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Abstract: In this paper, a tracking algorithm based on the residual neural network model and machine
learning is proposed. Compared with the widely used VGG network, the residual neural network
has deeper characteristic layers and special additional layer structure, which break the symmetry of
the network and reduce the degradation of the neural network. The additional layer and convolution
layer are used for feature fusion to represent the target. The multi-features of the object can be
captured by using the developed algorithm, so that the accuracy of tracking can be improved in some
complex scenarios. In addition, we defined a new measure to calculate the similarity of different
image regions and find the optimal matched region. The search area is delimited according to
the continuity of the target motion, which improves the real-time performance of tracking. The
experimental results illustrate that the proposed algorithm achieved a higher accuracy while taking
into account the real time performance, especially in dealing with some complex scenarios such
as deformation, rotation changes and background clutters, in comparison with the Multi-Domain
Network (MDNet) algorithm based on a convolutional neural network.

Keywords: machine learning; deep neural network; object tracking; residual network

1. Introduction

Object tracking is one of the fundamental problems in computer vision. It has been
widely used in video monitoring [1], intelligent transportation [2], intelligent medical
diagnosis [3], human-machine interaction [4] and other aspects. However, there are many
challenges in some complex scenarios such as deformation (DEF), scale changes (SCs),
rotation changes (RCs), background clutters (BCs) and occlusion (OCC). Many algorithms
have been proposed for different application backgrounds. The existing algorithms mainly
include the following categories: object tracking algorithms based on mean shift, subspace
learning, detection, sparse representation, correlation filtering and deep neural network.

In mean shift algorithm [5], the kernel RGB histogram is selected as the image feature,
and the similarity between different image regions is measured by calculating the Pasteur
coefficient. The highest of the similarity is searched in the current frame, basing on the
spatial position of the target in the previous frame. The algorithm is essentially a local
optimization algorithm based on gradient rise. It has higher real-time performance, which is
widely used in pattern recognition, digital image processing and computer vision. However,
it has limitations in solving the problems of occlusion, background clutter and scale change.
In subspace machine learning algorithm [6], the features are mapped from high-dimensional
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space to low-dimensional space by a set of linear projections. It provides a compact image
representation, but a large number of target templates from different perspectives and
lighting conditions need to be collected in advance. Therefore, the practicability of the
algorithm is not very satisfactory. Detection algorithm [7] is a discriminant algorithm. In
this method, the discriminant features are selected by maximizing the variance ratio of the
feature distribution between the tracked target and the surrounding background, and the
robust tracking of the target is realized in the mean shift framework. Recently, the algorithm
has made some progress, but it still needs to be advanced in solving the occlusion problem
and online update. In the sparse representation algorithm [8], the target to be tracked is
regarded as a dictionary sparse representation composed of a target template and trivial
template (unit matrix). The target template is used to capture the changes of the target
in the tracking process, and the trivial template is used to describe the interferences such
as occlusion and illumination changes. This kind of algorithm has higher accuracy, but
lower real-time performance because of solving complex convex optimization problems.
The correlation filtering algorithm [9] constructs an adaptive correlation filter to model
the appearance of the target. By calculating the minimum square error between the actual
correlation output and the expected correlation output, the target can be detected and
tracked. The algorithm not only shows good robustness to the challenges of illumination
change, affine change and non-rigid deformation, but also has a good real-time performance.
The main improvement direction is to add more robust features, design a more effective
model updating mechanism and speed up the calculation efficiency.

The deep neural network (DNN) algorithm is first applied to the field of object tracking
by Wang et al. in [10]. They combine off-line training with on-line adjustment and propose
the deep learning tracking (DLT). Firstly, it uses the stacked denoising autoencoder to carry
out off-line pre training on large-scale natural image data set to learn the general object
representation method. Then, it uses the positive and negative samples to carry out on-line
fine-tuning to make the depth network have the ability to present the characteristics of
the currently tracked objects. However, the image resolution of auxiliary data set used
in offline pre training stage is too low, which makes it difficult for the encoder to learn
effective feature representation. Moreover, the fully connected network is not good enough
to describe the target features. Therefore, the tracking effect of DLT algorithm still lower
than that of traditional tracking algorithm. To make up for this deficiency and enhance
the ability to characteristic representation, many researchers use the convolutional neural
network (CNN) as a network model for feature extraction and classification. The CNN
is pre-trained by using the ImageNet and other large-scale image datasets to obtain the
efficient characteristic such as the Visual Geometry Group (VGG)-Net. The deeper the
network layer is, the more accurate and comprehensive the extracted features are. However,
the deepening of network layers will lead to a surge in the amount of computing, which
will consume more resources. It creates an irreconcilable contradiction.

