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Abstract: Over the last few decades, a certain interesting class of functional equations were developed
while obtaining the generating functions of many system distributions. This class of equations has
numerous applications in many modern disciplines such as wireless networks and communications.
The Ulam stability theorem can be applied to numerous functional equations in investigating the
stability when approximated in Banach spaces, Banach algebra, and so on. The main focus of this
study is to analyse the relationship between functional equations, Hyers–Ulam–Rassias stability,
Banach space, quasi-beta normed spaces, and fixed-point theory in depth. The significance of this
work is the incorporation of the stability of the generalised additive functional equation in Banach
space and quasi-beta normed spaces by employing concrete techniques like direct and fixed-point
theory methods. They are powerful tools for narrowing down the mathematical models that describe
a wide range of events. Some classes of functional equations, in particular, have lately emerged from
a variety of applications, such as Fourier transforms and the Laplace transforms. This study uses
linear transformation to explain our functional equations while providing suitable examples.

Keywords: additive functional equations; generalised Ulam–Hyers stability; Banach space; quasi-beta
normed spaces; fixed point

1. Introduction

A function is conventionally defined in mathematics, particularly in functional analy-
sis, as a map from a vector space to the field underlying the vector space, which is commonly
the real numbers. In other words, a function accepts a vector as an argument and returns a
scalar. A functional equation F = G, which means an equation between functionals, can be
understood as an “equation to solve”, with solutions being functions themselves.

The development of functional equations coincided with the contemporary definition
of the function. J. D’Alembert [1] published the first papers to be published on functional
equations between 1747 and 1750. Because of their apparent simplicity and harmonic
nature, functional equations have attracted the attention of many notable mathematicians,
including N.H. Abel, J. Bolyai, A.L. Cauchy, L. Euler, M. Frechet, C.F. Gauss, J.L.W.V. Jensen,
A.N. Kolmogorov, N.I. Lobacevskii J.V. Pexider, and S.D. Poisson.

In 1940, S.M. Ulam [2] was the first to work on the issue of the stability of functional
equations which gave rise to the question of “When is it true that the solution of an equation
differing slightly from a given one must of necessity be close to the solution of the given
equation?” and further studies are based upon it. D. H. Hyers [3] came out with a positive
response to the issue of Ulam stability for Banach spaces in 1941. T. Aoki [4] explored
additive mappings further in 1950. Th.M. Rassias [5] was successful in extending Hyer’s
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Theorem’s result by weakening the condition for the Cauchy difference. Taking into account
the significant effect of Ulam, Hyers, and Rassias on the development of stability issues of
functional equations, the stability phenomena demonstrated by Th.M. Rassias is known
as Hyers-Ulam-Rassias stability cited in [6–10]. In the spirit of the Rassias’ method, P.
Gavruta [11] explored further by substituting the unbounded Cauchy difference with a
generic control function in 1994.

The historical background of the stability of functional equations and literature survey
has been explained in the cited references (see [12–20]). The detailed results of Ulam
stability are explained in [21–25]. Different types of additive functional equations and their
Ulam stability are addressed in [26–30]. Stability analysis is important in mathematics, with
Ulam stability being particularly important for functional equations, differential equations,
and integral equations.

Fixed point method is one of the prominent methods for investigating the Ulam
stability analysis and recalls a fundamental result in fixed-point theory. For more recent
research on fixed-point theory, see [31–34].

Recently, A. Batool et al. [35], proved the Hyers–Ulam stability of the cubic and quartic
functional equation

f (2x + y) + f (2x− y) = 3 f (x + y) + f (−x− y) + 3 f (x− y) + f (y− x)

+ 18 f (x) + 6 f (−x)− 3 f (y)− 3 f (−y) (1)

and additive and quartic functional equation

f (2x + y) + f (2x− y) = 2 f (x + y) + 2 f (−x− y) + 2 f (x− y) + 2 f (y− x)

+ 14 f (x) + 10 f (−x)− 3 f (y)− 3 f (−y) (2)

using the fixed-point method in matrix Banach algebras.
In [36], K. Tamilvanan et al. introduced a new mixed type quadratic-additive func-

tional equation

φ

(
∑

1≤a≤m
asa

)
+ ∑

1≤a≤m
φ

(
−asa +

m

∑
b=1,a 6=b

bsb

)
= (m− 3) ∑

1≤a<b≤m
φ(asa + bsb)

−
(

m2 − 5m + 2
)

∑
1≤a≤m

a2
[

φ(sa) + φ(−sa)

2

]
−
(

m2 − 5m + 4
) s

∑
1≤a≤m

a
[

φ(sa)− φ(−sa)

2

]
(3)

where m > 4 is a fixed integer and investigated Ulam stability by using the Hyers method
in random normed spaces.

In [37], N. Uthirasamy et al. considered the following new dimension additive func-
tional equation

∑
1≤a<b<c≤s

φ

(
−νa − νb − νc +

s

∑
d=1,d 6=a 6=b 6=c

νd

)

−
(

s3 − 9s2 + 20s− 12
6

) s

∑
a=1

[
φ(νa)− φ(−νa)

2

]
= 0 (4)

where s > 4 is a fixed integer, to examine the Ulam stability of this equation in intu-
itionistic fuzzy normed spaces and 2-Banach spaces with the help of direct and fixed-
point approaches.

The purpose of this research is to suggest a novel form of functional equation as below

ω
(

η`+℘γ + ηh̄κ
)
+ ω

(
η`+℘κ + ηh̄µ

)
+ η`+℘ω(γ− κ) + ηh̄ω(κ − µ)

= 2
(

η`+℘ω(γ) + ηh̄ω(κ)
)

(5)
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In this article, the solution of this equation, as well as its Ulam stability, are determined
with η`+℘, ηh̄ 6= 0 in Banach spaces and quasi β normed spaces using direct and fixed-point
methods. The counter-example for non-stable cases is also demonstrated.

Jω(γ, κ, µ) = ω
(

η`+℘γ + ηh̄κ
)
+ ω

(
η`+℘κ + ηh̄µ

)
+ η`+℘ω(γ− κ) + ηh̄ω(κ − µ)

− 2
(

η`+℘ω(γ) + ηh̄ω(κ)
)

.

2. Banach Space Stability Results
2.1. Donald H. Hyers’ Theorem (1941) for (5)

Theorem 1. If ω : R → R real map satisfying ‖Jω(γ, κ, µ)‖ ≤ U for some U ≥ 0 and for all
γ, κ, µ ∈ R, then there exists a unique additive function A : R→ R and χ =

(
η`+℘ + ηh̄

)
such

that ‖ω(γ)−A(γ)‖ ≤ U
2(χ−1) for all γ ∈ R.

Proof. Let the real function ω : R→ R satisfying∥∥∥ω
(

η`+℘γ + ηh̄κ
)
+ ω

(
η`+℘κ + ηh̄µ

)
+ η`+℘ω(γ− κ) + ηh̄ω(κ − µ)

−2
(

η`+℘ω(γ) + ηh̄ω(κ)
)∥∥∥ ≤ U (6)

for someU ≥ 0. Instead of (γ, κ, µ) by (0, 0, 0) in above inequality and
∥∥∥(2− η`+℘ − ηh̄

)
ω(0)

∥∥∥
= 0 or ω(0) = 0 in place of (γ, κ, µ) by (γ, γ, γ) in the above inequality then

‖ω(χγ)− χω(γ)‖ ≤ U

2
(7)

for all γ ∈ R, where χ =
(

η`+℘ + ηh̄
)

. Consider γ by χs−1γ

∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ U

2

for all γ ∈ R and s = 1, 2, 3 · · · n, where n ∈ N. Taking summation and multiply both side

by
1
χs then

n

∑
s=1

1
χs

∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ 1

2

n

∑
s=1

U

χs

using
|l + m| ≤ |l|+ |m|

we have ∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ U

2

n

∑
s=1

1
χs . (8)

