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Abstract: In the arena of image forensics, detecting manipulations in an image is extremely significant
because of the use of images in different fields. Various detection techniques have been suggested
in the literature that are based on digging out the features from images to unveil the traces left
by manipulation operations. In this paper, a deep learning-based approach is proposed in which
a residual network is used to learn deep, complex features from preprocessed images for classification
into authentic and forged images. There is statistical symmetry in similar types of images and
asymmetry in different types of images. The proposed scheme can highlight the statistical asymmetry
between authentic and forged images. In the proposed scheme, firstly, an RGB image is analyzed for
different JPEG compression levels. The obtained difference between the error levels is used to extract
enhanced LBP code. Then, the scale- and direction-invariant LBP (SD-LBP) code is transformed into
SD-LBP feature maps to feed to a deep residual network. Next, the concept of explainable artificial
intelligence (XAI) is used to help provide explanations and interpret the output, thereby raising the
credibility of the proposed approach. The unique feature selection approach employed is the kernel
SHAP method, which is focused on the Shapley values. This technique is used to pinpoint the specific
characteristics that are responsible for the aberrant behavior of the forged images dataset. Later,
the deep learning-based model is trained and validated using these feature sets. A pre-activation
version of ResNet-50 architecture is used that achieved an accuracy of 99.31%, 99.52%, 98.05%, and
99.10% on CASIA v1, CASIA v2, IMD 2020, and DVMM datasets, respectively. The capability of the
pretrained residual network and rich textural features, which are scale- and direction-invariant, helps
to expand the detection accuracy of the proposed approach. The results confirmed that the method
either produced competitive results or outperformed existing methods.

Keywords: explainable AI; image forensics; image splicing; deep learning technique; image
manipulation detection

1. Introduction

Due to powerful advancements in technology, the internet, and software, a plethora
of applications are available that can be used to forge an image to fulfill some fraudulent
purpose. The image editing software being developed can be used in a number of ways
to forge images that cannot be distinguished by human judgment. Images are used all
over the place, on the fronts of magazines, in papers, in courts, and so forth. Therefore, it
is of utmost importance to develop an effective method for forgery detection. To detect
manipulations, image-specific attributes are used to discriminate between forged and
authentic images. In traditional passive methods of forgery detection [1,2], the learning
workflow comprises preprocessing the images, drawing out features using hand-crafted
algorithms, selecting features from the separated list of features, and then feeding the
selected features to a learning model. The process of feature engineering [3] is a complex
and time-consuming process in which an image undergoes various statistical, mathematical,
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and image processing operations to generate a particular set of features. Taking into account
the complexity of the feature extraction process in machine learning algorithms, deep
learning frameworks have come into play in the recent couple of years for various image
processing tasks and applications [4].

Multiple methods for the detection of image forgery using hand-crafted features are
available in the literature to uncover the statistical asymmetry of the forged images. In this
segment, we discuss a few inactive methods of forgery detection related to the proposed
approach. A forgery detection strategy based on curvelet transform was proposed by
Al-hammadi and Muhammad [5]. The chrominance element of the image was utilized
to transform it into several curvelet wedges. Then, LBP histograms were extracted from
wedges of varied scales and directions, which were further fed to the support vector
machine (SVM) classifier as features. The method achieved 91.74% accuracy on CASIA v1
and 97.0% accuracy on CASIA v2. In Muhammad et al.’s [6] scheme, LBP was combined
with steerable pyramid transform (SPT) for the detection of manipulations in images. Again,
the authors utilized the YCbCr color space and applied SPT on chrominance components
yielding sub-bands. Then, LBP histograms were used to represent texture in SPT sub-bands.
The histograms from every sub-band were combined to make a feature vector. Classification
was performed using LIBSVM, which obtained an accuracy of 97.33% on CASIA v2 and
94.89% on CASIA v1. Hussain et al. [7] proposed a Weber’s law-based neighborhood
descriptor to extricate features from an image, and the features were further reduced on
the basis of local learning-based (LLB) selection. The reduced feature set was fed as input
to SVM for categorization and achieved an accuracy of 94.19% with CASIA v1, 96.61%
with CASIA v2, and 94.17% with the Columbia dataset. In [8], the chroma component
of the input image was separated into blocks; then, the LBP pattern of every block was
converted to the discrete cosine transform (DCT) domain. The standard deviation of DCT
coefficients of every block altogether were treated as a feature to be used for categorization
using SVM. The technique attained an accuracy of 97%, 97.7%, and 97.5% on the CASIA v1,
DVMM, and CASIA v2 datasets, respectively. Another method proposed by Vidyadharan
and Thampi [9] extracted multitexture features (LBP, BSIF, LPQ, and BGP) from various
SPT sub-bands. All the features from all sub-bands were extracted and integrated to build
a large dimensional feature vector. The best discriminating features were picked out using
the relief method. The final feature set is then provided to the random forest classifier as
input for classification. In [10], the handcrafted features were combined with deep features
extracted from a pretrained network in order to get more abstract representations of the
images. The major drawback of this method is the increase in computational complexity
with the feature size.