For some complex scenarios, it is very important to enhance the ability of feature
representation. To solve the problem, we propose a new algorithm based on a new deep
neural network model and machine learning. The main contribution of this work can be
summarized as follows:

(1) Based on the advantages of residual network and machine learning, a new image
feature extraction algorithm is proposed. In the algorithm, only two layers are ex-
tracted. One is the low-level feature, and the other is the high-level feature. It reduces
the complexity of calculation caused by the increase of parameters. This allows for a
trade-off between effectiveness and accuracy in some complex scenes.

(2) A new measure is defined to calculate the similarity of different image regions. This
new metric skillfully transforms multiplication into addition, which greatly improves
the operation speed. At the same time, it also integrates the advantages of QATM
algorithm [11], taking into account the uniqueness of pairing, rather than simply
evaluating the matching score.
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(3) In the search algorithm, the position of the target in the previous frame is taken as
the core, which appropriately reduces the search range and improves the real-time
tracking to a certain extent.

In the following, we first review related work in Section 2, and present the proposed
algorithm based on deep neural network and machine learning in Section 3. The exper-
imental results in public tracking benchmark are demonstrated in Section 4. Finally, the
conclusions are given in Section 5.

2. Related Work

The existing tracking algorithms can be categorized into generative and discriminative
methods [12]. The generative methods describe the appearance characteristics of the target
and minimize the reconstructed errors by searching the candidate target. The generative
methods simply focus on the target and ignore the background information. The tracking
target is easily lost if the appearance changes drastically. Recently, benchmark evalua-
tions [13,14] suggest that using background information has noticeable effects on the object
tracking results and conclude that discriminative methods provide better performance than
the generative ones. The representative discriminative algorithms include boosting [15],
multiple instance learning [16], tracking learning-detection (TLD) [17], structured support
vector machine [18] and so on.