Since
n

∑
s=1

χ−s ≤
+∞

∑
s=1

χ−s

the inequality (8) yields ∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ U

2

+∞

∑
s=1

1
χs

which is ∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ U

2(χ− 1)
(9)
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for all γ ∈ R. By replacing n by m− n in (9), we get∥∥∥∥ 1
χm−n ω

(
χm−nγ

)
−ω(γ)

∥∥∥∥ ≤ U

2(χ− 1)
(10)

which is ∥∥∥∥ 1
χm ω

(
χm−nγ

)
− 1

χn ω(γ)

∥∥∥∥ ≤ 1
χn

(
U

2(χ− 1)

)
(11)

for all γ ∈ R. Considering γ by χnγ in (11), we get∥∥∥∥ 1
χm ω(χmγ)− 1

χn ω(χnγ)

∥∥∥∥ ≤ ( U

2(χ− 1)

)
1

χn (12)

However,
lim

n→+∞
χ−n = 0

From (12), we get

lim
n→+∞

∥∥∥∥ 1
χm ω(χmγ)− 1

χn ω(χnγ)

∥∥∥∥ = 0

Therefore {
ω(χnγ)

χn

}+∞

n=1

is a Cauchy sequence. The additive is defined as

A(γ) = lim
n→+∞

ω(χnγ)

χn

for all γ ∈ R. The following section proves that A : R→ R is an additive function.
Consider∥∥∥A(η`+℘γ + ηh̄κ

)
+A

(
η`+℘κ + ηh̄µ

)
+ η`+℘A(γ− κ) + ηh̄A(κ − µ)

−2
(

η`+℘A(γ) + ηh̄A(κ)
)∥∥∥

=
1

χn

∥∥∥ω
(

χnη`+℘γ + χnηh̄κ
)
+ ω

(
χnη`+℘κ + χnηh̄µ

)
+ η`+℘ω(χnγ− χnκ)

+ηh̄ω(χnκ − χnµ)− 2
(

η`+℘ω(χnγ) + ηh̄ω(χnκ)
)∥∥∥

≤ lim
n→+∞

U

χn = 0

Hence

A
(

η`+℘γ + ηh̄κ
)
+A

(
η`+℘κ + ηh̄µ

)
+ η`+℘A(γ− κ) + ηh̄A(κ − µ)

= 2
(

η`+℘A(γ) + ηh̄A(κ)
)

for all γ ∈ R. Let

||A(γ)−ω(γ)|| = || lim
n→+∞

ω(χnγ)

χn −ω(γ)||

= lim
n→+∞

||ω(χnγ)

χn −ω(γ)||

≤ lim
n→+∞

U

2(χ− 1)
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and
||A(γ)−ω(γ)|| ≤ U

2(χ− 1)

for all γ ∈ R.

A is a unique function, which is proved as follows:

||B(γ)−ω(γ)|| ≤ U

2(χ− 1)

Hence

||B(γ)−ω(γ)|| ≤ ||B(γ)−ω(γ)||+ ||A(γ)−ω(γ)||

≤ U

2(χ− 1)
+

U

2(χ− 1)

=
U

(χ− 1)
.

However, A and B are additive, hence

||A(γ)−B(γ)|| = 1
n
||A(nγ)−B(nγ)||

≤ 1
n

U

(χ− 1)
(13)

Taking n→ +∞, from (13)

lim
n→+∞

||A(γ)−B(γ)|| ≤ lim
n→+∞

1
n

U

(χ− 1)

Hence
||A(γ)−B(γ)|| ≤ 0

Therefore A(γ) = B(γ) for all γ ∈ R. Henceforth A is unique.

2.2. Tosio Aoki’s (1950) Theorem for (5)

Theorem 2. Let ω : R→ R be a real map satisfying ‖Jω(γ, κ, µ)‖ ≤ U{||γ||p + ||κ||p + ||µ||p}
for some U ≥ 0, p ∈ [0, 1) and ∀γ, κ ∈ R, then there exists a unique additive function A : R→ R
and χ =

(
η`+℘ + ηh̄

)
such that ‖ω(γ)−A(γ)‖ ≤ 3 U

2|χ−χp | ||γ||
p for all γ ∈ R.

Proof. Let ω : R→ R be a real function satisfying ‖Jω(γ, κ, µ)‖ ≤ U{||γ||p + ||κ||p + ||µ||p}
for some U ≥ 0, p ∈ [0, 1). Instead of (γ, κ, µ) by (0, 0, 0) in the above, then we have∥∥∥(2− η`+℘ − ηh̄

)
ω(0)

∥∥∥ = 0 or ω(0) = 0 in place of (γ, κ, µ) by (γ, γ, γ) in the above
inequality, hence

‖ω(χγ)− χω(γ)‖ ≤ 3
2
U||γ||p (14)

for all γ ∈ R, where χ =
(

η`+℘ + ηh̄
)

. Replacing γ by χs−1γ

∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ 3

2
U χ(s−1)p||γ||p

for all γ ∈ R. Taking summation and multiplying by
1
χs

n

∑
s=1

1
χs

∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ 3

2
U ||γ||p

n

∑
s=1

χsp−p

χs
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Using
|l + m| ≤ |l|+ |m|∥∥∥∥ 1

χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 3
2
U ||γ||p

n

∑
s=1

χs(p−1)χ−p. (15)

Since
n

∑
s=1

χs(p−1) ≤
+∞

∑
s=1

χs(p−1)

the inequality (15) yields∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 3
2
U ||γ||pχ−p

+∞

∑
s=1

χs(p−1)

which is ∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 3 U

2(χ− χp)
||γ||p (16)

for all γ ∈ R. By replacing n by m− n in (16), hence∥∥∥∥ 1
χm−n ω

(
χm−nγ

)
−ω(γ)

∥∥∥∥ ≤ 3 U

2(χ− χp)
||γ||p (17)

which is ∥∥∥∥ 1
χm ω

(
χm−nγ

)
− 1

χn ω(γ)

∥∥∥∥ ≤ 1
χn

(
3 U

2(χ− χp)

)
||γ||p (18)

for all γ ∈ R. Replacing γ by χnγ in (18),∥∥∥∥ 1
χm ω(χmγ)− 1

χn ω(χnγ)

∥∥∥∥ ≤ ( 3 U

2(χ− χp)

)
χnp

χn ||γ||
p (19)

Since 0 ≤ p < 1,
lim

n→+∞
χn(p−1) = 0

and using (19), we obtain

lim
n→+∞

∥∥∥∥ 1
χm ω(χmγ)− 1

χn ω(χnγ)

∥∥∥∥ = 0

Therefore {
ω(χnγ)

χn

}+∞

n=1

is a Cauchy sequence. The additive function is defined as

A(γ) = lim
n→+∞

ω(χnγ)

χn

for all γ ∈ R. A : R→ R is an addictive function, proved as follows.
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Consider∥∥∥A(η`+℘γ + ηh̄κ
)
+A

(
η`+℘κ + ηh̄µ

)
+ η`+℘A(γ− κ) + ηh̄A(κ − µ)

−2
(

η`+℘A(γ) + ηh̄A(κ)
)∥∥∥

=
1

χn

∥∥∥ω
(

χnη`+℘γ + χnηh̄κ
)
+ ω

(
χnη`+℘κ + χnηh̄µ

)
+ η`+℘ω(χnγ− χnκ)

+ηh̄ω(χnκ − χnµ)− 2
(

η`+℘ω(χnγ) + ηh̄ω(χnκ)
)∥∥∥

≤ lim
n→+∞

U{(||γ||p + ||κ||p + ||µ||p)χn}
χn = 0

Since p ∈ [0, 1).
Hence

A
(

η`+℘γ + ηh̄κ
)
+ A

(
η`+℘κ + ηh̄µ

)
+ η`+℘A(γ− κ) + ηh̄ A(κ − µ)

= 2
(

η`+℘A(γ) + ηh̄ A(κ)
)

for all γ ∈ R. Consider

||A(γ)−ω(γ)|| = || lim
n→+∞

ω(χnγ)