In recent times, machine learning-based methods were not considered very well suited
for forgery detection because, to extract appropriate image representations, very complex
and mathematical algorithms are required to hand-craft the features as per the requirement
of the problem. To overcome this problem, deep learning methods are being used in
various digital image processing problems. Various data-driven approaches such as deep
learning with the help of convolutional neural networks have demonstrated remarkable
results in most image classification problems [11–15]. These networks can grasp rich feature
portrayals straightforwardly from the images. The activation layers of pretrained CNN
architectures can be adapted for extricating features for numerous applications in computer
graphics and image processing.

In Rao and Ni’s [16] scheme, a convolutional neural network was applied to acquire
the image features for classification. Rather than using a random strategy for weight
initialization, a set of high-pass filters was used for calculating residual maps in the spatial
rich model. It also functioned as a regularizer that suppressed the contents of the image
and captured the delicate traces established by manipulations. Two different kinds of
input were fed to the CNN architecture i.e., spatial- and frequency-domain-based features,
in Shi et al.’s [17] scheme. The architecture was called dual-domain CNN as it utilized
features from both domains. In a recent approach [18], image patches were used as input to
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the ResNet50v2 architecture. The network used the weights of the YOLO convolutional
neural model for initialization. A very lightweight CNN model was proposed in [19]
with minimum parameters that used the difference in the recompressed image and the
original image to be fed to the proposed CNN architecture. Image manipulations were
detected using a convolutional neural network with blockchain (CNNB), which combined
blockchain technology with deep learning image processing methods. Recently, various
approaches proposed by researchers were based on block or patched inputs to convolutional
neural networks [16,17,20]. When patch-based data are fed to CNNs, it leads to a loss of
evidence for manipulation detection. Furthermore, to train a CNN architecture afresh
is very expensive and complex. Hence, a pretrained architecture, i.e., ResNet50 was
commonly used for classifying the images into forged and authentic categories according to
the textural statistics of the image. It has been observed in the literature [9,21,22] that LBP
is an adequate and computationally efficient texture descriptor. These studies inspired us
to integrate LBP along with error level analysis, which helps in recognizing the areas that
belong to different compression levels to formulate an apt representation for the images.

The issue with deep learning and machine learning interpretability is not brand new. It
has been around since the 1970s when scientists were attempting to understand how expert
systems produced their results [23]. However, Van Lent [24] coined the term explainable AI
(XAI) in 2004 for use in modeling, simulations, and game applications. Initially, this matter
was taken seriously; however, as time went on, attention switched to honing the models’
accuracy and creating new algorithms. Researchers and practitioners have recently shown
a renewed interest in explainable AI [25], particularly for deep learning-based architectures
such as autoencoders, pre-trained architectures, and other sophisticated models. One of the
XAI strategies utilized to clarify and enhance the findings of the proposed approach is the
SHAP framework [26] based on Shapley values. Shapley values show the real contribution
of each variable to model prediction, which is helpful in identifying and explaining asym-
metry [27]. Substantial Shapley values on variables result in large reconstruction errors,
making them more crucial than other variables for such anomaly identification models [27].
However, the use of Shapley values to explain the performance of the pretrained models in
image manipulation detection has not been implemented in any relevant research studies.