In recent years, the deep neural network (DNN) has been developing continuously,
which has made great success in many fields such as target detection, natural language pro-
cessing and unmanned driving. DNN has strong learning and expression abilities so that
there are more and more tracking algorithms based on DNN [19-24]. Wang et al. [10] first
apply DNN to the object tracking and propose a deep learning tracking (DLT) algorithm.
The algorithm combines off-line training with on-line adjustment. To improve the tracking
effect of DLT algorithm, Wang et al. [25] propose an improved depth network tracking
algorithm, in which the convolutional neural network (CNN) is used as the network model
to obtain features and classifications. Then, Wang et al. [26] proposed target tracking
algorithm based on the full convolution network and machine learning. This algorithm
uses the CNN model to extract the target features and makes a detailed attribute analysis of
the features obtained by different convolution layers. Later, Gan et al. [27] first applied the
recurrent neural network (RNN) to object tracking and proposed a deep machine learning
tracking algorithm based on CNN and RNN. Cui et al. [28] used the multi-directional recur-
rent neural network to model the spatial structure relationship in the tracking area to obtain
the confidence graph, which is introduced into the correlation filter as a regularization term.
Ondraska et al. [29] proposed the end-to-end target tracking algorithm based on RNN.
Nam et al. [30] proposed a novel target tracking algorithm based on multi domain network
(MDnet). This algorithm uses labeled tracking video as pre-train CNN model directly,
divides the deep network into a shared layer and the domain-specific layer. The shared
layer obtains the general feature expression of different types of targets, and the specific
layer learns the specific feature expression of tracking targets. Their experimental results
illustrate the outstanding performance compared with seven state-of-the-art trackers on
the challenging video sequences. Their MDNet algorithm is ranked first place in accuracy
and first or second place in robustness. However, from the data of Table 1 in [30], it can be
seen that the average score of accuracy is less than 0.65, which is not high. Through a large
number of experiments, it is found that the algorithm in reference [30] can not accurately
track the following three types of targets in video sequences: the first is that the tracked
target deforms or rotates; the second is that there is a very similar target interference next
to the tracked target; the third is that the background of the tracked target is very complex.
Qi et al. [31] proposed Hedged deep tracking (HDT). VGG16 is used to train the filter with
different depth features, and the idea of adaptive ensemble learning is used to integrate
multiple trackers into a more robust tracker. Daneljan et al. [32] proposed a new factorized
convolution operator to reduce the model parameters, simplify the training set and improve
the template updating strategy. Later, Goutam et al. [33] proposed unveiling the power of
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deep tracking, which processes deep and shallow features, respectively, and then performs
adaptive fusion. On the other hand, many researchers [34-36] applied the siamese network
to the object tracking. Wang et al. [37] proposed a residual attentional siamese network
for high performance object tracking. The algorithm mitigates the over-fitting problem in
deep network training and performs independent representation learning and discrim-
inant learning to enhance the discriminant ability and adaptive ability of the algorithm.
Zhang et al. [38] propose new residual modules for ResNet to eliminate the negative impact
of padding and enhance tracking robustness and accuracy. A tracking framework for end-
to-end off-line training is proposed in [39], which is a completely traditional anchor-free
Siam network. The deep network resnet-50 is used to extract rich features to improve the
accuracy. Liu et al. [40] proposed an offline universal adversarial attack called Efficient
Universal Shuffle Attack for visual object tracking. Zhou et al. [41] proposed a new Siamese
central perceptual network for visual tracking, which consists of the subnetwork, followed
by the classification, regression, and localization branches in parallel. The high accuracy
and efficiency are achieved. Ondrasovi¢ and Tarabek [42] gave a survey of Siamese visual
object tracking. Gao et al. [43] proposed a new deformable sample generator. The classifier
and the deformable sample generator learned jointly, which enhanced quantitative and
qualitative evaluations for the visual object tracking task.

Inspired by the above research work, especially for the shortcomings of the algorithm
in reference [30], a new target tracking algorithm based on the residual neural network
model and machine learning is proposed in this paper. On the premise of ensuring the
real-time tracking, our algorithm can accurately track three types of targets that can not
be tracked by the algorithm of reference [30]. The purpose of our method is to improve
the accuracy while taking into account the real time performance, especially in dealing
with some complex scenarios. We use the deeper residual neural network (ResNet50) to
extract deep features, which overcomes the gradient decreasing of convolution neural
network with the deepening of layers. Fusing the special additional layer structure of
ResNet50 and convolution layer feature, more robust target characterization features can
be obtained. Object tracking can be regarded as a special template matching. The search
region is determined by the position of current frame and motion continuity of tracking
target. We define a measure assessing the quality of a matching pair using soft-ranking
among all matching pairs and find the highest matching quality score.

3. Object Tracking Algorithm Based on Resnet-50

In the following, we first describe the overall framework of our algorithm. Next,
we detail the mechanism of residual neural network. Finally, we describe the detail of
measuring the similarity of different image regions.

3.1. Overview of the Developed Algorithm

The developed algorithm is based on residual neural network and machine learning.
We use ResNet-50 to obtain the attribute features of the object. Object tracking can be
regarded as a special template matching. Classic template matching methods often use
sum-of-squared-differences or normalized cross correlation to calculate a similarity score
between the template and the underlying image. These approaches work well when the
transformation between the template and the target search image is simple. However, they
fail in some complex scenarios, such as deformation, scale changes, rotation changes and
background clutters, which is common in real life. Unlike those methods, we define a new
measure in order to obtain the optimal matching regions. Based on the idea of quality
aware, we give the criteria of tracking.

The general flow chart and the procedure of the developed algorithm are shown
in Figure 1 and Algorithm 1. The main idea of the developed algorithm is to use the
residual network (ResNet-50) to extract multiple features of the target, and then apply a
new measure to match and find the optimal matching area. In order to avoid unnecessary
search, the current frame of the object is used as the template frame, and the search area is
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The object I.;

________________________

delimited according to the continuity of the target motion in the picture of the next frame.
The search area is centered on the center position of the target frame of the current frame,
and the size is 1.5 times more than the size of the template frame (if 1.5 times is beyond the
scope of the whole picture of the next frame, search in the original picture).