χn −ω(γ)||

= lim
n→+∞

||ω(χnγ)

χn −ω(γ)||

≤ lim
n→+∞

3 U

2(χ− χp)
||γ||p

Hence
||A(γ)−ω(γ)|| ≤ 3 U

2(χ− χp)
||γ||p

for all γ ∈ R.
A is a unique function, proved as follows

||B(γ)−ω(γ)|| ≤ 3 U

2(χ− χp)
||γ||p

Hence

||B(γ)−ω(γ)|| ≤ ||B(γ)−ω(γ)||+ ||A(γ)−ω(γ)||

≤ 3 U

2(χ− χp)
||γ||p + 3 U

2(χ− χs)
||γ||p

=
3 U

(χ− χp)
||γ||p

But A and B are additive, hence

||A(γ)−B(γ)|| = 1
n
||A(nγ)−B(nγ)||

≤ 1
n

3 U

(χ− χp)
||γ||p (20)

Taking n→ +∞, using (20)

lim
n→+∞

||A(γ)−B(γ)|| ≤ lim
n→+∞

1
n

3 U

(χ− χp)
||γ||p
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Hence
||A(γ)−B(γ)|| ≤ 0

Therefore A(γ) = B(γ) for all γ ∈ R. Hence A is unique.

To prove example for not stable in p = 1 the Equation (5).

Example 1. Consider the mapping φ : R→ R be defined by

φ(γ) =

{
µγ, if |γ| <1
µ, otherwise

let ω : R→ R be defined by

ω(γ) =
+∞

∑
n=0

φ(χnγ)

χn f or all γ ∈ R.

Then ω satisfies

‖Jω(γ, κ, µ)‖ ≤
χ2
[
2 + 3

(
η`+℘ + ηh̄

)]
χ− 1

µ(|γ|+ |κ|+ |µ|). (21)

Then there is no an additive mapping A : R→ R and a constant β > 0 such that

|ω(γ)−A(γ)| ≤ β|γ| f or all γ ∈ R. (22)

Proof. Now |ω(γ)| ≤ ∑+∞
n=0

|φ(χnγ)|
|χn | = ∑+∞

n=0
µ

χn = 1
1− 1

χ

µ = χµ
χ−1 .

Thus, ω is bounded.
If γ = κ = µ = 0 at that point (29) is minor. In the event that |γ|+ |κ|+ |µ| ≥ 1, at

that point the left hand side of (29) is under
χ2
[
2 + 3

(
η`+℘ + ηh̄

)]
χ− 1

µ. It is assumed that

0 < |γ|+ |γ|+ |µ| < 1. Then there exists a positive integer k such that

1
χk ≤ |γ|+ |κ|+ |µ| <

1
χk−1 , (23)

so that χk−1|γ| < 1, χk−1|κ| < 1, χk−1|µ| < 1 and consequently

χk−1
(

η`+℘γ + ηh̄κ
)

, χk−1
(

η`+℘κ + ηh̄µ
)

, χk−1(γ− κ), χk−1(κ − µ), χk−1(γ), χk−1(κ) ∈ (−1, 1).

here n = 0, 1, . . . , k− 1,

χn
(

η`+℘γ + ηh̄κ
)

, χn
(

η`+℘κ + ηh̄µ
)

, χn(γ− κ), χn(κ − µ), χn(γ), χn(κ) ∈ (−1, 1).

and

φ
(

η`+℘γ + ηh̄κ
)
+ φ

(
η`+℘κ + ηh̄µ

)
+ η`+℘φ(γ− κ) + ηh̄φ(κ − µ)

− 2
(

η`+℘φ(γ) + ηh̄φ(κ)
)
= 0
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for n = 0, 1, . . . , k− 1. From the definition of ω,∣∣∣ω(η`+℘γ + ηh̄κ
)
+ ω

(
η`+℘κ + ηh̄µ

)
+ η`+℘ω(γ− κ) + ηh̄ω(κ − µ)

−2
(

η`+℘ω(γ) + ηh̄ω(κ)
)∣∣∣

=
+∞

∑
n=0

1
χn

∣∣∣φ(η`+℘γ + ηh̄κ
)
+ φ

(
η`+℘κ + ηh̄µ

)
+ η`+℘φ(γ− κ) + ηh̄φ(κ − µ)

− 2
(

η`+℘φ(γ) + ηh̄φ(κ)
)∣∣∣

=
+∞

∑
n=k

1
χn

∣∣∣φ(η`+℘γ + ηh̄κ
)
+ φ

(
η`+℘κ + ηh̄µ

)
+ η`+℘φ(γ− κ) + ηh̄φ(κ − µ)

− 2
(

η`+℘φ(γ) + ηh̄φ(κ)
)∣∣∣

≤
+∞

∑
n=k

1
χn

[
2 + 3

(
η`+℘ + ηh̄

)]
µ =

[
2 + 3

(
η`+℘ + ηh̄

)]
µ× 1

χk ×
χ

χ− 1

≤
χ2
[
2 + 3

(
η`+℘ + ηh̄

)]
χ− 1

µ(|γ|+ |κ|+ |µ|).

Thus ω satisfies (29) with 0 < |γ|+ |κ|+ |µ| < 1.
The additive functional Equation (5) is not stable for p = 1 in the inequality

‖Jω(γ, κ, µ)‖ ≤ U{||γ||p + ||κ||p + ||µ||p}

Suppose on the contrary that there exists an additive mapping A : R → R and a
constant β > 0 satisfying (30). Since ω is bounded and continuous for all γ ∈ R, A is
bounded on any open interval containing the origin and continuous at the origin. In view
of Theorem 2, A must have the form A(γ) = cγ for any γ in R. Thus we obtain that

|ω(γ)| ≤ (β + |c|)|γ|. (24)

now m with mµ > β + |c|.
If γ ∈

(
0, 1

χm−1

)
, at that point χnγ ∈ (0, 1) for all n = 0, 1, . . . , m− 1. For this γ, we get

ω(γ) =
+∞

∑
n=0

φ(χnγ)

χn ≥
m−1

∑
n=0

φ(χnγ)

χn = mµγ > (β + |c|)γ

which negates (32).Therefore the additive functional Equation (5) is not stable for p = 1 in
the sense of Ulam, Hyers, and Rassias.

2.3. John M. Rassias’ Theorem (1982) for (5)

Theorem 3. Let ω : R → R be a real map satisfying ‖Jω(γ, κ, µ)‖ ≤ U{||γ||p||κ||p||µ||p}for
some U ≥ 0, p ∈

[
0, 1

3

)
and for all γ, κ, µ ∈ R, then there exists a unique additive function

A : R→ R and χ =
(

η`+℘ + ηh̄
)

such that ‖ω(γ)−A(γ)‖ ≤ U
2|χ−χ3p | ||γ||

3p for all γ ∈ R.

Proof. Let ω : R→ R be a real function satisfying

‖Jω(γ, κ, µ)‖ ≤ U{||γ||p||κ||p||µ||p} (25)
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for someU ≥ 0, p ∈
[
0, 1

3

)
. Instead of (γ, κ, µ) by (0, 0, 0) in (25), then

∥∥∥(2− η`+℘ − ηh̄
)

ω(0)
∥∥∥

= 0 or ω(0) = 0 in place of (γ, κ, µ) by (γ, γ, γ) in (25),

‖ω(χγ)− χω(γ)‖ ≤ 1
2
U||γ||3p (26)

for all γ ∈ R, where χ =
(

η`+℘ + ηh̄
)

. Replacing γ by χs−1γ

∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ 3

2
U χ3(s−1)p||γ||3p

for all γ ∈ R. Taking summation and multiplying by
1
χs in the above inequality

n

∑
s=1

1
χs

∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ 1

2
U ||γ||3p

n

∑
s=1

χ3(sp−p)

χs

use
|l + m| ≤ |l|+ |m|∥∥∥∥ 1

χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 1
2
U ||γ||3p

n

∑
s=1

χs(3p−1)χ−p (27)

Since
n

∑
s=1

χs(3p−1) ≤
+∞

∑
s=1

χs(3p−1)

the inequality (27) yields∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 1
2
U ||γ||3pχ−p

+∞

∑
s=1

χs(3p−1)

which is ∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ U

2
(
χ− χ3p

) ||γ||3p. (28)

Thus the proof is similar to that of Theorem 2.