In this work, a unique technique is proposed for digital image manipulation detection
using error level analysis (ELA) and scale- and direction-invariant local binary pattern
(SD-LBP). Error level analysis helps in finding the areas within an image that have different
compression levels. For JPEG compressed images, it is assumed that the entire image is
approximately of the same magnitude. If a certain segment of an image is at a considerably
different error level, then it is most likely that the region was manipulated. An extension of
LBP is used in this work, which is scale- and direction-invariant. Furthermore, these LBP
patterns are converted into feature maps to be fed to our deep neural network architecture.

A pretrained ResNet-50 architecture is used for the classification of images into
two classes, i.e., forged and authentic. ResNet-50 is a state-of-art model trained to give high
accuracy on image classification tasks. It extracts high-level hierarchical features that are
very specific to image classification tasks. Therefore, to use this architecture specifically for
image forgery detection, certain preprocessing is required. In our case, we used textural
features to be fed to the selected neural network. The major contributions of the proposed
work can be summarized as follows:

• A unique feature selection strategy is delivered in this paper that is based on Shapley
additive explanation (SHAP), which is an XAI approach. The explanation frame-
work for the real deep learning-based model is constructed using the kernelExplainer
approach.

• A pretrained ResNet50 architecture is used by initializing the network with ‘imagenet’
weights to retrain the network with forgery detection datasets.

• The proposed approach takes advantage of the difference in compression levels of the
image and identifies the possible manipulated regions to be fed to the network.
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• The proposed approach uses a local binary pattern that helps in analyzing the manip-
ulations based on the texture of the images.

The remainder of the paper is arranged as follows: Section 2 explains the details of
the proposed approach. The experimental arrangement and observations are mentioned in
Section 3. Conclusions are drawn in Section 4.

2. Proposed Scheme

Image manipulation is easy to perform with the help of the latest applications. These
fake images can be the reason for big social and political conflicts. In this paper, a robust
scheme is proposed to address the issue of fake images. The outline of the proposed
research method for image manipulation detection is shown in Figure 1. The proposed
image manipulation detection method works by analyzing different levels of compression
and taking into consideration the texture information of the image. This is achieved by
performing error level analysis on images and then finding the scale- and direction-invariant
local binary pattern (SD-LBP) from the obtained images. Then, SD-LBP is converted into
feature maps which are further fed to deep neural network architecture. The details of the
various steps of the approach are mentioned below.
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2.1. Error Level Analysis

Most of the methods in the literature discussed above converted the RGB image into
grayscale to discover the textural features of the image. While the conversion process
takes place, substantial useful information is discarded. The idea behind using the ELA
technique for image manipulation detection is that the manipulated image will always
be resaved after manipulation. Therefore, the number of resaves for the manipulated
image will always be higher as compared to an authentic image. Hence, the compression
levels of the authentic and forged image will be different. ELA [28] helps in detecting the
difference in the compression levels of the image. It works by retaining the image at a
known compression rate, usually at 95%, and then the change between the resaved image
and the original image is calculated. This calculated difference is termed the error. On the
off chance that there is just about no change, the cell has arrived at its local minimum for
error at that specific quality level. Nonetheless, on the off chance that there is a curiously
large amount of change, the pixels are not at their local minimum and viably unique.
The resultant ELA pictures had their brightness upgraded to additionally separate the
variations. An example of the obtained ELA image from an RGB image is shown in Figure 2.
The image in Figure 2 was taken from the CASIA v2 dataset, which is a benchmark dataset
in the field of image forensics.
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2.2. Direction- and Scale-Invariant Local Binary Patterns

Local binary patterns are highly discriminative in nature; the only disadvantage of
LBP is that it is exceptionally delicate to relative transformations. To compensate for image
rotations, a comprehensively used turn-invariant encoding of LBP representation is applied,
which requires either a verifiable or express plan of representations that will be finished
at the encoding level. Different variations of LBP have been presented that have perhaps
lessened the discriminative intensity of the component portrayals by extending the limit of
describing the center microstructures at various scales.