Algorithm 1. Procedure of the developed algorithm for object tracking.

Input: initial object position P; and scale in the first frame.

Output: object position P; and object scale in the i frame.

Draw the image patch Ij of the object according to P; and scale in the first frame.
Set i < 2 (initial frame number).

While (i < the last frame number):

{

1. In the i" frame, a box I? is intercepted with P;_; as the center, and Ilo is 1.5 times the size
of Ii—l .
2. Extract the features of Ilo and I;_q:
T:=F(I;_1),: S := F(I?), where F(e) is features extractor.
Compute the similarity measurement of T and S, and find the best matched region I; in S.
Record the center position P; of I;.

3
4
5. Draw the image patch I; of the objector according to P; and scale in the i frame
6. Seti«i+1.

}

Extract the feature of I,

Matching

Yes

Find the object I,

Extract the feature of I >

“Determine whether
to
continue trakcing

v

=

No

End

Figure 1. General flow chart.

3.2. Residual Neural Network Model

The traditional convolution network uses VGG to extract the features of the target. In
theory, the expression ability of extracted features will be enhanced with the deepening of
layers. However, the gradient of VGG network will disappear with the deepening of layers,
resulting in the reduction of the accuracy of the extracted features. Skip connect in the
residual network breaks the symmetry of the network. When the residual network is used
to extract features, the problem of gradient decline caused by deep layers is completely
avoided. ResNet50 is designed and trained for image classification tasks which almost pay
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all attention to feature extraction. Low-level features contain rich texture information while
high-level features normally reveal semanic clues. High computational complexity comes
from deeper layers. As for object tracking, we have more operations than classification
task after extracting features. Therefore, instead of extracting many layers in ResNet50, we
extracted a low-level feature and high-level feature, respectively. Then, they are spliced to
trade off effectiveness and complexity. Based on the above analysis, this paper selects the
residual neural network (ResNet50) to extract target features and the network structure is
shown in Table 1.

Table 1. Residual network framework for feature extraction.

Name Patch Size/Stride Output Size
Convl 7x7/2 112 x 112 x 64
Maxpool 3x3/2 56 x 56 x 64
. 1 x1/1]
Residual2_x 3%3/2| x3 56 x 56 x 256
[1x1/1]
. 1 x1/1]
Residual3_x 3%3/2| x4 28 x 28 x 512
[1x1/1]
. [1x1/1]
Residuald_x 3x3/2| x1 14 x 14 x 1024
[1x1/1]
Combination Residual3_x®Residuald_x 1536

From Table 1, we can see that the network structure of the developed algorithm is
as follows: The Conv1 layer and Maxpool layer represent the first layer of convolution
and the second layer of convolution, respectively. The Residual2_x layer represents three
residual blocks with nine layers of convolution. The Residual3_x layer represents four
residual blocks with twelve layers of convolution. The Residual4_x layer represents one
residual block with three layers of convolution. The Combination layer splices the features
output by Residual2_x layer and Residual4_x layer. Therefore, our network structure has a
total of 26 layers, and the feature dimension of the image is 1536. These features are used to
calculate the similarity and determine the location of the object.

3.3. Measuring Algorithm

To compute a similarity score between the template and the underlying image, tradi-
tional template matching algorithms generally utilize sum-of-squared-differences (SSD)
or normalized cross correlation (NCC). When the transformation between the template
and the target search picture is basic, these algorithms perform effectively. However, these
approaches start to fail when it is in the real-world since the transformation is compli-
cated or non-rigid. For complex situations, such as partial occlusion and color change, the
weaknesses of these algorithms will be highlighted.

In [11], Cheng et al. proposed a novel quality-aware template matching (QATM)
method, that can be easily embedded into any deep neural network. Five different template
matching cases are considered as shown in Table 2, where “1-to-1 matching” implies exact
matchings (two matched objects), “1-to-N” and “M-to-1” indicates s or t is a homogeneous
patch causing multiple matches, e.g., white paper to white wall,” M-to-N” means many pat-
terned patches. It is clear that “1-to-1” matching case is the most important. A quantitative
assessment of QATM as shown in Equation (1)

R* = argmax{ Y max{Quality(r,t)|t € T}} (1)

R reR
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such that the region R in search areas that maximizes the overall matching quality.