To prove example for not stable in p = 1 the Equation (5).

Example 2. Consider the mapping φ : R→ R be defined by

φ(γ) =

{
µγ, if |γ| <1
µ, otherwise

let ω : R→ R be defined by

ω(γ) =
+∞

∑
n=0

φ(χnγ)

χn f or all γ ∈ R.

Then ω satisfies

‖Jω(γ, κ, µ)‖ ≤
χ2
[
2 + 3

(
η`+℘ + ηh̄

)]
χ− 1

µ(|γ|+ |κ|+ |µ|). (29)

Then there is no an additive mapping A : R→ R and a constant β > 0 such that

|ω(γ)−A(γ)| ≤ β|γ| f or all γ ∈ R. (30)
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Proof. Now

|ω(γ)| ≤
+∞

∑
n=0

|φ(χnγ)|
|χn| =

+∞

∑
n=0

µ

χn =
1

1− 1
χ

µ =
χµ

χ− 1
.

Thus, ω is bounded.
If γ = κ = µ = 0 at that point (29) is minor. In the event that |γ|+ |κ|+ |µ| ≥ 1, at

that point the left hand side of (29) is under
χ2
[
2 + 3

(
η`+℘ + ηh̄

)]
χ− 1

µ. It is assumed that

0 < |γ|+ |γ|+ |µ| < 1. Then there exists a positive integer k such that

1
χk ≤ |γ|+ |κ|+ |µ| <

1
χk−1 , (31)

so that χk−1|γ| < 1, χk−1|κ| < 1, χk−1|µ| < 1 and consequently

χk−1
(

η`+℘γ + ηh̄κ
)

, χk−1
(

η`+℘κ + ηh̄µ
)

, χk−1(γ− κ), χk−1(κ − µ), χk−1(γ), χk−1(κ) ∈ (−1, 1).

here n = 0, 1, . . . , k− 1,

χn
(

η`+℘γ + ηh̄κ
)

, χn
(

η`+℘κ + ηh̄µ
)

, χn(γ− κ), χn(κ − µ), χn(γ), χn(κ) ∈ (−1, 1).

and

φ
(

η`+℘γ + ηh̄κ
)
+ φ

(
η`+℘κ + ηh̄µ

)
+ η`+℘φ(γ− κ) + ηh̄φ(κ − µ)

− 2
(

η`+℘φ(γ) + ηh̄φ(κ)
)
= 0

for n = 0, 1, . . . , k− 1. From the definition of ω (31),∣∣∣ω(η`+℘γ + ηh̄κ
)
+ ω

(
η`+℘κ + ηh̄µ

)
+ η`+℘ω(γ− κ) + ηh̄ω(κ − µ)

−2
(

η`+℘ω(γ) + ηh̄ω(κ)
)∣∣∣

=
+∞

∑
n=0

1
χn

∣∣∣φ(η`+℘γ + ηh̄κ
)
+ φ

(
η`+℘κ + ηh̄µ

)
+ η`+℘φ(γ− κ) + ηh̄φ(κ − µ)

− 2
(

η`+℘φ(γ) + ηh̄φ(κ)
)∣∣∣

=
+∞

∑
n=k

1
χn

∣∣∣φ(η`+℘γ + ηh̄κ
)
+ φ

(
η`+℘κ + ηh̄µ

)
+ η`+℘φ(γ− κ) + ηh̄φ(κ − µ)

− 2
(

η`+℘φ(γ) + ηh̄φ(κ)
)∣∣∣

≤
+∞

∑
n=k

1
χn

[
2 + 3

(
η`+℘ + ηh̄

)]
µ =

[
2 + 3

(
η`+℘ + ηh̄

)]
µ× 1

χk ×
χ

χ− 1

≤
χ2
[
2 + 3

(
η`+℘ + ηh̄

)]
χ− 1

µ(|γ|+ |κ|+ |µ|).

Thus ω satisfies (29) with 0 < |γ|+ |κ|+ |µ| < 1.
The additive functional Equation (5) is not stable for p = 1 in the inequality

‖Jω(γ, κ, µ)‖ ≤ U{||γ||p + ||κ||p + ||µ||p}

Suppose on the contrary that there exists an additive mapping A : R → R and a
constant β > 0 satisfying (30). Since ω is bounded and continuous for all γ ∈ R, A is
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bounded on any open interval containing the origin and continuous at the origin. In view
of Theorem 2, A must have the form A(γ) = cγ for any γ in R. Thus we obtain that

|ω(γ)| ≤ (β + |c|)|γ|. (32)

now m with mµ > β + |c|.
If γ ∈

(
0, 1

χm−1

)
, at that point χnγ ∈ (0, 1) for all n = 0, 1, . . . , m− 1. For this γ, we get

ω(γ) =
+∞

∑
n=0

φ(χnγ)

χn ≥
m−1

∑
n=0

φ(χnγ)

χn = mµγ > (β + |c|)γ

which negates (32).Therefore the additive functional Equation (5) is not stable for p = 1 in
the sense of Ulam, Hyers, and Rassias.

2.4. K. Ravi, M. Arunkumar, and John M. Rassias’ Theorem (2008) for (5)

Theorem 4. Let ω : R→ R be a real map satisfying
‖Jω(γ, κ, µ)‖ ≤ U

{
||γ||p||κ||p||µ||p +

{
||γ||3p + ||κ||3p + ||µ||3p}} for some U ≥ 0, p ∈[

0, 1
3

)
and for all γ, κ, µ ∈ R, then there exists a unique additive function A : R → R and

χ =
(

η`+℘ + ηh̄
)

such that ‖ω(γ)−A(γ)‖ ≤ 2 U
|χ−χ3p | ||γ||

3p for all γ ∈ R.

Proof. Let ω : R→ R be a real function satisfying
‖Jω(γ, κ, µ)‖ ≤ U

{
||γ||p||κ||p||µ||p +

{
||γ||3p + ||κ||3p + ||µ||3p}} for some U ≥ 0, p ∈[

0, 1
3

)
. Instead of (γ, κ, µ) by(0, 0, 0) in the above

∥∥∥(2− η`+℘ − ηh̄
)

ω(0)
∥∥∥ = 0 or ω(0) = 0.

Replacing (γ, κ, µ) by (γ, γ, γ) in the above we get

‖ω(χγ)− χω(γ)‖ ≤ 4
2
U||γ||3p (33)

for all γ ∈ R, where χ =
(

η`+℘ + ηh̄
)

. Replacing γ by χs−1γ∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ 2 U χ3(s−1)p||γ||3p

for all γ ∈ R. Multiplying the two sides by
1
χs and taking summation

n

∑
s=1

1
χs

∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ 2 U ||γ||3p

n

∑
s=1

χ3(sp−p)

χs .

By applying
|l + m| ≤ |l|+ |m|∥∥∥∥ 1

χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 2 U ||γ||3p
n

∑
s=1

χs(3p−1)χ−p. (34)

Since
n

∑
s=1

χs(3p−1) ≤
+∞

∑
s=1

χs(3p−1)

the inequality (34) yields∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 2 U ||γ||3pχ−p
+∞

∑
s=1

χs(3p−1)
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which is ∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 2 U(
χ− χ3p

) ||γ||3p (35)

Thus the proof is similar to that of Theorem 2.

Example 3. Consider the map ω : R→ R is defined by

φ(γ) =

{
µγ, if |γ| < 1

3
µ
3 , otherwise

where µ > 0 is a constant, and let the function ω : R→ R be defined as

ω(γ) =
+∞

∑
n=0

φ(χnγ)

χn f or all γ ∈ R.