Additionally, the LBP’s rotation-invariant replacement is unable to account for image
scaling. Therefore, we used scale- and direction-resistant LBP on the aforementioned
ELA images that were collected. To do this, scale-invariant features and pivot-invariant
features were processed separately, and then both variable representations were combined
to increase the discriminatory strength of the LBP. By modifying the variables at the
extraction level while using a powerful universal estimator, resistance to direction was
achieved. On the basis of the transmission of scale-standardized Laplacian reactions in
a scale-space representation, scale-adjusted features were determined in relation to the
evaluated size of the image. The two properties mentioned above were combined to create
the final SD-LBP using a multiscale representation. A histogram was created from the
SD-LBP code occurrences in the image. Figure 3 illustrates the number of occurrences of
regular LBP codes, a sparse histogram of SD-LBP codes, and a tight histogram of SD-LBP
codes of the image shown in Figure 2.

The neural network design cannot receive the acquired SD-LBP codes in their original
form. Therefore, we must translate the SD-LBP into feature maps in order to feed them to
the neural architecture. To transform SD-LBP variables into LBP maps, multidimensional
scaling is used by converting the pattern values into points in a metric space. The altered
points can be averaged using convolutional techniques, but their distances are essentially
the same as the original code-to-code distances. Distance represents the fundamental
similarity of the pixel intensity configurations that each LBP code pattern is made up of.
The distances between every possible code value are shown on a comprehensive disparity
grid. MDS searches for a mapping of the code patterns to a low-dimensional measurement
space for a specific disparity grid. Furthermore, we used their earth mover’s distance
(EMD) in place of Hamming distance to adjust to variations in spatial areas of pixel code
patterns. It is applied as a percentage of the contrast between the two LBP codes.
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2.3. ResNet50-v2 Architecture

The obtained SD-LBP maps are further used for the classification of images into
authentic and forged classes. ResNet-50 version 2 is a deep neural network that has
already been trained on numerous images. Networks with convolution, pooling, activation,
and fully associated layers stacked on top of one another are comparable to residual
networks [29]. The only difference is that the levels are connected by an identity. With these
identity links, the network seeks out the output functions directly and without assistance.
We used ResNet-50 V2, which is based on using the pre-activation of weight layers as a
substitute for post-activation. Version 1 of ResNet-50 architecture uses the post-activation.
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The pre-activation of ResNet-50 is shown in Figure 4. ResNet-50 V2 eliminates the last
nonlinearity, subsequently making way for the input to produce output in the form of an
identity association. In ResNet-50 V2, batch normalization and ReLu activation to input are
applied before the convolution operation. This property of ResNet V2 helps in protecting
the network from the vanishing gradient problem. The parameters used for the ResNet50
architecture are shown in Table 1. The strategy behind this network is to let the network
fit the residual mapping rather than have layers learn the underlying mapping. Thus, the
network is fitted instead of using, say, the initial mapping of H(x) as shown in Equation (1).

F(x) = H(x) − x which gives H(x) = F(x) + x(1). (1)
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Table 1. Parameters used for ResNet50.

Number_of_Layers 50

Batch_size 32
Weights ‘imagenet’

Input_size 224, 224, 3
ResNet_50_pooling ‘max’

Dense_layer_activator ‘sigmoid’
Objective_function ‘binary_crossentropy’

Loss_metrics [‘acc’]
Learning_rate 0.00005

Epochs 50
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2.4. Shapley Additive Explanation (SHAP)

The black-box nature of AI-based systems produces outstanding outcomes but without
any justification; thus, people tend to lose faith in them when they are used for making
important decisions. Similar to this, the unbounded nature and absence of supervisory
character of anomalies in a network can occasionally become a significant barrier to the
adoption of deep learning-based models, and it can be challenging to identify the anomaly’s
root cause in an unsupervised learning framework. Adadi et al. [30] provided illustrations
of several XAI techniques, and the SHAP architecture was one of the techniques covered
in this section. The SHAP architecture was also utilized in text analysis to predict tweet
popularity [31].

Shapley additive explanation (SHAP) [26] is an integrated model put forth for explain-
ing and addressing the interpretability of intricate models such as ensemble combinations
and deep convolutional neural networks. The SHAP framework integrates previously
proposed approaches from the additive feature acknowledgment class, which includes
DeepLIFT [31] and LIME [32], whereby methods from this class contain explanatory models
with a linear function of binary variables.

