
dimensional time-series data, their structure is not complicated. Massive convolutional
kernels and convolutional layers do not lead to better training results. Especially in structure
4, the training result is worse, and the analysis of the loss function shows that overfitting
occurs. The simple structure of structure 5 leads to incomplete learning results. Comparing
structure 1 with structure 6, maximum pooling is slightly better than average pooling.
Referring to the experience of other CNNs, in the experiment in this paper, maximum
pooling will extract the most responsive and strongest part of the features and input it to
the next stage. On the basis of the foregoing analysis, the structure of the DCAE in this
paper is structure 1.
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5. Prediction of RUL Based on Bi-LSTM

The scheme of mechanical pre-diagnosis usually consists of four processes: data
collection, construction of health indicators, division of health stages and RUL prediction.
The prediction of RUL can be directly based on original vibration data or based on health
indicators. At present, there are mainly two ways to predict the RUL based on the health
indicator: the trend extrapolation of the HI curve and direct mapping of the HI value to the
RUL value. Despite the fact that both methods achieved good identification results, the
acquisition of HI can be understood as feature extraction, and the recognition model does
not directly identify it from the original data, which may result in different results from the
actual situation, and also affects the recognition accuracy.

The remaining useful life prediction steps of the gear pump are shown in Figure 13.
On the premise that the HI value of the gear pump has been obtained, the HI value is
added as a label to each corresponding data. The labeled data are directly fed into the
Bi-LSTM model for training. The output of Bi-LSTM is the predicted value of the RUL of
the gear pump.
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In intelligent diagnostic methods based on deep learning algorithms, there are two
issues that have a significant impact on diagnostic results. The first is whether the network
model matches the type of data. The second issue is the quality of the training data. Without
considering the impact on data quality during data collection, the key issue that affects
data quality in model training is whether the data are accurately labeled. At present,
in supervised learning model training, training data need to be tagged. However, the
common tagging methods used today are all about artificially adding labels to the data. In
the process of adding labels to data, whether accurate labels can be added directly affects
the quality of the data, thus affecting the accuracy of model training. In the data labeling
phase, the labeled value is equivalent to a quantitative description of the degraded state of
the gear pump. Currently, there are two primary approaches to labeling data during the
training of life prediction models under supervised learning: the first method is illustrated
in Figure 14a [41,42]. This method uses a linear function to label the data in the training set,
which is defined as:

f (ti) = −
(

1
tn
∗ ti

)
+ 1 (17)

where tn is the complete life cycle, and ti is the prevailing time in the equipment life cycle.
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The ordinate represents the RUL of the equipment under test. The linear function
indicates that the degradation rate of the device is constant, which is obviously not in line
with the actual situation.

The second method is illustrated in Figure 14b [43]. Its specific expression is

f (ti) =

{
1 ti ≤ tj(

1
tj−tn

)
∗ ti +

(
tn

tn−tj

)
ti > tj

(18)

where tj is the initial degradation time of the equipment. In Figure 14b, the health level
remains unchanged until time point tj. This method is not accurate enough. Firstly, in
complex data, critical inflection points are difficult to find accurately; secondly, in the
labeling method based on the piecewise function, the equipment degradation rate at
different stages is also kept constant. In the early stage of equipment operation, slight
changes in the equipment are ignored; during the accelerated degradation phase, the
degradation rate of the equipment is clearly not constant. There are some problems in
the models trained by these two methods. The RUL curve obtained by the model often
fluctuates greatly, because the same label value is added to some data of different states.
The training results of some models seem to be good, but they only accurately predict the
label values, which are actually inconsistent with the real situation, leading to the poor
generalization ability of the models.

The gear pump produces a large amount of data during its whole life cycle, and the
data type is a one-dimensional continuous vibration signal, so the LSTM-based model
was selected for RUL prediction. As degraded equipment, the gear pump has a strong
correlation with the vibration data. LSTM can mine the information from the front to
the back of the memory time series very well, but it fails to use the future information of
the data, and the correlation analysis between the data is lacking. Therefore, this paper
constructs a bidirectional long short-term memory (Bi-LSTM) network. The basic idea of
Bi-LSTM is to add an additional layer of LSTM units, which is equivalent to re-calculating
the input sequence inversely. The final result is a simple combination of the results of the
two-layer LSTM network. Its structure is illustrated in Figure 15. The hidden layer state Ht
of Bi-LSTM at time t is 

Ht = [
→
h t,
←
h t]

→
h t =

→
LSTM(ht−1, xt, ct−1), t ∈ [1, T]