Then ω satisfies the functional inequality

‖Jω(γ, κ, µ)‖ ≤
χ
[
2 + 3

(
η`+℘ + ηh̄

)]
3(χ− 1)

µ
(
|γ|

1
3 + |κ|

1
3 + |µ|

1
3 + |γ|+ |κ|+ |µ|

)
(36)

Then there is no an additive mapping A : R→ R and a constant β > 0 such that

|ω(γ)−A(γ)| ≤ β|γ| f or all γ ∈ R. (37)

Proof. Presently

|ω(γ)| ≤
+∞

∑
n=0

|φ(χnγ)|
|χn| =

+∞

∑
n=0

µ

3
× µ

χn =
µ

3
.

χµ

χ− 1
.

we see that ω is limited. We prove ω fulfills (36).
If γ = κ = µ = 0 at that point (36) is insignificant and |γ| 13 + |κ| 13 + |µ| 13 + |γ|+ |κ|+

|µ| ≥ 1
3 , at that point the left hand side of (36) is under

χ
[
2 + 3

(
η`+℘ + ηh̄

)]
3(χ− 1)

µ. Presently

assume that 0 < |γ| 13 + |κ| 13 + |µ| 13 + |γ|+ |κ|+ |µ| < 1
3 . For k is an integer

1
χk ≤ |γ|

1
3 + |κ|

1
3 + |µ|

1
3 + |γ|+ |κ|+ |µ| < 1

χk−1 , (38)

so that χk−1|γ| < 1, χk−1|κ| < 1, χk−1|µ| < 1 and consequently

χk−1
(

η`+℘γ + ηh̄κ
)

, χk−1
(

η`+℘κ + ηh̄µ
)

, χk−1(γ− κ), χk−1(κ − µ), χk−1(γ), χk−1(κ) ∈
(
− 1

χ
,

1
χ

)
.

Therefore for each n = 0, 1, . . . , k− 1,

χn
(

η`+℘γ + ηh̄κ
)

, χn
(

η`+℘κ + ηh̄µ
)

, χn(γ− κ), χn(κ − µ), χn(γ), χn(κ) ∈
(
− 1

χ
,

1
χ

)
.

and

φ
(

η`+℘γ + ηh̄κ
)
+ φ

(
η`+℘κ + ηh̄µ

)
+ η`+℘φ(γ− κ) + ηh̄φ(κ − µ)

− 2
(

η`+℘φ(γ) + ηh̄φ(κ)
)
= 0
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for n = 0, 1, . . . , k− 1. From the definition of ω and (38),∣∣∣ω(η`+℘γ + ηh̄κ
)
+ ω

(
η`+℘κ + ηh̄µ

)
+ η`+℘ω(γ− κ) + ηh̄ω(κ − µ)

−2
(

η`+℘ω(γ) + ηh̄ω(κ)
)∣∣∣

=
+∞

∑
n=0

1
χn

∣∣∣φ(η`+℘γ + ηh̄κ
)
+ φ

(
η`+℘κ + ηh̄µ

)
+ η`+℘φ(γ− κ) + ηh̄φ(κ − µ)

− 2
(

η`+℘φ(γ) + ηh̄φ(κ)
)∣∣∣

=
+∞

∑
n=k

1
χn

∣∣∣φ(η`+℘γ + ηh̄κ
)
+ φ

(
η`+℘κ + ηh̄µ

)
+ η`+℘φ(γ− κ) + ηh̄φ(κ − µ)

− 2
(

η`+℘φ(γ) + ηh̄φ(κ)
)∣∣∣

≤
+∞

∑
n=k

1
χn

[
2 + 3

(
η`+℘ + ηh̄

)]µ

3
=
[
2 + 3

(
η`+℘ + ηh̄

)] µ

3
× 1

χk ×
χ

χ− 1

≤
χ
[
2 + 3

(
η`+℘ + ηh̄

)]
3(χ− 1)

µ
(
|γ|

1
3 + |κ|

1
3 + |µ|

1
3 + |γ|+ |κ|+ |µ|

)
.

and 0 < |γ| 13 + |κ| 13 + |µ| 13 + |γ|+ |κ|+ |µ| < 1
3 .

Assume on the opposite that there exists an added substance mapping A : R→ R and
a steady β > 0 fulfilling (37). Since ω is limited and ceaseless for all γ ∈ R, A is limited
on any open interim containing the inception and consistent at the root. Considering
Theorem 4, A must have the structure A(γ) = cγ for any γ in R. Along these lines, we
acquire that

|ω(γ)| ≤ (β + |c|)|γ|. (39)

For m with mµ > β + |c|.
If γ ∈

(
0, 1

χm−1

)
, at that point χnγ ∈ (0, 1) for all n = 0, 1, . . . , m− 1. For this γ, we get

ω(γ) =
+∞

∑
n=0

φ(χnγ)

χn ≥
m−1

∑
n=0

φ(χnγ)

χn = mµγ > (β + |c|)γ

which repudiates (39). In this manner the added substance practical condition (5) the sense
of Ulam p = 1

3 , accepted in the disparity (35).

2.5. P. Gǎvrutǎ’ Theorem for (5)

Theorem 5. Let the mapping ω : R→ R satisfy the inequality ‖Jω(γ, κ, µ)‖ ≤M(γ, κ, µ) with
the condition lim

n→+∞
M(χnγ,χnκ,χnµ)

χn = 0 for all γ, κ, µ ∈ R, then there exists a unique additive func-

tion A : R→ R and χ =
(

η`+℘ + ηh̄
)

such that ||A(γ)−ω(γ)|| ≤ 1
2

n
∑

s=1

M(χs−1γ,χs−1γ,χs−1γ)
χs

for all γ ∈ R.

Proof. Let ω : R→ R be a real function satisfying∥∥∥ω
(

η`+℘γ + ηh̄κ
)
+ ω

(
η`+℘κ + ηh̄µ

)
+ η`+℘ω(γ− κ) + ηh̄ω(κ − µ)

−2
(

η`+℘ω(γ) + ηh̄ω(κ)
)∥∥∥ ≤M(γ, κ, µ) (40)
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for all γ, κ, µ ∈ R and for some M ≥ 0. Instead of (γ, κ, µ) by (0, 0, 0) in (40), then we have∥∥∥(2− η`+℘ − ηh̄
)

ω(0)
∥∥∥ = 0 or ω(0) = 0 in place of (γ, κ, µ) by (γ, γ, γ) in (40),

‖ω(χγ)− χω(γ)‖ ≤ 1
2
M(γ, γ, γ) (41)

for all γ ∈ R, where χ =
(

η`+℘ + ηh̄
)

. Replacing γ by χs−1γ

∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ 1

2
M
(

χs−1γ, χs−1γ, χs−1γ
)

for all γ ∈ R. Multiplying
1
χs on both sides and taking summation

n

∑
s=1

1
χs

∥∥∥ω(χsγ)− χω(χs−1γ)
∥∥∥ ≤ 1

2

n

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs

|l + m| ≤ |l|+ |m|∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 1
2

n

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs (42)

Since
n

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs ≤

+∞

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs

the inequality (42) yields∥∥∥∥ 1
χn ω(χnγ)−ω(γ)

∥∥∥∥ ≤ 1
2

+∞

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs (43)

for all γ ∈ R. Replacing n by m− n in (43),∥∥∥∥ 1
χm−n ω

(
χm−nγ

)
−ω(γ)

∥∥∥∥ ≤ 1
2

+∞

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs (44)

which is ∥∥∥∥ 1
χm ω

(
χm−nγ

)
− 1

χn ω(γ)

∥∥∥∥ ≤ 1
2χn

+∞

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs (45)

for all γ ∈ R. Replacing γ by χnγ in (18),∥∥∥∥ 1
χm ω(χmγ)− 1

χn ω(χnγ)