3. Experimental Setup and Results

The forged image issue is crucial and needs to be solved with better schemes.
Four accessible benchmark datasets for image fakery detection were used for conducting
the assessment of the proposed approach. The datasets utilized in this study were Columbia
DVMM, CASIA TIDE v1 [33], CASIA TIDE v2 [33], and IMD 2020 [34]. The Columbia
DVMM dataset was originally provided by the Digital Video Multimedia (DVMM) Lab; it
contains images with no color information, and the images are very unrealistic. Details of
the datasets are delivered in Table 2. IMD 2020 is a new dataset with which researchers have
not experimented using their methods. On the other hand, the DVMM dataset contains very
unrealistic image forgeries; thus, it is not very well suited for evaluating the performance
of the forgery detection methods. For testing our method rigorously on different types of
images based on the type of forgery, size of images, etc., we included the abovementioned
four datasets for evaluation.

Table 2. Particulars of the datasets used for the assessment.

Dataset No. of Original Images No. of Forged Images Image Resolution Image Format

Columbia DVMM 933 912 128 × 128 BMP
CASIA TIDE v1 800 925 384 × 256 JPEG
CASIA TIDE v2 7491 5123 240 × 160 to 900 × 600 JPEG, TIFF, BMP

IMD 2020 35,000 35,000 384 × 256 to 1200 × 1051 JPEG

3.1. Effectiveness of the Approach

Various experiments were executed to learn the efficiency of the proposed approach.
Firstly, the ResNet architecture was implemented on all four datasets. The effects of
different input images were analyzed for the detection rate of the proposed approach.
Simple RGB images were fed to the ResNet architecture without any preprocessing. In
another experiment, LBP feature maps were used to feed the ResNet architecture. Then,
ELA images were fed to the ResNet architecture. The detection rates of each of these cases
were compared with the proposed method, and the results on all four datasets are shown
in Figure 5. The results clearly show that a higher detection rate was achieved when local
binary patterns were calculated from error level analysis of the image and were fed to the
ResNet-50 architecture for classification into authentic and forged images. Figure 6 shows
the ROC curves obtained during the training phase, validation phase, and testing phase,
as well as combined curve for the overall performance of the approach, on the CASIA v2
dataset. Figure 7 shows the performance plot for the proposed model, which shows the
cross-entropy errors at each epoch. The model achieved the best validation performance at
epoch 40.
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3.2. Results Explaining the Output of the Proposed Approach

SHAP decision graphs demonstrate how sophisticated models make their decisions
(i.e., how models make predictions). Shapley values display each feature’s actual contri-
bution to the model’s output. The SHAP methodology offers a variety of plots, including
summary plots, dependency plots, force plots, and bee swarm plots, to help users visualize
and analyze how model predictions based on input variables affect real-world phenomena.
The summary plot shown in Figure 8a,b explains an instance of a normal image with a
reconstruction error of 0.07. Figure 8c shows the decision plot. The x-axis is where the
plot is centered using the explainer expected_value. Every SHAP value is relative to the
estimated value of the model similarly to the way in which the linear model’s effects are
relative to the intercept. The features of the model are recorded on the y-axis. The attributes
are by default listed in decreasing order of relevance. The significance is determined by
the plotted explanations. The decision graph enables user-defined attribute ordering in
addition to hierarchical cluster feature ordering and feature significance ordering.
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3.3. Comparison with Recent Deep-Learning Methods

The performance of the proposed approach was compared with a few state-of-the-art
methods published recently, and the results are shown in Table 3. In [35], LBP feature
maps were extracted from ResNet’s higher activation layer and fed to a common SVM
classifier. In [36], a pretrained design called AlexNet was optimized to get satisfactory
accuracy. In [20], a blocking method was proposed in which features from blocks of the
image were extracted using rCNN and fed to an SVM classifier. In [16], a pretrained CNN
was implemented to extract features from a high-pass filter set for calculating residual maps
in the spatial rich model (SRM) used to collect the subtle artefacts of image manipulation
operations. The method achieved an accuracy of 97.83% and 98.04% on CASIA v2 and
CASIA v1 datasets, respectively. In [17], spatial- and frequency-domain features were
extracted separately using CNN and combined to formulate the final feature vector to
locate the forged region. The method reached an accuracy of 99.25% on CASIA v2. Among
all these techniques, the proposed method achieved the highest accuracy of 99.31% and
99.52% on the CASIA v1 and CASIA v2 datasets, respectively. The proposed method also
excelled in terms of training time and was faster as compared to the state-of-the-art methods.
As most of these state-of-the-art methods train the entire network on forgery detection
datasets such as rCNN, these methods took several days to train the network, whereas the
proposed method implemented pretrained weights for training and took around 2 to 3 h
for 12,000 images on an NVIDIA DGX GPU workstation.