←
h t =

←
LSTM(ht+1, xt, ct+1), t ∈ [1, T]

(19)
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In this equation, xt is the input at the t-th time, h and c are the hidden layer state and
memory unit state, respectively, and L is the sequence length.
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In the actual experiment, it was found that the model learning ability of single-layer
BI-LSTM was not strong. Therefore, the multi-layer Bi-LSTM was stacked to ensure that the
constructed prediction model would have enough feature extraction ability and increase
its nonlinear mapping ability. Figure 16 shows the network structure of the multi-layer
Bi-LSTM prediction model. Starting from the second layer, the input of Bi-LSTM of each
layer is the output of the hidden state of the time step of the previous layer; that is, the

input of the Bi-LSTM unit at the t-th time of the l-th layer is Hl−1
t = [

→
h

l−1

t ,
←
h

l−1

t ], so the
forward propagation process of multi-layer Bi-LSTM at time t of the l-th layer is defined
as follows: 

fl
t = σ

(
Wl

f [h
l
t−1, Hl−1

t ] + bl
f

)
il
t = σ

(
Wl

i [h
l
t−1, Hl−1

t ] + bl
i

)
ol

t = σ
(

Wl
o[h

l
t−1, Hl−1

t ] + bl
o

) (20)


~
C

l

t = tanh
(

Wl
c[h

l
t−1, Hl−1

t ] + bl
c

)
Cl

t = fl
t � Cl

t−1 + il
t �

~
C

l

t

hl
t = ol

t � tanh
(

Cl
t

) (21)
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In the formula, f l
t , il

t and ol
t are the forget gate, input gate and output gate of the

Bi-LSTM unit at time t in the l-th layer, respectively. Wl
f , Wl

i , Wl
o and Wl

c are the weight

matrices of the l-th layer, and bl
f , bl

i , bl
o and bl

c are the bias vectors of the l-th layer.
The output of the last n-layer of Bi-LSTM at time t is

yn
t = σ

(
Wh,yhn

t + bh,y

)
(22)

The output of the last time step in the last layer of Bi-LSTM is used as the input of
the fully connected layer. The final RUL value is obtained from the output of the fully
connected layer.

The following describes the RUL prediction process of gear pumps based on the
multi-layer Bi-LSTM model.

Step 1: Building the HI of gear pumps.
Step 2: Dataset partitioning. There were four gear pumps in the experiment, and the

training set and testing set were divided alternately. When the data of one gear pump were
used as the testing set, the data of the other three gear pumps were used as the training set.

Step 3: Sample construction and labeling. The dataset of the original vibration signals is
a one-dimensional sequence, but the input data dimension of the Bi-LSTM network requires
[Batch Size, Time Steps, Feature Dims]. Batch Size is the number of batch samples, Time
Steps is the time window size, and Feature Dims is the feature dimension. In the acquisition
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of HI, the sample length is 2400, so Time Steps is also set to 2400. The correspondence
between each sample and the label value is maintained; that is, the label of the sample is
the corresponding HI value.

Step 4: Multilayer Bi-LSTM model training. During model training, the batch size is
64; the selected loss function is the cross-entropy function; the chosen optimizer is Adam;
the convolution kernel size of every convolution layer is 3 × 1; the size of the maximum
pooling layer is 2 × 1; the learning rate is 0.001; and the maximum iteration number is 100.
To avoid overfitting and to enhance the generalization ability of the model, the Dropout
technique with a size of 0.5 is adopted after the first fully connected layer. At the same time,
the model stops training when the loss function does not change significantly by using the
early-stopping mechanism.

Step 5: Testing set validation.
Step 6: Evaluation of prediction algorithm.
In order to analyze the method proposed in this paper more concretely, three indicators

were selected for quantitative analysis: (1) mean absolute error (MAE): MAE can accurately
reflect the size of the forecast error; (2) root mean squared error (RMSE): RMSE can reflect
the prediction accuracy of the model; (3) penalty score: the score given in the PHM2012
Data Challenge. The error percentage is represented in Formula (23), where ActRULi
and PredRULi represent the actual and predicted remaining useful life values of the i-th
predicted target. Taking into account that in the real world, the danger of equipment
overprediction is less severe than the problem of underestimation, Formula (24) denotes the
score of the i-th predicted target. Formula (25) is the score value of the ultimate prediction
result, where N is the number of all test targets.