∥∥∥∥ ≤ 1
2χn

+∞

∑
s=1

M
(
χs+n−1γ, χs+n−1γ, χs+n−1γ

)
χs . (46)

Since
lim

n→+∞

1
2χn = 0

and hence from (46),

lim
n→+∞

∥∥∥∥ 1
χm ω(χmγ)− 1

χn ω(χnγ)

∥∥∥∥ = 0

Therefore {
ω(χnγ)

χn

}+∞

n=1
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is a Cauchy sequence. Then the sequence has a limit in R. If

A(γ) = lim
n→+∞

ω(χnγ)

χn

for all γ ∈ R then A : R→ R is additive.
Consider∥∥∥A(η`+℘γ + ηh̄κ

)
+A

(
η`+℘κ + ηh̄µ

)
+ η`+℘A(γ− κ) + ηh̄A(κ − µ)

−2
(

η`+℘A(γ) + ηh̄A(κ)
)∥∥∥

=
1

χn

∥∥∥ω
(

χnη`+℘γ + χnηh̄κ
)
+ ω

(
χnη`+℘κ + χnηh̄µ

)
+ η`+℘ω(χnγ− χnκ)

+ηh̄ω(χnκ − χnµ)− 2
(

η`+℘ω(χnγ) + ηh̄ω(χnκ)
)∥∥∥

≤ lim
n→+∞

1
χn M(χnγ, χnκ, χnµ) = 0

Hence

A
(

η`+℘γ + ηh̄κ
)
+ A

(
η`+℘κ + ηh̄µ

)
+ η`+℘A(γ− κ) + ηh̄ A(κ − µ)

= 2
(

η`+℘A(γ) + ηh̄ A(κ)
)

for all γ ∈ R.

||A(γ)−ω(γ)|| = || lim
n→+∞

ω(χnγ)

χn −ω(γ)||

= lim
n→+∞

||ω(χnγ)

χn −ω(γ)||

≤ lim
n→+∞

1
2

n

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs

Hence,

||A(γ)−ω(γ)|| ≤ 1
2

n

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs

for all γ ∈ R.

||B(γ)−ω(γ)|| ≤ 1
2

n

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs

Hence

||B(γ)−A(γ)|| ≤ ||B(γ)−ω(γ)||+ ||A(γ)−ω(γ)||

≤ 1
2

n

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs +

1
2

n

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs

=
n

∑
s=1

M
(
χs−1γ, χs−1γ, χs−1γ

)
χs

||A(γ)−B(γ)|| = 1
χn ||A(χ

nγ)−B(χnγ)||

≤ 1
χn

n

∑
s=1

M
(
χs+n−1γ, χs+n−1γ, χs+n−1γ

)
χs (47)
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Taking n→ +∞, using (47)

lim
n→+∞

||A(γ)−B(γ)|| ≤ lim
n→+∞

1
χn

n

∑
s=1

M
(
χs+n−1γ, χs+n−1γ, χs+n−1γ

)
χs

Hence
||A(γ)−B(γ)|| ≤ 0

Therefore A(γ) = B(γ) for all γ ∈ R. Hence A is unique.

Corollary 1. Consider the inequality with various general control functions such as

‖Jω(γ, κ, µ)‖ ≤


U,
U{||γ||p + ||κ||p + ||µ||p}, p 6= 1;
U||γ||p||κ||p||µ||p, 3p 6= 1;
U
{
||γ||p||κ||p||µ||p +

{
||γ||3p + ||κ||3p + ||µ||3p}}, 3p 6= 1;

(48)

which gives

‖ω(γ)−A(γ)‖ ≤



U

2|χ− 1| ,
3 U||γ||p
2|χ− χp| ,

U||γ||3p

2|χ− χ3p|
,

2 U||γ||3p

|χ− χ3p|

(49)

2.6. V. Radus’ Method for (5) (or) Fixed-Point Method

Theorem 6. Let ω : R→ R be a mapping with the condition

lim
`→+∞

M(θ`i γ, θ`i κ, θ`i µ)

θ`i
= 0, (50)

where

θi =

{
χ, i = 0,
1
χ , i = 1

satisfies

‖Jω(γ, κ, µ)‖ ≤M(γ, κ, µ) (51)

If the function there exists L = L(i) < 1 such that

γ→ π(γ) =
1
2
M

(
γ

χ
,

γ

χ
,

γ

χ

)
,

and

π(γ) = L θi γ

(
γ

θi

)
(52)

Then there exists a function A : R→ R that fulfills (5) and

‖ω(γ)−A(γ)‖ ≤ L1−i

1− L
π(γ) (53)
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3. Stability Results in Quasi-Beta Normed Spaces
3.1. Stability Results: Direct Method

Theorem 7. Let the mapping ω : R→ R satisfy the inequality

‖Jω(γ, κ, µ)‖Y ≤M(γ, κ, µ) (54)

with the condition

lim
n→+∞

M
(
χnjγ, χnjκ, χnjµ

)
χnj = 0

with j ∈ {−1, 1} and for all γ, κ, µ ∈ R, then there exists a function A : R → R and χ =(
η`+℘ + ηh̄

)
such that

‖ω(γ)−A(γ)‖s
Y ≤

M(n−1)s

(2χ)βs

+∞

∑
k= 1−j

2

M(χkjγ, χkjγ, χkjγ)s

χkjs (55)

for all γ ∈ R.

Proof. Consider (γ, κ, µ) by (γ, γ, γ) in (54)∥∥∥2h
[(

η`+℘ + ηh̄
)

x
]
− 2
(

η`+℘ + ηh̄
)

ω(γ)
∥∥∥

Y
≤M(γ, γ, γ) (56)

and
‖2χω(γ)− 2ω(χγ)‖Y ≤M(γ, γ, γ) (57)

Dividing both sides by 2χ in (57)∥∥∥∥ω(γ)− ω(χγ)

χ

∥∥∥∥
Y
≤ M(γ, γ, γ)

(2χ)β
(58)

let γ by χγ and dividing by χ in (58),∥∥∥∥ω(χγ)

χ
− ω(χ2γ)

χ2

∥∥∥∥
Y
≤ M(χγ, χγ, χγ)

(2χ)βχ
(59)

by these inequalities (58) and (59)∥∥∥∥ω(γ)− ω(χ2γ)

χ2

∥∥∥∥
Y
≤
∥∥∥∥ω(γ)− ω(χγ)

χ

∥∥∥∥
Y
+

∥∥∥∥ω(χγ)

χ
− ω(χ2γ)

χ2

∥∥∥∥
Y

≤ M
(2χ)β

[
M(γ, γ, γ) +

M(χγ, χγ, χγ)

χ

]
(60)

For n, ∥∥∥∥ω(γ)− ω(χnγ)

χn

∥∥∥∥
Y
≤ M(n−1)

(2χ)β

n−1

∑
k=0

M(χkγ, χkγ, χkγ)

χk (61)

≤ M(n−1)

(2χ)β

+∞

∑
k=0

M(χkγ, χkγ, χkγ)

χk

{
ω(χnγ)

χn

}
,
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Take γ by χmγ and divide by χm in (61),∥∥∥∥ω(χmγ)

χm − ω(χn+mγ)

χ(n+m)

∥∥∥∥
Y
=

M(n−1)

(2χ)β

∥∥∥∥ω(χmγ)− ω(χn · χmγ)

χn

∥∥∥∥
Y

≤ M(n−1)

(2χ)β

n−1

∑
k=0

M(χk+mγ, χk+mγ, χk+mγ)

χk+m

≤ M(n−1)

(2χ)β

+∞

∑
k=0

M(χk+mγ, χk+mγ, χk+mγ)

χk+m

→ 0 as m→ +∞

Therefore {
ω(χnγ)

χn

}
is a Cauchy sequence. Then the sequence has a limit in R. Defining

A(γ) = lim
n→+∞

ω(χnγ)

χn

for all γ ∈ R. As n→ +∞ in (61) then (55) holds for all γ ∈ R.