Table 3. Comparison of the proposed approach with recent deep learning methods.

Recent Methods and Proposed Method CASIA v1 CASIA v2

Deep textural RI-LBP maps [33] 99.10 99.30
rCNN [20] 98.04 98.02

CNN rely on feature fusion [16] 98.04 97.83
Dual-D-CNN [17] - 99.25
Proposed method 99.31 99.52

3.4. Comparison with Traditional Machine Learning Methods

The proposed method was also compared with conventional machine learning meth-
ods based on manually crafted features, and the results were compared in terms of accuracy,
as shown in Figure 9. The machine learning-based methods extract the features by image
processing operations. With simple image processing operations, forged and authentic
images cannot be classified because there is no visual distinction between the two cat-
egories. If we rely on image processing operations only, there has to be thresholds for
every operation to give desirable results on every image. This is not possible because each
image is different with respect to lighting, contrast, noise features, and variable image
acquisition conditions. The automated deep learning-based approach proposed in this
paper is helpful in such scenarios to extract deep and apt representations for the forgeries
in the images. Furthermore, these representations were enhanced by the error level analysis
of images, which captures the differences in JPEG compression levels of forged regions;
the local binary pattern helps in identifying textural changes in neighboring pixels in the
image region. In [8], the chroma channel of the image was used for extracting the local
binary pattern of the image. Then, DCT was applied to the LBP code of individual blocks
of the image. Furthermore, the standard deviation of all DCT coefficients belonging to
each block was calculated and treated as features to be fed to the SVM classifier. In [6,7,9],
the textural based features were used, and maximum accuracy was achieved by [6], i.e.,
97.33% on CASIA v2. Figure 9 shows a graphical representation of the results obtained.
The traditional methods had the disadvantage that they were computationally expensive,
whereas deep learning-based techniques saved execution time.
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4. Conclusions

The approach for image manipulation detection suggested in the paper utilized the
JPEG compression-based analysis of the image and textural-based features, and it was
explained using the XAI approach. Both features can be combined in such a way as to
use their benefits. In this approach, the RGB image is analyzed for JPEG compression
levels by compressing the image at a certain level, and then the difference is calculated
to find out the error. Furthermore, the obtained image difference is used to calculate the
local binary code. The local binary code is further converted into 3D LBP feature maps
using multidimensional scaling (MDS). The feature maps are served to the ResNet-50 v2
architecture. Here, the major reason for providing LBP feature maps to the neural network
is that these networks are trained for specific image classification tasks; hence, they learn
features that are general to image classification tasks. To make them more suitable for
the detection of forgeries, LBP-based textural features are used. Residual networks are
useful because support is provided by the addition of identity mapping to the residual
output. The ResNet-50 v2 architecture is preferred in place of ResNet-50 v1 as version 2
uses pre-activation. This seems like a minor change, but it makes a big difference in the
performance of the network. In post-activation, a single scale and bias are applied to the
final output, whereas, in pre-activation, scaling and bias are applied to the input features
by batch normalization. Batch normalization operation is applied to each layer, which then
applies a unique scale and bias to earlier features.

The model-neutral kernel SHAP technique was chosen to interpret the results of the
proposed technique. By estimating the Shapley values through kernelExplainer (explana-
tion model) for each variable as a function of the anticipated reconstruction error of the
proposed pretrained model, these variables can be identified. Instead of utilizing the raw
error for each variable, Shapley values deliver the real influence of each variable, resulting
in a significant reconstruction error. The proposed technique achieved an accuracy of
99.31%, 99.52%, 99.10%, and 98.05% on the CASIA v1, CASIA v2, DVMM, and IMD 2020
datasets, respectively. The capability of the pretrained CNN and rich textural features,
which are scale- and direction-invariant, helps to escalate the detection accuracy of the
proposed approach. In the future, the work can be extended to localize the forgery by
providing batched input to the neural network.
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