%Eri =
ActRULi − PredRULi

ActRULi
× 100% (23)

Ai =

exp− ln(0.5)·(
Eri
5 ) if Eri ≤ 0

exp+ ln(0.5)·(
Eri
20 ) if Eri > 0

(24)

Score =
1
N

N

∑
i=1

(Ai) (25)

The experiment found that in the training of the Bi-LSTM model, the most influential
factor on the training results is the number of Bi-LSTM layers. For the purpose of investi-
gating the effect of the number of Bi-LSTM layers on the prediction results, models with
one to nine layers of Bi-LSTM were selected for tests, and the RMSE value of the test results
was used as the evaluation index.

Figure 17 shows the experimental results. When the number of Bi-LSTM layers is 1, 2,
3 and 4, the RMSE value is larger. When the number of Bi-LSTM layers is 5, the prediction
effect of the model is the best. However, after five layers, the RMSE value of the predicted
results tends to increase with the number of layers. At this point, the curves of training loss
and verification loss in the training process were observed. The loss continued to decline
until convergence, but the verification loss tended to remain constant after rising. This
indicates that the model at this time has overlearned the training set, leading to overfitting
and thus a continuous decline in the model’s generalization ability. Additionally, with the
increasing number of Bi-LSTM layers, the training time increased significantly. Therefore,
based on the above factors, the number of Bi-LSTM layers in this model was set at 5. The
life prediction results of one gear pump are shown in Figure 18. It can be appreciated that
the predicted RUL values match the actual RUL curves better.

The major distinction between the proposed method and other methods is the change
in the way that labels are added. The prediction performance of the proposed method
was compared with that of models trained by other common labeling methods. The first
method is the method in [28], and its labeling method is shown in Figure 14a, named
Method 2 [28]. The second method is the method in [44], and its labeling method is shown
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in Figure 14b, named Method 3 [44]. The prediction effects of the models trained based on
these two methods are shown in Figure 19.
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Combining the analysis of the results in Figures 18 and 19 shows that the prediction
curve of Method 2 oscillates greatly around the true value. The reason should be that more
data in the same state are marked with different label values, thus affecting the recognition
effect. The prediction effect of Method 3 also produces large vibrations, especially in the
stage of accelerated degradation of the gear pump. The predicted value of Method 3 is
closer to the HI value constructed in this paper. Overall, the method proposed in this paper
is the best. Table 5 shows that the HI–Method is superior to the other two methods in terms
of the three performance indicators. Overall, the method proposed in this paper is the best.

Table 5. Evaluation results of models trained by three methods.

Method Evaluation Index Gear Pump1 Gear Pump2 Gear Pump3 Gear Pump4

HI–Method
MAE 0.025 0.026 0.019 0.033
RMSE 0.012 0.028 0.037 0.027
Score 0.601 0.624 0.599 0.581

Method 2
MAE 0.094 0.184 0.051 0.074
RMSE 0.101 0.189 0.153 0.159
Score 0.457 0.319 0.356 0.349

Method 3
MAE 0.074 0.052 0.049 0.089
RMSE 0.103 0.098 0.089 0.074
Score 0.462 0.474 0.431 0.399

6. Conclusions

A RUL prediction scheme for a gear pump is proposed, which combines equipment
degradation state modeling with the RUL prediction method. Aiming at the situation of
inadequate life data of the hydraulic pump, an accelerated life test scheme for the gear
pump is proposed. The experimental data proved that the proposed scheme has good
performance.

1. A modeling method of gear pump degradation state combining a DCAE and SOM is
proposed. The one-dimensional convolution kernel is used in the DCAE to improve
the feature extraction capability of the model for one-dimensional vibration signals.
The SOM network performs high-dimensional feature dimensionality reduction and
obtains the HI of the gear pump. The entire modeling process is carried out in an
unsupervised manner, reducing the dependence on manual labor.

2. A Bi-LSTM-based gear pump life prediction model is proposed. The model’s analysis
of the associations between data is enhanced by the Bi-LSTM unit. The model is
trained directly through the original data, and the output is the predicted value of
RUL, realizing the end-to-end prediction. Especially in the process of data labeling,
the HI value of the gear pump is used as the data label, instead of relying on manual
labeling, which reduces the labeling error rate and dramatically enhances the quality
of the training data. The evaluation indicators show that the presented method has
superior prediction precision.

3. The three central ideas of the proposed RUL scheme are one-dimensional convolution,
the Bi-LSTM unit and the self-labeling of data. Thus, the scheme is very suitable
for dealing with one-dimensional time-series data with strong correlation. The so-
lution reduces the dependency on both manual and sophisticated signal processing
algorithms and offers great flexibility and adaptability.
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