Now A fulfills (5), take (γ, κ, µ) by (χnγ, χnκ, χnµ) and dividing by χn in (54),

1
χn ‖Jω(χnγ, χnκ, χnµ)‖ ≤ 1

χn M(χnγ, χnκ, χnµ)

for all γ, κ, µ ∈ R. As n→ +∞

A
(

η`+℘γ + ηh̄κ
)
+ A

(
η`+℘κ + ηh̄µ

)
+ η`+℘A(γ− κ) + ηh̄ A(κ − µ)

= 2
(

η`+℘A(γ) + ηh̄ A(κ)
)

hence A fulfills (5). To demonstrate that A is unique

‖A(γ)−B(γ)‖Y =
1

χn ‖A(χnγ)−B(χnγ)‖Y

≤ M
χn {‖A(χnγ)−ω(χnγ)‖Y + ‖ω(χnγ)−B(χnγ)‖Y}

≤ M(n−1)

(χn)β

+∞

∑
k=0

M(χk+nγ, χk+nγ, χk+nγ)

χ(k+n)

→ 0 as n→ +∞

for all γ ∈ R. Hence A is unique.

Corollary 2. Considering the inequality with various control functions

‖Jω(γ, κ, µ)‖Y ≤


U,
U{||γ||p + ||κ||p + ||µ||p}, p 6= 1;
U||γ||p||κ||p||µ||p, 3p 6= 1;
U
{
||γ||p||κ||p||µ||p +

{
||γ||3p + ||κ||3p + ||µ||3p}}, 3p 6= 1;

(62)
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and

‖ω(γ)−A(γ)‖s
Y ≤



(
U M(n−1)

(2χ)β

χ

|χ− 1|

)s

,(
3U M(n−1)

(2χ)β

χ||γ||p

|χ− χβp|

)s

,(
U M(n−1)

(2χ)β

χ||γ||3p

|χ− χ3βp|

)s

,(
4U M(n−1)

(2χ)β

χ||γ||3p

|χ− χ3βp|

)s

(63)

3.2. Stability Results: Fixed-Point Method

Theorem 8. Let the map ω : R→ R with the condition

lim
`→+∞

M(θ`i γ, θ`i κ, θ`i µ)

θ`i
= 0, (64)

where

θi =

{
χ, i = 0,
1
χ , i = 1

satisfy

‖Jω(γ, κ, µ)‖Y ≤M(γ, κ, µ) (65)

If the function L = L(i) < 1 exists such that

γ→ π(γ) =
1
2
M

(
γ

χ
,

γ

χ
,

γ

χ

)
,

one has the property

π(γ) = L θi γ

(
γ

θi

)
(66)

for all γ ∈ R. Then there exists additive map A : R→ R fulfilling (5) and

‖ω(γ)−A(γ)‖s
Y ≤

(
L1−i

1− L
π(γ)

)s

(67)

Proof. Assuming B = {u/u : R→ R, u(0) = 0} and introducing the generalised metric
on B,

d(u, v) = inf{K ∈ (0,+∞) :‖ u(γ)− v(γ) ‖≤ Kπ(γ), γ ∈ R}.

Define T : B → B by

Tu(γ) =
1
θi

v(θiγ), ∀ γ ∈ R.
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Now u, v ∈ B,

d(u, v) ≤ K ⇒ ‖ u(γ)− v(γ) ‖Y≤ Kπ(γ), γ ∈ R.

⇒
∥∥∥∥ 1

θi
u(θiγ)−

1
θi

v(θiγ)

∥∥∥∥
Y
≤ 1

θi
Kγ(θiγ), γ ∈ R,

⇒
∥∥∥∥ 1

θi
u(θiγ)−

1
θi

v(θiγ)

∥∥∥∥
Y
≤ LKπ(γ), γ ∈ R,

⇒ ‖ Tu(γ)− Tv(γ) ‖Y≤ LKπ(γ), γ ∈ R,

⇒d(Tu, Tv) ≤ LK.

This implies
d(Tu, Tv) ≤ Ld(u, v),

=⇒ T is a strictly contractive mapping on B with Lipschitz constant L.
From (58), ∥∥∥∥ω(γ)− ω(χγ)

χ

∥∥∥∥
Y
≤ M(γ, γ, γ)

2χ
(68)

where

β(γ) =
M(γ, γ, γ)

2χ

For i = 0, ∥∥∥∥ 1
χ

ω(χγ)−ω(γ)

∥∥∥∥
Y
≤ 1

χ
π(γ)

for all γ ∈ R.

i.e., d(Tω, ω) ≤ 1
χ
= L = L1−0 = L1−i < +∞.

Take γ =
γ

χ
in (68),

∥∥∥∥ω(γ)− χh
(

γ

χ

)∥∥∥∥
Y
≤ 1

2
M

(
γ

χ
,

γ

χ
,

γ

χ

)
.

For i = 1, ∥∥∥∥ω(γ)− χω

(
γ

χ

)∥∥∥∥
Y
≤ π(γ)

for all γ ∈ R.
i.e., d(ω, Tω) ≤ 1 = L0 = L1−1 = L1−i < +∞.

In the above two cases,
d(ω, Tω) ≤ L1−i.

By the fixed-point condition, A of T in B such that

A(γ) = lim
`→+∞

ω(θ`i γ)

θ`i
, ∀ γ ∈ R. (69)

Claim that A : R → R additive. Supplanting (γ, κ, µ) by
(

θ`i γ, θ`i κ, θ`i µ
)

in (65) and

dividing by θ`i , it follows from (64) and (69), that A fulfills (5) for all γ, κ, µ ∈ R.
By the fixed-point condition, A is the unique fixed point of A in the set Y = {h ∈ B :

d(Tω,A) < +∞}, using the fixed-point alternative result A is the unique function such that

‖ω(γ)−A(γ)‖Y ≤ Kπ(γ)
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Finally by the fixed-point condition,

d(ω,A) ≤ 1
1− L

d(ω, Tω)

implying

d(ω,A) ≤ L1−i

1− L
.

Thus it is presumed that

‖ ω(γ)−A(γ) ‖s
Y≤

(
L1−i

1− L
π(γ)

)s

.

Corollary 3. Considering the inequality with various control functions

‖Jω(γ, κ, µ)‖Y ≤


U,
U{||γ||p + ||κ||p + ||µ||p}, p 6= 1;
U||γ||p||κ||p||µ||p, 3p 6= 1;
U
{
||γ||p||κ||p||µ||p +

{
||γ||3p + ||κ||3p + ||µ||3p}}, 3p 6= 1;

(70)

and

‖ω(γ)−A(γ)‖s
Y ≤



(
U

2χ|1− χ|

)s
,(

3 U||γ||p

2|χ− χβp|

)s
,(

U||γ||3p

2|χ− χ3βp|

)s

,(
2 U||γ||3p

|χ− χ3βp|

)s

(71)

Proof. Let

M(γ, κ, µ) =


U,
U{||γ||p + ||κ||p + ||µ||p},
U ||γ||p ||κ||p ||µ||p,
U
{
||γ||p||κ||p||µ||p + (||γ||3p + ||κ||3p + ||µ||3p)

}
Now

M(θ`i γ, θ`i y, θ`i z)
θ`i

=



U

θ`i
,

U

θ`i

{
||θ`i γ||p + ||θ`i κ||p + ||θ`i µ||p

}
,

U

θ`i
||θ`i γ||p ||θ`i κ||p ||θ`i µ||p,

U

θ`i

{
||θ`i γ||p ||θ`i κ||p ||θ`i µ||p

{
||θ`i γ||3s + ||θ`i κ||3p + ||θ`i µ||3p

}}

=


→ 0 as `→ +∞,
→ 0 as `→ +∞,
→ 0 as `→ +∞,
→ 0 as `→ +∞.
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For (64)

π(γ) =
1
2

[
M

(
γ

χ
,

γ

χ
,

γ

χ

)]
.