Table 2. Template matching cases from QATM.

Matching Cases
Not Matching
1-tol 1-toN M-to-1 M-to-N
Quality High Medium Medium Low Very Low
QATM(s,t) 1 1/N 1/M 1/MN 1/||T|IS| ~ 0

Because the addition operation is faster than the multiplication operation, we propose
a new measurement method, that is, to evaluate the matching quality between the object
template and the search object, as shown below:

LNQATM (r,t)=InP(t|r) +InP(r|t) ()
here ol )
/) = exp\po\Jt, Jr
P = e ewlo (i) ©

In (3), f; and f, are the feature representation of patch t and r, respectively. p(-, ")
is a predefined similarity measure between two patches, e.g., cosine similarity, which
can be computed through the tensorflow.einsum in DNN. Therefore, in (2), P(t|r) can
be considered as the likelihood function that a template patch f is matched in S, and
symmetrically, P(r|t) can be considered as the likelihood function that a search patch r is
matched in T. P(t|r) can be interpreted as a soft-ranking of the current patch compared
to all other patches in the template image in terms of matching quality. We can see that
the maximum of the measurement function is related to both In P(¢|r) and In P(r|t). The
likelihood function P(t|r) in (3) can be regarded as the softmax activation, which is a
standard DNN layer. Procedure of our algorithm for matching quality between two images
are shown in Algorithm 2.

Algorithm 2. Procedure of the developed algorithm for matching quality between two images.

LNQATM: measure matching quality between object template and search object.

1: Given the object template It and search object Is. Where Func(-|I) indicates doing operation
along axis of I.

: T < F(Ir),S < F(Is), Where F(-) indicates features extractor.

: pst < Patch—wiseSimilarity(T,S).

: L(s|t) « Softmax(pst|T),

: L(t|s) + Softmax(pst|S).

: LNQATM + InL(s|t) +InL(t|s).

: Syap + Max(LNQATMIT).

. Tyap < Max(LNQATM]S).

X NI ON U s WN

Remark 1. Compared with the existing feature extraction methods based on the shallow and deep
NNs have been widely applied to solve this type of problem, the advantage of the developed feature
extraction method in this paper is that the fine-tuning training is not required on the new data set
when we use shallow and deep networks. In additional, we cut some layers at the end of ResNet-50
to reduce the computational complexity caused by similarity measurement in our algorithm.

4. Experimental Results and Analysis

We evaluated the developed algorithm on the public benchmark dataset Object Track-
ing Benchmark (OTB) 2015 [14], which contains 100 sequences with the ground-truth
labels and covers various challenging scenes such as DEF, SCs, RCs, BCs and so on. Since
the algorithm (MDnet) in [30] is the representative CNN-based tracking method and it
demonstrates much better accuracy than other seven state-of-the-art tracking algorithms,
we choose it as the compared method.
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The developed algorithm is implemented in Python, basing on the TensorFlow frame-
work, and runs at around 1 fps with eight cores of 1.60 GHz Intel(R) Core (TM) i5-8250U
and NVIDIA GeForce MX150.

Remark 2. As shown in Figure 2, Figure 3, Figure 4 some detailed qualitative tracking results
show the superiority of the developed algorithm. In the three figures, # number on the left corner of
each image denotes the frame index, and the green, blue and red boxes respectively represent the real
position, the position predicted by the algorithm (MDnet) in article [30] and the position predicted
by the developed algorithm.

Figure 2. Tracking bounding boxes obtained by two different algorithms on Boy challenging sequences.

Figure 3. Tracking bounding boxes obtained by two different algorithms on Deer challenging sequences.
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Figure 4. Tracking bounding boxes obtained by two different algorithms on Lemming challenging sequences.