Hence

π(γ) =
1
2

[
M

(
γ

χ
,

γ

χ
,

γ

χ

)]
=



U

2
,

3U
2χβs ||γ||

p,

U

2χ3βs ||γ||
3p,

2U
χ3βs ||γ||

3p.

Additionally,

1
θi

γ(θiγ) =



U

θi · 2
,

3U
θi · 2χp ||θiγ||p,

U

θi · 2χ3p ||θiγ||3p,

U

θi · 2χ3p ||θiγ||3p.

=



θ−1
i

U

2
,

θ
βp−1
i

3U
2χp ||γ||

p,

θ
3βp−1
i

U

2χ3p ||γ||
3p,

θ
3βp−1
i

4U
2χ3p ||γ||

3p.

=


θ−1

i π(γ),
θ

βp−1
i π(γ),

θ
3βp−1
i π(γ),

θ
3βp−1
i π(γ).

From (67) the following results are obtained
Criteria:1 L = χ−1 if i = 0

‖ω(γ)−A(γ)‖s
Y ≤

L1−i

1− L
π(γ) =

( (
χ−1)1−0

1− (χ)−1 ·
U

2

)s

=

(
U

2(χ− 1)

)s
.

Criteria:2 L = χ if i = 1

‖ω(γ)−A(γ)‖s
Y ≤

L1−i

1− L
π(γ) =

(
(χ)1−1

1− χ
· U

2

)s

=

(
U

2(1− χ)

)s
.
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Criteria:1 L = χβp−1 if i = 0

‖ω(γ)−A(γ)‖s
Y ≤

L1−i

1− L
π(γ) =

((
χβp−1)1−0

1− χβp−1
3U

2χβp ||γ||
p

)s

=

(
χβp

χ− χβp
3U

2χβp ||γ||
p
)s

=

(
3U||γ||p

2
(
χ− χβp

))s

.

Criteria:2 L = 1
χβp−1 if i = 1

‖ω(γ)−A(γ)‖s
Y ≤

L1−i

1− L
π(γ) =


(

1
χβp−1

)1−1

1− 1
2χβp−1

3U
2χp ||γ||

p


s

=

(
χβp

χβp − χ

3U
2χβp ||γ||

p
)s

=

(
3U||γ||p

2χ
(
χβp − χ

))s

.

Criteria:1 L = χ3βp−1 if i = 0

‖ω(γ)−A(γ)‖s
Y ≤

L1−i

1− L
π(γ) =

((
χ3βp−1)1−0

1− χ3βp−1
U

2χ3βp ||γ||
3p

)s

=

(
χ3βp

χ− χ3βp
U

2χ3βp ||γ||
3p
)s

=

(
U||γ||3p

2
(
χ− χ3βp

))s

.

Criteria:2 L = 1
χ3βp−1 if i = 1

‖ω(γ)−A(γ)‖s
Y ≤

L1−i

1− L
π(γ) =


(

1
χ3βp−1

)1−1

1− 1
χ3βp−1

U

2χ3βp ||γ||
3p


s

=

(
χ3βp

χ3βp − χ

U

2χ3βp ||γ||
3p
)s

=

(
U||γ||3p

2
(
χ3βp − χ

))s

.
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Criteria:1 L = χ3βp−1 if i = 0

‖ω(γ)−A(γ)‖s
Y ≤

L1−i

1− L
π(γ) =

((
χ3βp−1)1−0

1− χ3βp−1
4U

2χ3βp ||γ||
3p

)s

=

(
χ3βp

χ− χ3βp
2U

χ3βp ||γ||
3p
)s

=

(
2U||γ||3p(
χ− χ3βp

))s

.

Criteria:2 L = 1
χ3βp−1 if i = 1

‖ω(γ)−A(γ)‖s
Y ≤

L1−i

1− L
π(γ) =


(

1
χ3βp−1

)1−1

1− 1
χ3βp−1

4U
2χ3βp ||γ||

3p


s

=

(
χ3βp

χ3βp − χ

2U
χ3βp ||γ||

3p
)s

=

(
2U||γ||3p(
χ3βp − χ

))s

.

3.3. Remark

(i) The proof of Theorem 5 and 6 replaced by s = M = β = 1 in Theorem 7 and 8.
(ii) Replacing by s = M = β = 1 in Corollary 2, the Corollary 1 is obtained and satisfies

Theorems 1–4.

3.4. Applications

Functional equations play an important role in linear algebra specifically in linear
transformation. The relationship between functional equation and linear transformation
is demonstrated.

Linear transformation:
Let A and B be real vector spaces (their dimensions are different) and let T be the function
with domain A and range in B T : A −→ B. T is said to be a linear transformation.

(a) ∀γ, κ ∈ A, T(γ + κ) = T(γ) +T(κ) (T is additive)
(b) ∀γ ∈ A , H ∈ R T(Hγ) = HT(γ) (T is homogeneous)

Example 4. A = B = E1. Define T(γ) = mγ, where m is the fixed real number.

ω
(

η`+℘γ + ηh̄κ
)
+ ω

(
η`+℘κ + ηh̄µ

)
+ η`+℘ω(γ− κ) + ηh̄ω(κ − µ)

= 2
(

η`+℘ω(γ) + ηh̄ω(κ)
)

Solution: Let us take the given equation as

T
(

η`+℘γ + ηh̄κ
)
+T

(
η`+℘κ + ηh̄µ

)
+ η`+℘T(γ− κ) + ηh̄T(κ − µ)

= 2
(

η`+℘T(γ) + ηh̄T(κ)
)



Symmetry 2022, 14, 1700 26 of 28

LHS : T
(

η`+℘γ + ηh̄κ
)
+T

(
η`+℘κ + ηh̄µ

)
+ η`+℘T(γ− κ) + ηh̄T(κ − µ)

= T
(

η`+℘γ
)
+T

(
ηh̄κ
)
+T

(
η`+℘κ

)
+T

(
ηh̄µ

)
+ η`+℘T(γ− κ) + ηh̄T(κ − µ)

= η`+℘T(γ) + ηh̄T(κ) + η`+℘T(κ) + ηh̄T(µ) + η`+℘T(γ− κ) + ηh̄T(κ − µ)

= η`+℘mγ + ηh̄mκ + η`+℘mκ + ηh̄mµ + η`+℘m(γ− κ) + ηh̄m(κ − µ)

= η`+℘mγ + ηh̄mκ + η`+℘mκ + ηh̄mµ + η`+℘mγ− η`+℘mκ + ηh̄mκ − ηh̄mµ

= 2η`+℘mγ + 2ηh̄mκ

RHS : 2
(

η`+℘T(γ) + ηh̄T(κ)
)

= 2η`+℘T(γ) + 2ηh̄T(κ)
= 2η`+℘mγ + 2ηh̄mκ.

Hence ω is a linear transformation.

Example 5. A = B = E1. For γ ∈ A, T(γ) = mγ + b, where m and b are the fixed real numbers
and b 6= 0.

ω
(

η`+℘γ + ηh̄κ
)
+ ω

(
η`+℘κ + ηh̄µ

)
+ η`+℘ω(γ− κ) + ηh̄ω(κ − µ)

= 2
(

η`+℘ω(γ) + ηh̄ω(κ)
)

Solution: The solution is trivial. Hence we conclude that ω is not a linear transformation.

4. Conclusions

In this study, a novel additive functional Equation (5) has been introduced. The
Hyers–Ulam stability in Banach spaces is investigated using the direct and the fixed-point
approach in Section 2. In Section 3, the Hyers–Ulam stability in quasi-beta normed spaces
is investigated by using the direct method and fixed-point approach. Additionally, the
counter-example for non-stable cases is provided. One more contribution is the inves-
tigation of our functional equation in relation to a linear transformation. In the future,
Hyers–Ulam stability can be determined in various normed spaces like Fuzzy normed
spaces, random normed spaces, and non-Archimedian normed spaces in our additive
functional Equation (5).
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