To evaluate quantitatively the performance of our approach, we use two common
evaluation metrics: the center location error (CLE) and the bounding box overlap. The
center location error is the Euclidean distance between the center of the tracking result and
ground-truth bounding box. The precision metric is defined as the percentage of correct
tracking frames, whose center location error is less than the corresponding threshold.
Generally, the threshold is often set to 20 pixels. The bounding box overlap is computed as:

S = [RTNRG|/|RTURG,

where RT and RG are the tracked and the ground-truth bounding boxes, respectively, and
|| represents the number of pixels in the region. A frame is considered successful if the
overlap ratio is larger than the corresponding threshold, which is generally set to 0.5. The
success rate is defined as the percentage of successful frames. The results are ranked by the
area under curve for the success plot. We employ one-pass evaluation (OPE) to report the
overall performance.

Case 1: The tracked target deforms or rotates

In Figure 2, the MDnet algorithm fails to estimate the position of the boy’s head in
frame 560, frame 565, frame 580, frame 585, frame 590 and frame 595, in which there
are more deformation and rotation on the face of the boy. The developed algorithm can
better estimate the object position in comparison with MDnet [30]. Figure 5 shows the
precision and success plots based on center location error and bounding box overlap ratio,
respectively. From Figure 5, we can see that the developed algorithm achieves a precision
score of 0.90 and success score of 0.82, which exhibits improvements in the precision and
success scores by 11% and 18%, respectively compared to MDnet.

Case 2: There is a very similar target interference next to the tracked target

In the Deer sequence, the object has the similar image features as its background. As
shown in Figure 3, the deer is not tracked by MDnet in four frames, i.e., frame 12, frame 16,
frame 36 and frame 40. The developed algorithm can reliably track the object throughout.
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Precision

Precision

As is shown in Figure 6, the developed algorithm achieves a precision score of 0.54 and
success score of 0.38, which exhibits improvements in the precision and success scores by
7% and 15%, respectively compared to MDnet [30].
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Figure 5. Precision and success plots of the MDnet [30] and the developed algorithm for Boy
challenging sequences.
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Figure 6. Precision and success plots of the MDnet [30] and the developed algorithm for Deer
challenging sequences.

Case 3: The background of the tracked target is very complex

In Figure 4, the Lemming sequence has more complex background. Except for Frame
512 and Frame 542, MDnet loses the object in all the remaining seven frames. However, the
developed algorithm performs reliably throughout the whole video. Figure 7 illustrates that
the developed algorithm achieves a precision score of 0.85 and success score of 0.71, which
exhibits improvements in the precision and success scores by 5% and 2%, respectively
compared to MDnet [30].
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Figure 7. Precision and success plots of the MDnet [30] and the developed algorithm for Lemming
challenging sequences.

Moreover, in Figure 8, the average precision and success scores for three challenging
sequences are shown. We can see that the developed algorithm achieves an overall precision
score of 0.74 and an overall success score of 0.64, whereas MDNets are 0.66 and 0.52,
respectively. The developed algorithm is obviously superior to MDnet [30].
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Figure 8. Average precision and success plots of the MDnet [30] and the developed algorithm for
three challenging sequences.

5. Conclusions

A large number of experiments show that the algorithm in [30] can not accurately track
the targets in the following three cases in video sequences: the tracked target deforms or
rotates; there is a very similar target interference next to the tracked target; the background
of the tracked target is very complex. To make up for these shortcomings, a new target
tracking algorithm based on the residual neural network model and machine learning is
proposed in this paper. Compared with the widely used VGG network, residual neural
network has deeper characteristic layers and special additional layer structure. The addi-
tional layer and convolution layer are used for feature fusion to represent the target. In this
paper, we extract the texture features and semanic clues features information of the target,
respectively. Therefore, the multi-features of the object can be captured by the developed
algorithm, so that the accuracy of tracking can be improved in some complex scenarios. In
addition, a new measure is defined to calculate the similarity of different image regions to
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find the optimal matched region. The search area is delimited according to the continuity of
the target motion, which improves the real-time performance of tracking to a certain extent.
The experimental results illustrate that the developed algorithm achieved a higher accuracy
while taking into account the real time performance, especially the developed algorithm
can accurately track three types of targets that can not be tracked by the algorithm of
reference [30].

In addition, we need to point out the limitations of the developed algorithm. Com-
pared with [30], the real-time advantage of the developed algorithm is not obvious. In the
next work, we plan to optimize the network structure and improve the similarity function
to obtain a better target tracking algorithm.
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